(3.238.130.97) 您好!臺灣時間:2021/05/09 03:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:許哲瑋
研究生(外文):Che-Wei Hsu
論文名稱:應用無限長分歧路徑複變邊界元素法求解二維沖激問題
論文名稱(外文):Solving 2-D sloshing problems by using the Complex BEM with infinite branch cuts
指導教授:葉為忠
指導教授(外文):Wei-chung Yeih
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:63
中文關鍵詞:
相關次數:
  • 被引用被引用:0
  • 點閱點閱:135
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要採用無限長分歧路徑複變數邊界元素法模擬二維容器受到水平外力時產生的沖激現象。所謂沖激問題意指當容器受到外力振動,內部液體的振盪行為。文中假設液體須滿足勢流理論,且有足夠的邊界條件,可以求解自由液面之勢位;自由液面的位置和液面上的邊界條件則隨著時間不斷更新。應用無限長分歧路徑複變數邊界元素法可求出邊界上勢位法向導微及切向導微,藉此求得更新後相關的物理量。數值試驗結果顯示,使用奇異性較低的核函數,所得到的結果較使用奇異性較高的核函數的結果要更為理想。本文將以兩種形狀的水槽為例,分別計算其受到水平外力時,水槽內部液體自由液面的運動情況。
摘要 I
目錄 III
圖目錄 V
第一章 導論 1
1.1 研究動機及背景 1
1.2 研究內容及方法 4
1.3 本文架構 5
第二章 沖激問題基本理論分析 7
2.1 基本概論 7
2.2 控制方程式 8
2.3 邊界條件 9
2.4 時間函數處理 11
第三章 複變數邊界元素法的理論架構 14
3.1物理問題 14
3.2 基本理論 14
3.3 邊界物理量離散化 17
3.3.1 曳引力採用常元素 19
3.3.2 位移採用常元素 20
3.4 分歧路徑 (Branch cut) 20
3.4.1 簡介 20
3.4.2 無限長分歧路徑 21
3.5複變數邊界元素法之應用 23
第四章 數值模擬方法及算例 33
4.1 複變數積分式之應用 33
4.2 時間函數之處理 34
4.3 Euler法時間增量 36
4.3.1 邊界物理量 36
4.3.2 Euler法計算步驟 37
4.3.3 勢位微分的座標轉換 38
4.4 數值技巧 39
4.4.1 元素節點速度之決定 39
4.4.2 邊界形狀角點之決定 40
4.5 數值算例 41
4.5.1 矩形水槽 41
4.5.2 梯形水槽 42
第五章 結論及建議 56
參考文獻 58
[1] A. S. Velestos, “Seismic Response and Design of Liquid Storage Tanks”, Guidelines for the Seismic Design of Oil and Gas Pipeline System, ASCE, 1984.
[2] N. Akiyama, H. Yamaguchi and Y. Enya, “Dynamics of a Liquid Storage Tank Placed on an Elastic Foundation”, Structural Engineering / Earthquake Engineering, JSCE, Vol. 3, No.2, pp. 447-456, 1986.
[3] M. A. Haroun, “Vibration Studies and Tests of Liquid Storage Tanks”, Earthquake Engineering and Structural Dynamics, Vol. 11, pp. 179-206, 1983.
[4] S. A. Mourad and M. A. Haroun, “Experimental Modal Analysis of Cylindrical Liquid-Filled Tanks”, Proceedings of Fourth U.S. National Conference on Earthquake Engineering, Palm Springs, California, Vol. 3, EERI, pp. 177-186, 1990.
[5] M. Aslam, “Finite Element Analysis of Earthquake-Induced Sloshing in Axisymmetric Tanks”, International Journal for Numerical Methods in Engineering, Vol. 17, pp. 159-170, 1981.
[6] Ikegawa M., “Finite element analysis of fluid motion in a container. In: Finite Element Methods in Flow Problem”, UAH Press, Huntsville, Alabama, pp. 737-738, 1974.
[7] Nakayam T., Washizu K., “Nonlinear analysis of liquid motion in a container subjected to a forced pitching oscillation”, International Journal for Numerical Methods in Engineering, Vol. 15, pp. 1207-1220, 1980.
[8] Wu, G. X. , Ma, Q. W. , Eatock Taylor, R., “Numerical simulation of sloshing waves in a 3D tank based on a finite element method”, Applied Ocean Research, Vol. 20, pp. 337-355, 1998.
[9] Wang, C.Z., Khoo, B.C., “Finite element analysis of two-dimensional nonlinear sloshing problems in random excitations”, Ocean Engineering, Vol. 32, pp. 107-133, 2005.
[10] Okamoto, T. and M. Kawahara, “Two-Dimensional Sloshing Analysis by Arbitrary Lagrangian-Eulerian Finite Element Method”, Structure Engineering Earthquake Engineering, JSCE, Vol. 8, No.4, pp. 207-216, 1992.
[11] T. Nakayama, “Boundary Element Analysis of Nonlinear Water Wave Problem”, International Journal for Numerical Methods in Engineering, Vol. 19, pp.953-970, 1983.
[12] T. Nakayama, “A Computational Method for Simulating Transient Motions of An Incompressible Inviscid Fluid with A Free Surface”, International Journal for Numerical Methods in Fluids, Vol. 10, pp. 683-695, 1990.
[13] T. Nakayama and K. Washizu, “The Boundary Element Method Applied to the Analysis of Two-Dimensional Nonlinear Sloshing Problems”, International Journal for Numerical Methods in Engineering, Vol. 17, pp. 1631-1646, 1981.
[14] B. Ramaswamy, M. Kawahara and T. Nakayama, “Lagrangian Finite Element Method for the Analysis of Two-Dimensional Sloshing Problems”, International Journal for Numerical Methods in Fluids, Vol. 6, pp. 659-670, 1986.
[15] W. Chen, M. A. Haroun and F. Liu, “Large Amplitude Liquid Sloshing in Seismically Excited Tanks”, Earthquake Engineering and Structural Dynamics, Vol. 57, No. 5, pp. 855-861, 1995.
[16] 劉孟龍,「邊界元素法分析二維矩型水槽承受水平及垂直振動之水沖激行為」,國立台灣大學造船及海洋工程學研究所,2002。
[17] 葛家豪,「邊界元素法對三維水沖激問題之數值模擬」,國立台灣大學碩士論文,1998。
[18] Blandford, G. E., Ingraffea, A. R., and Liggett, J. A., “Two dimensional stress intensity factor computations using boundary element method”, Int. J. Num. Meth., Vol. 17, pp. 387-404, 1981.
[19] Nakayam, T., Washizu K., “The boundary element method applied to the analysis of two-dimensional nonlinear sloshing problems”, International Journal for Numerical Methods in Engineering, Vol. 15, pp. 1207-1220, 1981.
[20] Tosaka, N., Sugino, R., “Boundary element analysis of non-linear liquid motion in two-dimensional containers”, Berlin: Pringer, pp. 490-499, 1991.
[21] Banerjee, P.K., Morino, L., editors, “Boundary element methods in nonlinear fluid dynamics: developments in boundary element methods ”, Amsterdam: Elsevier, 1990.
[22] 王廉德,「應用複變邊界元素法求解二維沖激問題」,國立台灣海洋大學河海工程研究所碩士論文,2007。
[23] 吳尚津,「Trefftz邊界元素法對二維沖激問題之模擬」,國立台灣海洋大學河海工程研究所碩士論文,2006。
[24] Hromadka, T. V., “The Complex Variable Boundary Element Method”, Springer-Verlag, Berlin, 1984.
[25] Gu, L., and Huang, M. K., “A Complex Variable Boundary Element Method for Solving Plane and Plate Problems of Elasticity”, Engineering Analysis with Boundary Elements, Vol. 8, No. 6, 1991.
[26] Chou, S. I., and Shamas-Ahmadi, M., “Complex Variable Boundary Element Method for Torsion of Hollow Shafts”, Nuclear Engineering Analysis and Design, Vol.136, pp.255-263, 1992.
[27] Chen, J.T., Chen, Y.W., “Dual boundary element analysis using complex variables for potential problems with or without a degenerate boundary”, Engineering Analysis with Boundary Elements, pp.671-684, 2000.
[28] Okada, H., Rajiyah, H., and Atluri, S. N., “A novel displacement gradient boundary element method for elastic stress analysis with high accuracy”, ASME, Journal of Applied Mechanics, Vol. 55, pp. 786-794, 1988.
[29] Choi, J.H., and Kwak, B.M., “A boundary integral equation formulation in derivative unknowns for two-dimensional potential problems”, Journal of Applied Mechanics, Vol.56, pp.617-623, 1989.
[30] Wu, K.C., “Nonsingular Boundary Integral Equations for Two-Dimensional Anisotropic Elasticity”, Journal of Applied Mechanics. , Vol.67, pp.618-621, 2000.
[31] 江品昭,「複變數邊界元素法在彈性力學的平面問題探討」,國立台灣海洋大學河海工程研究所碩士論文,2002。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔