(3.235.236.13) 您好!臺灣時間:2021/05/15 03:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:詹賀傑
研究生(外文):Ho-Chieh Chan
論文名稱:颱風波浪作用下海床土壤受扭剪應力之動態行為研究
論文名稱(外文):The Study of the Dynamic Behavior of Seabed Soil by Torsional Shear Stress under Typhoon Wave Loading
指導教授:簡連貴簡連貴引用關係
指導教授(外文):Lien-Kwei CHIEN
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:168
中文關鍵詞:動力三軸系統波浪力海床土壤扭剪應力
外文關鍵詞:Dynamic Triaxial SystemWave-Induced ForceSeabed SoilTorsional Shear Stress
相關次數:
  • 被引用被引用:5
  • 點閱點閱:306
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
波浪傳遞過程會對海床產生動態的壓力,當壓力傳遞到海床的內部,會使得海床土壤同時受到垂直應力、水平應力、孔隙水壓及扭剪應力的影響,讓海床土壤產生不穩定。
因此,本研究為深入探討模擬出波浪在真實情況下,對於海床土壤受力的情形,將原發展三軸向動力三軸系統,加以改裝設計結合扭剪應力之功能,本試驗系統模擬之結果能更符合現況。
本動力三軸試驗系統結合扭剪應力,可由電腦控制軸向、圍壓與反水壓,及扭剪應力之各種應力條件;藉由輸入所要模擬之台中港附近海域的海床土壤狀況,和所受之波浪力用應力條件後,系統即可以自動控制所設定模擬之應力條件。
研究主要探討在颱風碎波點之波壓作用、季節風和颱風之波浪、平常波壓與碎波點波浪之波壓作用等四種不同波壓條件下,不同深度海床土壤,受到垂直應力或扭剪應力,孔隙水壓之變化有何差異之處。
由颱風碎波點之軸向與扭剪試驗結果,試驗後兩者孔隙水壓之激發,軸向試驗孔隙水壓立即激發機制產生,而扭剪試驗之孔隙水壓激發機制則較為緩慢。本研究所建置動力三軸結合扭力試驗系統與初步之試驗結果,期能對於後續海床土壤受波浪動態作用之相關研究,能有所助益。
When the wave progressive will be transmitted in the sea bed and induce the dynamic pressure. The wave induced pressure could be transmitted to the soil of sea bed, and will induce the vertical stress, horizontal stress, pore water pressure and influence of torsion shear stress at the same time. The soil of sea bed will become unstably under wave loading.
In order to deep understanding and simulation the true behavior of sea bed soil under wave loading, the purpose of this study is try to establishment the modified tri-axial cyclic triaxial testing system(TCTS) jointed with the torsion shear stress function. The development of testing system could be simulated the results for situ wave loading condition.
The triaxial cyclic testing system(TCTS) combine with the function of torsion shear stress, it can be controlled all kinds of stress conditions, included the axial, confining pressure and back water pressure, and torsional shear stress by the data acquisition system. Based on the soil property of the sea bed area and wave loading conditions near the harbor of Taichung, this system could be set and control to simulate the stress condition automatically.
In this study, the four different of wave induced pressure such as the wave pressure induce by the typhoon induce wave break point, the wave pressure induce by the typhoon and season wave, season wave induce pressure and wave induced wave break point, were discussed to evaluate the various difference with vertical stress, torsional shear stress, and pore water pressure of the sea bed soil under the different depths and wave loading.
From the results of axial and torsional shear tests under wave pressure induce by typhoon induce wave break point, it could be indicated that axial tests was exciting pore water pressure immediately tendency and torsional test was exciting pore water pressure slowly tendency. Based on this study establishment of triaxial cyclic testing system jointed with function of torsional shear stress and initial testing results, it could be provided the later reference of dynamic behavior of sea bed soil under wave loading.
摘 要 I
Abstract II
目 錄 III
表 目 錄 VII
圖 目 錄 IX
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機 3
1-3 研究目的 5
1-4 研究方法 7
1-5 研究內容 8
第二章 文獻回顧 10
2-1 波浪相關理論探討 10
2-1-1 波浪力與地震力之比較 10
2-1-2 微小振幅波理論 13
2-2 土壤動態強度與破壞因素 16
2-2-1 土壤動態特性評估與定義 16
2-2-2 土壤液化潛能之影響因素 20
2-3 剪應變相關原理介紹 30
2-3-1 剪應變應變範圍之分類與比較 30
2-3-2 剪應變之量測方式 33
2-4 波浪引致海床土壤破壞之研究介紹 37
2-4-1 海床破壞類型 37
2-4-2 海床土壤剪力破壞之文獻成果回顧 39
2-5 綜合論述 41
第三章 模擬波浪作用下土壤動態試驗規劃 42
3-1 波浪條件與海床土壤狀況之選定 42
3-1-1 模擬之波浪與現地的條件設定 42
3-1-2 波浪外力之計算 45
3-2 海床土壤動態試驗 51
3-2-1 海床現地應力 51
3-2-2 海床土壤動態試驗內容 53
3-3 試體之準備 54
3-3-1 試驗砂樣之基本性質 54
3-3-2 試體之準備方式 56
3-4 試驗組數規劃 61
第四章 動力三軸試驗系統結合扭剪應力功能設計與測試 62
4-1 動力三軸試驗系統(TCTS)改良規劃 62
4-1-1 動力三軸試驗系統 62
4-1-2 動力三軸系統結合扭剪應力功能設計 64
4-2 動力三軸試壓力與扭力供給系統 67
4-2-1 動力三軸壓力供給系統 67
4-2-2 動力三軸扭力供給系統 71
4-3 動力三軸試驗與量測系統設備說明 74
4-3-1 動力三軸試驗系統設備 74
4-3-2 動力三軸量測系統設備 77
4-4 動力三軸自動控制系統設備說明 79
4-4-1 動力三軸自動控制系統硬體 79
4-4-2 動力三軸自動控制系統介面 81
4-5 試驗儀器校正 107
第五章 試驗結果之分析與評估 108
5-1 三軸軸向試驗與扭剪試驗之試驗分析結果 108
5-1-1 三軸軸向試驗結果 108
5-1-2 三軸扭剪角度換算結果 125
5-1-3 三軸扭剪試驗結果 127
5-2 三軸軸向試驗與扭剪試驗之孔隙水壓激發比較 132
5-2-1 三軸軸向試驗之孔隙水壓激發比較 132
5-2-2 三軸扭剪試驗之孔隙水壓激發比較 137
5-2-3 三軸軸向與扭剪之孔隙水壓激發綜合比較 139
第六章 結論與建議 141
6-1 結論 141
6-2 建議 143
參考文獻 145
1. Barends, F. B. J. and Spierenburg, S.E.J. (1991), “Interaction between ocean waves andseabed”, Proceedings of the International Conference on Geotechnical Engineering for Coastal Development –Theory and Practice on Soft Ground (Geot-Coastal’91), Yokohama, Japan, 2, pp.1091-1108.
2. Bea, R. G., Wright, S. G., Sircar, P., and Niedoroda, A. W. (1983), “Wave-induced slides in South Pass Block 70, Mississippi Delta”, J. Geotech. Engng, ASCE Vol.109, No.4, pp.619-644.
3. Biot, M. A. (1941), “General theory of three-dimensional consolidation”, J. Appl. Phys. 12, pp.155-165.
4. Bjerrum, L. (1973), “Geotechnical Problems in Foundations of Structures in the North Sea”, Geotechnique, Vol.23, No.3, pp.319-358.
5. Bouckovalas, G., Stamatopoulos, C.A. , and Whitman, R.V. (1991), “Analysis of Seismic Settlements and Pore Pressures in Centrifuge Tests”, Journal of the Geotechnical Engineering Division, ASCE, Vol.117,10, pp.1492-1508.
6. Bretch, H. & Schwab, H. H. (1977), “Liquefaction of a Fully Saturated Sand under Anisotropic Initial State of Stress in a Controlled Drainage System”, Proceedings of DMSR 77, Vol.2, pp.149-159.

7. Castro, G.C., and Poulos, S.J. (1977), “Factors Affecting Liquefaction and Cyclic Mobility”, Journal of the Geotechnical Engineering Division, ASCE, Vol.103,No.GT6, pp.501-516.
8. Chang S. C., L. K. Chien, J. G. Lin and Y. F. Chiu (2004),“An Experimental Study on Wave-induced Dynamic Stresses in Seabed”
9. Chern, S.G. (1991) “Cyclic Shear Strength of Sand in Offshore Environment”, The Chinese Journal of Mechanics, Vol. 7, No. 2, pp. 77-86
10. Dean, R. G. & Dalrymple R. A. (1993), “Water Wave Mechanics for Engineers and Scientists”, World Scientific, pp.353.
11. Hsin Chu (2007),” Quadruple LVDT local rotational displacement measurement in torsional shear tests”, Geomechanics and Geoengineering: An International Journal Vol. 2, No. 2, June 2007, 109--115
12. Ishibashi, I., Sherif, M. A., and Cheng, W. L. (1982), “The Effects of Soil Parameters on Pore-Pressure-Rise and Liquefaction Prediction”, Soils and Foundations, Vol.22, No.1, pp.39-48.
13. Ishihara, K. (1984), “Soil Response in Cyclic Loading Induced by Earthquakes,Traffic and Waves”, Proc. 7th Asian Regional Conference on Soil Mechanics and Foundation Engineering, Haifa, Israel, Vol. 2, pp.42-66.
14. Ishihara, K. and Yamazaki, A. (1984), “Analysis of wave-induced liquefaction in seabed deposits of sand”, Soils and Foundations, Vol.24, No.3, pp.85-100, Japanese Society of Soil Mechanics and Foundation Engineering.

15. Ishihara, K. (1993), “Liquefaction and flow failure during earthquakes”, Geotechnique, Vol.43, No.3, pp.351-415.
16. Jeng, D. S. (2001), “Mechanism of the wave-induced seabed instability in the vicinity of a breakwater: a review”, Ocean Engineering, Vol.28, pp.537-570.
17. Jeng, D. S. (2003), “Wave-induced sea floor dynamics”, American Society of Mechanical Engineers, Vol.56, No.4, pp.537-570.
18. Lee & Fitton (1969), “Factors Affecting The Cyclic Loading Strength of Soil”, Vibration Effects of Earthquakes on Soils and Foundations, ASTM, STP 450, pp71-96.
19. Lee, K.L. & Focht, J.A. (1975), “Liquefaction Potential of Ekofisk Tank in North Sea”, Journal of the Geotechnical Engineering Division, ASCE, Vol. 100, No. GT1, pp.1-18.
20. Lin Main and Li Jia-chun (2001), “Effects of surface waves and marine soil parameters on seabed stability”, Applied Mathematics and Mechanics, Vol.22, No.8, pp.904-916.
21. Liu, P. L. F. (1973), “Damping of water waves over porous bed”, J. Hydraul.Div., Am. Soc. Civ. Eng., Vol.99, No.12, pp.2263–2271.
22. Mitchell, J.K., Tsui, K.K., Sangrey, D.A. (1972), “Failure of submarine slopes under wave action”, Proceeding 13th International Conference on Coastal Engineering, ASCE, 2, pp.1515-1539.
23. Mitchell, R. J. and Dubin, B. I. (1982), “Pore Pressure Generation and Dissipation in Dense Sands under Cyclic Loading”, Journal of the Canada Geotechnics, Vol.108, No.GT7, pp935-952.

24. Mulilis, J.P., C. K. Chan, and Seed H.B. (1975), “The Effect of Method of Sample Preparation on The Cyclic Stress-Strain Behavior of Sand”, Report No. EERC 75-18, U.C.Berkeley Earthquake Engineering Research Center.
25. Mulilis, J. P., Seed, H. B., and Chan, C. K. (1977), “Resistance to Liquefaction Due to Sustained Pressure”, Journal of Geotechnical Engineering Division, ASCE, Vol.103, No.GT7, July, pp.793-797.
26. Mulilis, J. P., et al. (1978), “Triaxial Testing Techniques and Sand Liquefaction”, Dynamic Geotechnical Testing, ASTM, STP 654, pp.265-279.
27. Nguyen HongNam, Takeshi Sato and Junichi Koseki, (2001) “Development of Triangular Pin-typed LDTs for Hollow Cylindrical Specimen” University of Tokyo
28. Peacock, W.H. and Seed, H.B. (1968), “Sand Liquefaction under Cyclic Loading Simple Shear Conditions”, Journal of the Soil Mechanics and Foundation Division, ASCE, Vol.94, No.SM3, pp.689-708.
29. Putnam, J. A. (1949), “Loss of wave energy due to percolation in a permeable sea bottom”, Transactions, American Geophysical Union, Vol.30, No.3, pp.349-356.
30. Rahman, M. S. (1991), “Wave-induced Instability of Seabed: Mechanism and Condition”, Marine Geotechnology, Vol.10, pp.277-299.

31. Rahman, M. S. (1997), “Instability and Movement of Oceanfloor Sediments: A Review”, International Journal of Offshore and Polar Engineering, Vol.7, No.3,pp.220-225.
32. Rahman, M.S. & Jaber, W.Y. (1986), “A simplified drained analysis for wave-induced liquefaction in ocean floor sands”, Soils and Foundations Vol.26, No.1, pp.57-68.
33. Seed, H. (1979), “Soil Liquefaction and Cyclic Mobility Evaluation for Level Ground During Earthquakes”, Journal of the Geotechnical Engineering Division,ASCE, Vol.105, No.GT2, Proc. Paper 14380, pp.201-255.
34. Seed, H.B. and Idriss, I.M. (1971), “Simplified Procedure for Evaluating Soil Liquefaction Potential”, Journal of the Soil Mechanics and Foundation Division,ASCE, Vol. 97, No. SM9, pp.1249-1273.
35. Seed, H. B., Martin, P. P., and Lysmer, J. (1976), “Pore-Water Pressure Changes During Soil Liquefaction”, Journal of the Geotechnical Engineering Division, ASCE, Vol.102, No.GT4, Proc. Paper 12074, Apr., pp.323-346.
36. Seed, H.B. (1979), “Soil Liquefaction and Cyclic Mobility Evaluation for Level Ground During Earthquakes”, Journal of The Geotechnical Engineering Division, ASCE, Vol.105, No.GT2, Feb., pp.201-255.
37. Sharma, S. S., and Fahey, M. (2003), “Evaluation of Cyclic Shear Strength of TwoCemented Calcareous Soils”, Journal of Geotechnical and eoenvironmental Engineering, ASCE, Vol. 129, No. 7, pp.608-618.
38. Shen, C.K., J.L. Yrymoed and C.K. Uyeno (1977) “The Effects of Fines on Liquefaction of Sands”, Proceeding of the 9th International Conference on Soil Mechanics and Foundations Engineering, Tokyo, Vol. 2, pp. 381-385.
39. Townsend, F.C. (1978) “Soil Mechanics in Engineering Practice”, 2nd Ed., Jone Wiley & Sons.
40. Tzang S.Y., 1992, “ Water wave-induced Soil Fluidization in a Cohesionless Fine-grained Seabed”, PhD Dissertation, University of California at Berkeley.
41. Umehara, Y., Zen, K. , and Hamada, K. (1985), “Evaluation of soil Liquefaction Potentials in Partially Drained Conditions”, Soils and Foundations, Vo1.25, No.2, pp.57-72.
42. Vaid, Y. P. & Chern, J.C. (1985), “Cyclic and monotonic undrained response of saturated sands”, Advances in the art of testing soils under cyclic condition, ASCE,pp.120-147.
43. Vaid, Y. P. et al. (1990), “Particle Gradation and Liquefaction”, Journal of Geotechnical Engineering, ASCE, Vol.116, No.4, April, pp.698-703.
44. Xia, H. & Hu, T. (1991), “Effects of Saturation and Back Pressure on Sand Liquefaction”, Journal of Geotechnical Engineering, ASCE, Vol.117, No.9, pp.1347-1362.
45. Wong, R.T., Seed H. B., and Chan, C. K. (1975), “Cyclic Loading Liquefaction of Gravelly Soils”, Journal of The Soil Mechanics and Foundations Division, ASCE, Vol.101, No.GT6, pp.571-583.

46. Yamamoto, T., H. L. Koning, H. Sellmeijer, and E. V. Hijum (1978), “On the reponse of a pore-elastic bed to water waves”, J. Fluid Mech., Vol.87, Part 1, pp.193-206, Printed in Great Britain.
47. Yoshimi, Y. and H. Oh-oka (1975) “Influence of Degree of Shear Stress Reversal on the Liquefaction Potential of Saturayed Sands”, Soils and Foundations, Vol. 15, No. 3, pp. 27-40.
48. Yoshiaki Yoshimi, Kohji Tokimatsu, Osamu Kaneko, and Yorio Makihara. (1984), “Undrained Cyclic Shear Strength of A Dense Niigata Sand”, Soils and Foundations,Vol.24,No.4,Dec,Pp.131-145.
49. Yoshimi, Y. K. Tokimatsu K. and Y. Hosaka (1989) “Evaluation of Liquefaction Resistance of Clean Sands Based in High-quality Undisturbed Samples”, Soils and Foundations, Vol. 29, No. 1, pp. 93-104.
50. Yuhi Masatoshi and H. Ishida, “ Simplified Solutions for Wave-indueced Response of Anisotropic Seabed”, Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 128, No. 1, pp. 46-50.
51. Zen, K. and Yamazaki, H. (1990(a)), “Mechanism of wave-induced liquefaction and densification in seabed”, Japanese Society of Soil Mechanics and Foundation Engineering, Vol.30, No.4, pp.90-104,.
52. Zen, K. and Yamazaki, H. (1990(b)), “Oscillatory pore pressure and liquefaction in seabed induced by ocean wave”, Japanese Society of Soil Mechanics and Foundation Engineering, Vol.30, No.4, pp.147-161.

53. Zen, K. and Yamazaki, H. (1991), “Field observation and analysis of wave-induced liquefaction in seabed”, Soils and Foundations, Vol.30, No.4, pp.90-104.
54. Zen, K. and Yamazaki, H. (1993), “Wave-induced liquefaction in a permeable seabed”, Report, Port and Harbour Research Institite., Japan, Vol.31, No.5, pp.155-192.
55. 劉上聰(1995),「材料力學」,全華書局。
56. 黃安斌(1998),「大地工程原理」,東華書局。
57. 施國欽(2000),「大地工程學(一)–土壤力學篇」,文笙書局。
58. 沈茂松(2001),「實用土壤力學試驗」,文笙書局。
59. 郭ㄧ羽(2001),「海岸工程學」,文山書局。
60. 許泰文(2003),「近岸水動力學」,中國土木水利工程學會。
61. 楊騰芳(1986),“細料在過壓密及前期微震作用下對飽和砂性土壤液化潛能之影響”,碩士論文,國立台灣大學土木工程研究所,台北台灣。
62. 陳景文、楊朝景(1996),“高雄附近沿海砂質海床之液化潛能評估”,中國土木水利工程學刊,第八卷,第一期,第1-12 頁。
63. 陳致銘(2007),” 動力三軸試驗應用於評估土壤液化潛能之適用性研究”,碩士論文,國立成功大學土木工程學系,台南台灣。
64. 張燿顯(2002),“波浪作用對海床砂土動態特性與液化行為之研究”,碩士論文,國立台灣海洋大學河海工程學系,基隆台灣。
65. 張志新(2004),“波浪作用下海床砂土液化機制與評估模式之研究”,博士論文,國立台灣海洋大學河海工程學系,基隆台灣。
66. 張竣閔(2005),”小應變中空扭剪試驗局部變形監測”,碩士論文,國立交通大學土木工程研究所,新竹台灣。
67. 許師瑜(2005),”改良式動力三軸系統模擬波浪力作用下海床土壤動態強度之研究”,碩士論文,國立台灣海洋大學河海工程學系,基隆台灣。
68. 張上君(2006),”波浪作用下直立堤附近海床土壤動態行為之研究”,博士論文,國立台灣海洋大學河海工程學系,基隆台灣。
69. 曾文謙(2007),”現地波浪與海床孔隙水壓監測之研究”,碩士論文,國立台灣海洋大學河海工程學系,基隆台灣。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top