[1] A. S. Velestos, “Seismic Response and Design of Liquid Storage Tanks”, Guidelines for the Seismic Design of Oil and Gas Pipeline System, ASCE, 1984.
[2] N. Akiyama, H. Yamaguchi and Y. Enya, “Dynamics of a Liquid Storage Tank Placed on an Elastic Foundation”, Structural Engineering / Earthquake Engineering, JSCE, Vol. 3, No.2, pp. 447-456, 1986.
[3] M. A. Haroun, “Vibration Studies and Tests of Liquid Storage Tanks”, Earthquake Engineering and Structural Dynamics, Vol. 11, pp. 179-206, 1983.
[4] S. A. Mourad and M. A. Haroun, “Experimental Modal Analysis of Cylindrical Liquid-Filled Tanks”, Proceedings of Fourth U.S. National Conference on Earthquake Engineering, Palm Springs, California, Vol. 3, EERI, pp. 177-186, 1990.
[5] M. Aslam, “Finite Element Analysis of Earthquake-Induced Sloshing in Axisymmetric Tanks”, International Journal for Numerical Methods in Engineering, Vol. 17, pp. 159-170, 1981.
[6] Ikegawa M., “Finite element analysis of fluid motion in a container. In: Finite Element Methods in Flow Problem”, UAH Press, Huntsville, Alabama, pp. 737-738, 1974.
[7] Nakayam T., Washizu K., “Nonlinear analysis of liquid motion in a container subjected to a forced pitching oscillation”, International Journal for Numerical Methods in Engineering, Vol. 15, pp. 1207-1220, 1980.
[8] Wu, G. X. , Ma, Q. W. , Eatock Taylor, R., “Numerical simulation of sloshing waves in a 3D tank based on a finite element method”, Applied Ocean Research, Vol. 20, pp. 337-355, 1998.
[9] Wang, C.Z., Khoo, B.C., “Finite element analysis of two-dimensional nonlinear sloshing problems in random excitations”, Ocean Engineering, Vol. 32, pp. 107-133, 2005.
[10] Okamoto, T. and M. Kawahara, “Two-Dimensional Sloshing Analysis by Arbitrary Lagrangian-Eulerian Finite Element Method”, Structure Engineering Earthquake Engineering, JSCE, Vol. 8, No.4, pp. 207-216, 1992.
[11] T. Nakayama, “Boundary Element Analysis of Nonlinear Water Wave Problem”, International Journal for Numerical Methods in Engineering, Vol. 19, pp.953-970, 1983.
[12] T. Nakayama, “A Computational Method for Simulating Transient Motions of An Incompressible Inviscid Fluid with A Free Surface”, International Journal for Numerical Methods in Fluids, Vol. 10, pp. 683-695, 1990.
[13] T. Nakayama and K. Washizu, “The Boundary Element Method Applied to the Analysis of Two-Dimensional Nonlinear Sloshing Problems”, International Journal for Numerical Methods in Engineering, Vol. 17, pp. 1631-1646, 1981.
[14] B. Ramaswamy, M. Kawahara and T. Nakayama, “Lagrangian Finite Element Method for the Analysis of Two-Dimensional Sloshing Problems”, International Journal for Numerical Methods in Fluids, Vol. 6, pp. 659-670, 1986.
[15] W. Chen, M. A. Haroun and F. Liu, “Large Amplitude Liquid Sloshing in Seismically Excited Tanks”, Earthquake Engineering and Structural Dynamics, Vol. 57, No. 5, pp. 855-861, 1995.
[16] 劉孟龍,「邊界元素法分析二維矩型水槽承受水平及垂直振動之水沖激行為」,國立台灣大學造船及海洋工程學研究所,2002。
[17] 葛家豪,「邊界元素法對三維水沖激問題之數值模擬」,國立台灣大學碩士論文,1998。[18] Blandford, G. E., Ingraffea, A. R., and Liggett, J. A., “Two dimensional stress intensity factor computations using boundary element method”, Int. J. Num. Meth., Vol. 17, pp. 387-404, 1981.
[19] Nakayam, T., Washizu K., “The boundary element method applied to the analysis of two-dimensional nonlinear sloshing problems”, International Journal for Numerical Methods in Engineering, Vol. 15, pp. 1207-1220, 1981.
[20] Tosaka, N., Sugino, R., “Boundary element analysis of non-linear liquid motion in two-dimensional containers”, Berlin: Pringer, pp. 490-499, 1991.
[21] Banerjee, P.K., Morino, L., editors, “Boundary element methods in nonlinear fluid dynamics: developments in boundary element methods ”, Amsterdam: Elsevier, 1990.
[22] 王廉德,「應用複變邊界元素法求解二維沖激問題」,國立台灣海洋大學河海工程研究所碩士論文,2007。[23] 吳尚津,「Trefftz邊界元素法對二維沖激問題之模擬」,國立台灣海洋大學河海工程研究所碩士論文,2006。[24] Hromadka, T. V., “The Complex Variable Boundary Element Method”, Springer-Verlag, Berlin, 1984.
[25] Gu, L., and Huang, M. K., “A Complex Variable Boundary Element Method for Solving Plane and Plate Problems of Elasticity”, Engineering Analysis with Boundary Elements, Vol. 8, No. 6, 1991.
[26] Chou, S. I., and Shamas-Ahmadi, M., “Complex Variable Boundary Element Method for Torsion of Hollow Shafts”, Nuclear Engineering Analysis and Design, Vol.136, pp.255-263, 1992.
[27] Chen, J.T., Chen, Y.W., “Dual boundary element analysis using complex variables for potential problems with or without a degenerate boundary”, Engineering Analysis with Boundary Elements, pp.671-684, 2000.
[28] Okada, H., Rajiyah, H., and Atluri, S. N., “A novel displacement gradient boundary element method for elastic stress analysis with high accuracy”, ASME, Journal of Applied Mechanics, Vol. 55, pp. 786-794, 1988.
[29] Choi, J.H., and Kwak, B.M., “A boundary integral equation formulation in derivative unknowns for two-dimensional potential problems”, Journal of Applied Mechanics, Vol.56, pp.617-623, 1989.
[30] Wu, K.C., “Nonsingular Boundary Integral Equations for Two-Dimensional Anisotropic Elasticity”, Journal of Applied Mechanics. , Vol.67, pp.618-621, 2000.
[31] 江品昭,「複變數邊界元素法在彈性力學的平面問題探討」,國立台灣海洋大學河海工程研究所碩士論文,2002。