(3.236.122.9) 您好!臺灣時間:2021/05/14 06:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳建利
研究生(外文):Chien-Li-Chen
論文名稱:聚甘露醣?之生產菌篩選及其純化與特性
論文名稱(外文):Screening of Mannanase - producing Bacteria, Purification and Characterization of their Mannanase
指導教授:江善宗殷儷容殷儷容引用關係
指導教授(外文):Shann - Tzong JiangLi - Jung Yin
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:179
中文關鍵詞:聚甘露醣?半纖維素
外文關鍵詞:HemicellulosemannanasepurificationBacillus sp.Paenibacillus cookii
相關次數:
  • 被引用被引用:0
  • 點閱點閱:513
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的分別由土壤與稻草中篩選分離具有分泌聚甘露醣? (mannanase) 能力之菌株,分別純化、分析二分離菌株分泌之聚甘露醣?生化特性。以刺槐豆膠為碳源篩選的菌株經鑑定結果為Paenibacillus cookii 菌屬,以稻草為碳源篩選的菌株經鑑定結果為Bacillus sp.菌屬。Paenibacillus cookii 菌及 Bacillus sp. 菌分別於25及27oC、震盪速率為150 rpm下培養,在第四天可以得到最高聚甘露醣?活性分別為 6.67 及 13 U/mL。分別收集胞外酵素液,經硫酸銨分劃、透析後,進行DEAE- Sepharose Fast Flow 管柱層析及 sephacryl S-100 HR 管柱層析可得到具有活性之聚聚甘露醣? (mannanases P及B),其比活性分別為 635.4及591.4 U/mg,回收率分別為 6.4及17.2 %,純化倍率分別為51.1及48.5 倍。經Native-PAGE電泳分析呈現單一色帶之純化聚甘露醣?,並由膠體過濾層析得其分子量分別為 77.0及39.0 kDa。經純化之P 及B聚甘露醣?最適反應酸鹼度分別在 pH 5.0 及 7.0,其在 pH 5.0-7.0及 3.0-7.0之間有較佳之安定性,其最適反應溫度都為 50oC,在 10oC-40oC 和 10-50oC 之間安定性較佳。純化之聚甘露醣?的活性會受到 Hg2+、Cu2+ 及 Ni2+ 金屬離子的抑制。P. cookii聚甘露醣?對刺槐豆膠 (LBG) 水解能力最強,推論此聚甘露醣?水解作用以半乳糖與甘露醣 1:4比例之 β-(1,4) 糖?鍵鍵結所形成之刺槐豆膠的水解能力為最強。而純化之Bacillus sp.聚甘露醣?對 konjac powder 的水解能力最強,推論此純化之聚甘露醣?水解作用以葡萄糖與甘露醣 1: 3 比例之β-(1,4) 糖?鍵鍵結所形成之蒟蒻膠水解能力為最強。
Locust bean gum (LBG) and rice straw were used to screen the mannanase-producing bacteria. M-1~M-12 and H1~H7 bacteria, from soil under aerobic condition, were with hydrolysis ability against locust bean gum. Among these bacteria, M-7 and H-1 had the highest hydrolytic ability and identified as Paenibacillus cookii and Bacillus sp., respectively. Different temperatures (25, 27, 30, 37, and 50oC) were used to cultivate the isolated strains. The highest mannanase activity (6.67 and 13.00 U/mL) was observed on samples after 4 days incubation at 27 and 25oC, respectively. After removing the cells by passing through a 0.45 μm membrane, the crude enzymes were concentrated by using Amicon ultrafiltration (cutoff: 10 kDa) and then chromatographed on DEAE-Sepharose Fast Flow and Sephacryl S-100 HR gel filtration. About 6.4 and 17.2% mannanase were recovered and 90.2 and 48.5 purification fold were achieved at this stage. It's apparent molecular mass was estimated to be 77.0 and 39.0 kDa, respectively, based on the Sephacryl S-100 HR chromatograph. The optimal pH were 5.0 and 7.0, respectively, while their optimal temperatures were at 50oC. They were stable around pH 5.0~7.0 and 3.0~7.0, and at 10~40oC and 10~50oC, respectively. The purified mannanases were highly inhibited by Hg2+, Cu2+ and Ni2+. They were inhibited by IAA and EDTA, but strongly activated by β-mercaptoethanol, dithiothreitol, cysteine and glutathione. They were, therefore, considered to contain -SH on active site. According to substrate specificity, the purified mannanases had high specificity to LBG and konjac powder, respectively.
名詞縮寫 1
中文摘要 2
英文摘要Abstract 4
壹、研究背景與目的 5
貳、文獻整理 6
1 植物纖維素組成 6
2 半纖維素之種類 8
3半纖維素之應用 9
4甘露聚醣的生理功能及應用 11
4.1 甘露聚醣之物性 11
4.2甘露聚醣之結構與種類 12
4.2.1 軟木類半纖維素之甘露聚醣 12
4.2.2 硬木類半纖維素之甘露聚醣 13
4.3 豆科植物之甘露聚醣 13
4.3.1刺槐豆膠特性及其應用 13
4.3.2 關華豆膠 15
4.4 蒟蒻膠 16
4.4.1 蒟蒻之簡介 16
4.4.2 蒟蒻膠之結構 17
4.4.3 凝膠特性 17
5 機能食品 18
5.1 機能食品之定義與規範 19
6寡醣的生理功能及應用 21
6.1 寡醣的特性 21
6.2 寡醣對腸胃道功能的影響 22
7 甘露寡糖在腸道之作用機制 23
7.1 調節免疫防禦 23
7.2 調節非免疫防禦 23
8聚甘露醣? 24
8.1聚甘露醣?特性 24
8.2 培養基組成對微生物分泌聚甘露醣?活性之影響 24
8.3 影響聚甘露醣?水解甘露聚醣之因素 25
8.4 不同來源的聚甘露醣?之特性 25
9 聚甘露醣?的作用機制 26
10 聚甘露醣?的測定方法 26
11甘露聚醣?在工業上的應用 27
?、材料與方法 29
Ι. 實驗材料 29
1 菌株 29
2 菌株之製備與保存 29
3 藥品與培養基 29
3.1 活化菌株液體培養基的組成 29
3.2 固體培養基的組成 30
3.3 液體培養基的組成 30
3.4 藥品 31
3.5 主要儀器 32
Π. 實驗方法 33
(一) 甘露聚醣分解酵素生產菌株的篩選 33
1 第一次篩菌 33
2 第二次篩菌 33
3 菌株之鑑定 33
4 培養方法 33
4.1 斜面培養 33
4.2 液態培養 34
5 粗酵素液的製備 34
6 聚甘露醣?活性測定 34
7 還原糖標準曲線 34
8 菌數之計數 35
9 pH值之測定 35
(二) 聚甘露醣?的純化 36
1粗酵素液的製備 36
2 硫酸銨劃分 36
3 透析 36
4 超過濾濃縮 37
5 DEAE-Sepharose Fast Flow管柱層析 37
6 Sephacryl S-100 HR 膠體過濾層析法 37
頁數
7 純度鑑定 38
8 蛋白質分子量的測定 38
9 蛋白質濃度測定 38
10 蛋白質標準曲線 38
11 聚丙烯醯胺膠體電泳 39
(三) 聚甘露醣?的生化特性試驗 41
1 最適酸鹼度 41
2 酸鹼度安定性 41
3 最適溫度 42
4 熱安定性 42
5 金屬離子的影響 42
6 抑制劑的影響 43
7 基質特異性 44
8 N端定序 44
9 序列比對 44
肆、結果與討論 45
ㄧ、以刺槐豆膠為基質生產聚甘露醣?之菌株篩選及其純化與特性 45
(一) 聚甘露醣?生產菌株之篩選 45
1. 第一次篩選 45
2. 第二次篩選 46
3. 菌株之鑑定 46
(二) P. cookii 生產聚甘露醣?最適培養基之探討 47
1. 培養基組成對菌株分泌聚甘露醣?活性之活化條件影響 47
2. 不同碳源添加量對聚甘露醣?活性之影響 47
3. 不同氮源之組成對聚甘露醣?活性之影響 48
4. 不同培養溫度對聚甘露醣?活性之影響 49
5. 不同比例之兩種氮源對聚甘露醣?活性之影響 49
(三) P. cookii生產聚甘露醣?之純化 50
1 粗酵素液的製備 50
2 硫酸銨劃分 50
3. DEAE-Sepharose Fast Flow管柱層析 51
4. Sephacryl S-100 High Resolution 膠過濾層析法 51
5. 純度鑑定 52
6 蛋白質分子量測定 52
(四) P. cookii 生產聚甘露醣?之生化特性 54
1 最適酸鹼度 54
2 酸鹼度安定性 55
3 最適溫度 56
4 熱安定性 57
5 金屬鹽類之影響 58
6 抑制劑之影響 60
7 還原劑之影響 61
8 基質特異性 62
9 N端之胺基酸序列 63
二、以稻草為基質生產聚甘露醣?之菌株篩選及其純化與特性 64
(一) 菌株篩選 64
1第一次篩選 64
2 第二次篩選 64
3 菌株之鑑定 64
(二) 生產聚甘露醣?最適培養基之探討 65
1 不同氮源之組成對聚甘露醣?活性之影響 66
(三) Bacillus sp. 生產聚甘露醣?之純化 66
1 粗酵素液的製備 66
2 硫酸銨劃分 67
3 DEAE-Sepharose Fast Flow管柱層析 67
4 Sephacryl S-100 High Resolution 膠過濾層析法 68
5 純度鑑定 68
6 蛋白質分子量測定 69
(四) Bacillus sp. 生產聚甘露醣?之生化特性 69
1 最適酸鹼度 69
2 酸鹼度安定性 71
3 最適溫度 72
4 熱安定性 73
5 金屬鹽類之影響 74
6 抑制劑之影響 76
7 還原劑之影響 77
8 基質特異性 78
9 N端之胺基酸序列 79
伍、結論 81
陸、參考文獻 84

表目錄
表一、M1~M12 菌株之聚甘露醣?活性 98
表二、不同溫度及培養基組成對 M7 菌株聚甘露醣?活性之影響 99
表三、不同溫度及培養基組成對 M9 菌株聚甘露醣?活性之影響 100
表四、分離株 M-7 菌之16S rDNA部分鹼基序列 101
表五、分離株 M-7 菌之 API 鑑定系統分析結果 102
表六、分離株 M-7 菌之 API 分析鑑定系統分析結果 103
表七、不同碳源對P. cookii培養6天其聚甘露醣?活性之影響 104
表八、不同碳源對P. cookii培養6天其pH之變化 105
表九、不同氮源對P. cookii培養6天其聚甘露醣?活性之影響 106
表十、不同氮源對P. cookii培養6天其pH之變化 107
表十一、純化P. cookii聚甘露醣?之硫酸銨分劃表 108
表十二、P. cookii聚甘露醣?之純化表 109
表十三、各種金屬離子對 P. cookii 聚甘露醣?活性之影響 110
表十四、各種抑制劑對 P.cookii聚甘露醣?活性之影響 111
表十五、各種還原劑對 P. cookii聚甘露醣?活性之影響 112
表十六、不同基質對 P. cookii 純化的聚甘露醣??活性之影響 113
表十七、P. cookii 聚甘露醣?N端定序與其他來源之比較 114
表十八、H1~H7 菌株聚甘露醣?活性 115
表十九、不同培養溫度對 H1與 H3 菌株聚甘露醣?活性之影響 116
表二十、分離株 H-1 菌之16S rDNA部分鹼基序列 117
表二十一、分離株H-1之微生物脂肪酸鑑定系統分析結果 118
表二十二、不同氮源培養基對Bacillus sp.在25oC下培養6天其聚甘露醣?活性之影響 119
表二十四、Bacillus sp. 純化的聚甘露醣?之硫酸銨分劃表 121
表二十五、Bacillus sp. 聚甘露醣?之純化表 122
表二十六、各種金屬離子對 Bacillus sp. 純化的聚甘露醣?活性之影響123
表二十七、各種抑制劑對Bacillus sp. 純化的聚甘露醣?活性之影響 124
表二十八、各種還原劑對Bacillus sp. 純化的聚甘露醣?活性之影響 125
頁數
表二十九、不同基質對 Bacillus sp. 純化的聚甘露醣?活性之影響 126
表三十、Bacillus sp. 聚甘露醣?N端定序與其他來源之比較 127
表三十一、 P.cookii及 Bacillus sp. 生產聚甘露醣?之特性比較 128
圖一、植物細胞壁中木質素與多醣的化學結構 129
圖二、半纖維素的主要結構 130
圖三、植物中常見的聚甘露醣結構 131
圖四、關華豆膠與刺槐豆膠之主要結構 132
圖五、蒟蒻的植物圖 133
圖六、蒟蒻粉的製造流程 134
圖七、蒟蒻葡萄糖聚甘露醣之結構 135
圖八、分離株M-7之顯微鏡照片 136
圖九、不同培養基組成對P. cookii甘露糖?活性之變化 137
圖十、不同碳源培養基對P. cookii聚甘露醣?活性之影響 138
圖十一、不同氮源培養基對P. cookii聚甘露醣?活性之影響 139
圖十二、不同培養溫度對P. cookii聚甘露醣?活性之影響 140
圖十三、培養基中混合兩種氮源對P. cookii聚甘露醣?活性之影響 141
圖十四、P. cookii 聚甘露醣?經DEAE sepharose fast flow陰離子交換管柱層析圖 142
圖十五、P. cookii聚甘露醣?經第一次之Sephacryl S-100 HR 管柱層析圖 143
圖十六、P. cookii聚甘露醣?經第二次之Sephacryl S-100 HR 管柱層析圖 144
圖十七、P. cookii聚甘露醣?之原態電泳圖 145
圖十八、P. cookii經膠體過濾層析Sephacryl S-100 HR測定聚甘露醣?分子量之檢量曲線 146
圖十九、P. cookii聚甘露醣?之最適酸鹼度 147
圖二十、P. cookii 聚甘露醣?之酸鹼度安定性 148
圖二十一、P. cookii 聚甘露醣?之最適反應溫度 149
圖二十二、P. cookii聚甘露醣?之溫度安定性 150
圖二十三、分離株H-1之顯微鏡照片 151
圖二十四、Bacillus sp. 純化之聚甘露醣?經DEAE sepharose fast flow陰離子交換管柱層析圖 152
圖二十五、Bacillus sp. 純化聚甘露醣?之Sephacryl S-100 HR 管柱層析圖 153
圖二十六Bacillus sp. 聚甘露醣?之原態電泳圖 154
圖二十七、Bacillus sp. 經膠體過濾層析Sephacryl S-100 HR測定聚甘露醣?分子量之檢量曲線 155
圖二十八、Bacillus sp. 聚甘露醣?之最適酸鹼度 156
圖二十九、Bacillus sp. 聚甘露醣?之酸鹼度安定性 157
圖三十、Bacillus sp. 聚甘露醣?之最適反應溫度 158
圖三十一、Bacillus sp. 聚甘露醣?之溫度安定性 159
王正仁、陳孟伶、林畢修平、陳啟祥。1999。水解酵素在工業上的利用,生物產業,10:1-11。
吳奇生。1987。利用纖維素物質發酵生產化學合成中間產物之研究。國立台灣大學農業化學研究所碩士論文。台北。
吳淑靜、柯文慶、賴茲漢。1997,食品添加物,富林出版社,台中。
吳景陽。1994。蒟蒻,食品工業,26: 12-19。
陳文恆、郭家倫、黃文松、王嘉寶。2007。纖維酒精技術之發展,植
物種苗生技,第九期。
郭春芳。2004。多醣膠體於食品工業之應用,烘培工業,117 : 49-59。
郭文怡。1997。一種可廣泛應用於食品中的健康食品素材,烘焙工業,144: 59-61。
張志豪。2001。耐高溫及中溫菌的分離及其纖維素分解酵素之研究。國立台灣大學農業化學研究所碩士論文,台北。
楊媛詢。1998。原生保健性菌種與益菌助生質之應用,食品工業,30:2 11-22。
潘子明,2004。機能食品,台灣大學微生物與生化學系,台北
蘇正德。1995。寡糖之生理機能性,食品資訊,6:14-22。
賴鳴鳳及呂政義。2003。食品碳水化合物,基礎食品化學,張為憲等編彙。中華民國出版社。台北,台灣。
賴鳴鳳、廖樹杰、呂政義。1999。水溶性蒟蒻膠萃取與分子性質之探討,食品科學,26: 456-467。
Akino, T., Nakamura,N. and Horikoshi, K. 1988. Characterization of three β-mannanases of an alkalophilic Bacillus sp. Agricultural and Biological Chemistry. 52:773–779.

Alois, S., Gabriele, F., Nikolaus, F., Georg, G. B. and Dietmar, H. 2000. Hydrolysis of isolated coffee mannan and coffee extract by mannanases of Sclerotium rolfsii. Journal of Biotechnology. 80: 127–134.
Anonymous. 1991. Concerning the amendment of ministerial ordinance on nutrition improvement law. Japan: Ministry of Health and Welfare.
Anonymous. 1994. Public Law No. 103-417. October 25.
Armand, M., Borel, P., Pasquier, B., Dubois, C., Senft, M., Peyrot, J., Salducci, J., Lafont, H. and Lairon, D. 1994. Characterization of emulsions and lipolysis of dietary lipids in the human stomach. American Journal of Physiology. 266: 372-381.
Atalla, R. H. and Vanderhart, D. L. 1984. Native cellulose: A composite if two distinct crystalline forms. Science. 223:283-284.
Balasubramaniam, K. 1976. Polysaccharides of the kernel of maturing and matured coconuts. Journal of Food Science. 41: 1370-1373.
Bastwade KB. 1992. Xylan structure microbial xylanases and their mode of action. World J. Microbiol Biotechnol 8:353-368.
Beguin, P. 1987. Cloning of cellulase gene. Critical Reviews in Biotechnology. 6 :129-162.
Beguin, P. and Aubert, J. P. 1992a. The biological degradation of cellulose. FEMS Microbiol Rev 13:25-58.
Beguin, P. and Aubert, J. P. 1992b. Cellulase. In:Encyclopedia of Microbiology . Ed. Lederberg, J., Vol. 1, pp. 467-477. Academic Press, New York, USA.
Berenger, J. F., Frixon, C., Bigliardi, J. and Creuzet, N. 1985. Production, purification, and properties of thermostable xylanase from Clostridium stercorarium. Canadian Journal of Microbiology. 31:635-643.
Bettiol, J. P., and Showell, M. S. 2002. Detergent compositions comprising a mannanase and a protease. US Patent 6:376445.
Bhat, M. K. 2000. Cellulases and related enzymes in biotechnology. Biotechnology Advances. 18: 355-383.
Bourgault, R. and Bewley, J. D. 2002. Variation in Its C-Terminal Amino Acids Determines Whether Endo-β-Mannanase Is Active or Inactive in Ripening Tomato Fruits of Different Cultivars. Plant Physiol. 130 (3), 1254-1262
Buckeridge, M. S., Panegassi, V. R., Rocha, D. C. and Dietrich, M. C. 1995. Seed galactomannan in the classification and evolution of the leguminosae. Phytochem. 38:871-875.
Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72: 248-254.
Chartchai, K., Kouhei, A., Hideo, T., Shinichi, K. and Saisamorn, L. 1998. β-Mannanase and Xylanase of Bacillus subtilis 5H Active for Bleaching of Crude Pulp. Journal of Fermentation and Bioengineering. 86(5):461-466.
Chen, J., Zhou, J., Zhang, L., Nakamura, Y. and Norisuye, T. 1998. Chemical structure of the water-insoluble polysaccharide isolated from the fruiting body of Ganoderma lucidum. Polymer Journal. 30: 838-842.
Chen, K. S., Lin, Y. S. and Yang, S. S. 1998. Isolation and application of thermo-tolerant microbes in composting. Journal of the Agricultural Association of China, New Series No. 183:97-112.
Chen, X., Cao, Y., Ding, Y., Lu, W. and Li, D. 2007. Cloning, functional expression and characterization of Aspergillus sulphureus β-mannanase in Pichia pastorisJ. Biotechnology. 128 (3), 452-461 (2007)
Chen, Y., Long, J. and Liao, L. 2000. Study on the production of beta-mannanase by Bacillus M50. Wei Sheng Wu Xue Bao. 40: 62–68.
Clarke, J. H., Davidson, K., Rixon, J. E., Halstead, J. R., Fransen, M. P. and Gilbert, H. J. 2000. A comparison of enzyme aided bleaching of softwood paper pulp using combinations of xylanase, mannanase and alpha-galactosidase. Applied Microbiology and Biotechnology. 53: 661–667.
Coughlan, M. P. 1985. Cellulase: production properties and application. Biochemical Society Transactions. 13: 405-406.
Coughlan, M. P. 1992. Enzymatic hydrolysis of cellulose:an overview. Bioresource Technology. 39: 107-115.
Coughlan, M. P. and Hazlewood, G. P. 1993. β-1, 4-D-xylan-degrading enzyme systems: biochemistry, molecular biology and application. Biotechnology. Applied. Biochemistry. 17: 259-289.
Cui, F., Shi, J., and Lu, Z. 1999. Production of neutral β-mannanase by Bacillus subtilis and its properties. Wei Sheng Wu Xue Bao. 39(1): 60–63.
Delzenne, N. M. and Roberfroid, M. R. 1994. Physiological effects of non-digestible oligosaccharides. Lebensmittel Wissenchaft and Technologie. 27: 1-6.
Dekker, R. F. H. and Richards, G. N. 1976. Hemicellulases: their occurrence, purification, properties and mode of action. Advances in Carbohydrate Chemistry and Biochemistry. 32: 277-352.
Dierick, N. A. 1989. Biotechnology aids to improve feed and feed digestion:enzyme and fermentation. Aech. Arim. Nutr. Berlin. 39: 241-261.
Duffaud, G. D., McCutchen, C. M., Leduc, P., Parker, K. N. and Kelly, R. M. 1997. Purification and characterization of extremely thermostable β-mannanase, β-mannosidase, and β-galactosidase from the hyperthermophilic eubacterium Thermotoga neopolitana 5068. Applied and Environmental Microbiology. 63: 169–177.
Dulson, J. and Bewley, J. D. 1989. Mannanase from Lactuca sativa: metabolic requirements for production and partial purification. Phytochemistry. 28: 363-369.
Fan, L. T., Gharpuray, M. M. and Lee, Y. H. 1987. Nature of cellulosic material. In: Aiba et al. (Ed). Cellulose hydrolysis.
Farrell, A. E., Plevin, R. J., Turner, B.T., Jones, A. D., O’Hare, M. and Kammen, D. M. 2006. Ethanol can contribute to energy and environmental goals. Science. 8: 311:506.
Fernandes, P. B. 1995. Influence of galactomannan on the structure and thermal behaviour of xanthan/galactomannan mixtures. Journal of Food Engineering. 24: 269-283.
Ferreira, H. M. and Filho, E. X. F. 2004. Purification and characterization of a β-mannanase from Trichoderma harzianum strain T4. Carbohydrate Polymers. 57:23–29.
Fox, J. E. 1997. Seed gums. In: Imeson A, editor. Thickening and gelling agents for food. London, UK: Blackie Academic and Professional. p262-283.
Franco, P. F., Ferreira, H. M. and Filho, E. X. 2004. Production and characterization of hemicellulase activities from Trichoderma harzianum strain T4. Biotechnology Applied Biochemistry. 40: 255–259.
Fuller, R. 1989. Probiotics in mans and animals. The Journal of Applied Bacteriology. 66:365-378.
Gerber, N. N. and Lechevalier, M. P. 1976.Prodiginine (prodigiosin-like) pigments from Streptomyces and other aerobic Actinomycetes. Canadian Journal of Microbiology. 22:658-67.
Gherardini, F., Babcock, M., and Salyers, A. 1987. Purification and characterization of a cell-associated, soluble mannanase from Bacteroides ovatus. J. Bacteriol. 169: 2038–2043.
Gibbs, M. D., Reeves, R. A., Sunna, A., and Bergquist, P. L. 1999. Sequencing and expression of a β-mannanase gene from the extreme thermophile Dictyoglomus thermophilum Rt46B.1, and characteristics of the recombinant enzyme. Curr. Microbiol. 39(6): 351–357.
Gibson, G. R. and Roberforid, M. B. 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. The Journal of Nutrition. 125:1401-1412.
Halmer, P., J. D. Bewley, and T. A. Thrope. 1976. An enzyme to degrade lettuce endosperm cell wall. Appearance of a mannose following phytochromeand gibberellin-induced germination. Planta. 130: 189-196.
Haltrich, D., Laussamayer, B., Steiner, W., Nidetzky, B. and Kulbe, K. D., 1994b. Cellulolytic and hemicellulolytic enzymes of Sclerotium rolfsii: optimization of the culture medium and enzymatic hydrolysis of lignocellulosic material. Bioresource Technology. 50: 43–50.
Han, Y., Kye, C., Hong, S., Sun, L., Yong, K., Goon, K. and Hoon, K. 2006. A cel44C-man26A gene of endophytic Paenibacillus polymyxa GS01 has multi-glycosyl hydrolases in two catalytic domains. Applied Microbiology and Biotechnology. 73: 618–630.
Harada, H. and JR. W. A. C. 1985. Structure of wood, In: Higuchi, T. (ed). Biosynthesis and Biodegradation of Wood Components. Academic Press, Tokyo, pp. 1-42.
Helow, E. R. and Khattab, A. A. 1996. The development of a B. subtilis 168 culture condition for enhanced and accelerated beta-mannanase production. Acta Microbiol Immunol Hung. 43: 289–299.
Hui, P. A. and Neukom, H. 1964. Some properties of galactomannans. TAPPI. 47: 39-42.
Jeffries, T. W. 1994. Biodegradation of lignin and hemicellulose. Ch. 8, In: Ratledge, C. (ed). Biochemistry of Microbial Degradation. Kluwer Academic Publishers, London, pp. 233-277.
Jiang, Z., Wei, Y., Li, D., Li, L. and Chai, P. 2006. Iso Kusakabe High-level production, purification and characterization of a thermostable β-mannanase from the newly isolated Bacillus subtilis WY34. Carbohydrate Polymers. 66:88–96.
Johnson, K. G. and Ross, N. W. 1990. Enzymic properties of β-mannanase from Polyporus versicolor. Enzyme and Microbial Technology. 12: 960-964.
Juha’sz T., Szengyel Z.,Re’czey K.,Siika-Aho M., Viikari L. 2005. Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochemistry. 40 : 3519–3525
Kansoh, A. L. and Nagieb, Z. A. 2004. Xylanase and mannanase enzymes from Streptomyces galbus NR and their use in biobleaching of softwood kraft pulp. Antonie van Leeuwenhoek. 85: 103–114.
Kotani,H., Nakamura,Y., Sato,S., Asamizu,E., Kaneko,T., Miyajima,N.and Tabata,S. 1998. Structural analysis of Arabidopsis thaliana chromosome 5. VI.Sequence features of the regions of 1,367,185 bp covered by 19 physically assigned P1 and TAC clones. DNA Res. 5 (3), 203-216
Kuga, S. and Brown, R. M. Jr. 1991. Physical structure of cellulose microfibrils: implications for biogenesis. In: Biosynthesis and biodegradation of cellulose. Eds. Haigler, C. H. and Weimer, P. J., pp. 125-142. Marcel Dekker, New York, USA.
Kwak, N. S. and Jukes, D. J. 2001. Functional foods. Part 1: the development of a regulatory concept. Food Control. 12: 99-107.
Lawrence, A. A. 1973. Galactomannan. In Edible Gums and Related Substances, Lawrence, A. A. p 3-15. Park Ridge, Noyes Data Crop Press, NJ.
Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. 1951. Protein measurement with Folin phenol reagent. The Journal of Biological Chemistry. 193:265-75.
Maeda, M., Shimahara, H. and Sugiyama, N. 1980. Detail examination of the branched structure of konjac glucomannan. Agricultural and Biological Chemistry. 44:245-252.
Maekaji, K. 1974. The mechanism of gelation of konjac mannan. Agricultural and Biological Chemistry. 38:315-321.
Malek, L. and J. D. Bewley. 1991. Endo-s-mannanase activity and reserve mobilization in excised endosperms of fenugreek is affected by incubation and abscisic acid. Seed Science Research. 1: 45-49.
Marraccini, P., Rogers, W. J., Allard, C., Andre, M. L., Caillet, V., Lacoste, N., Lausanne, F. and Michaux, S. 2001. Molecular and biochemical characterization of endo-beta-mannanases from germinating coffee (Coffea arabica) grains. Planta 213 (2), 296-308.
Marta, C., Teixeira, De., Elizete, C. S., Menezes, B. G., Alexandre, N. P., Edilberto, P. P., Joao, R. V. and Ednilson, D. 2003. Xylan-hydrolyzing enzyme system from Bacillus pumilus CBMAI 0008 and its effects on Eucalyptus grandis kraft pulp for pulp bleaching improvement. Bioresource Technology. 88: 9–15.
Matti, S. A., Maija, T. and Liisa, V. 1992. Purification and characterization of two β-mannanases from Trichoderma reesei. Journal of Biotechnology. 29:229-42.
McCleary, B. V. and Matheson, N. K. 1975. Galactomannan structure and s-mannanase and s-mannosidase activity in germinating legume seeds. Phytochemistry. 14: 1187-1194.
McCleary, B. V. and Matheson, N. K. 1986. Enzymic analysis of polysaccharide structure. Advances in Carbohydrate Chemistry and Biochemistry. 44: 147–176.
McCleary, B. V. 1988. Soluble, dye-labled polysaccharides for the assay of endohydrolases. Method Enzymol. 160: 74-86.
Mendoza, N. S., Arai, M., Kawaguchi, T., Yoshida, T. and Joson, L. M. 1994. Isolation of mannan utilizing bacteria and culture conditions for mannanase production. World Journal of Microbiology & Biotechnology. 10: 51–54.
Miller, G. L. 1959. Use dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry. 31:426-8.
Nelson, K. E., Clayton, R. A., Gill, S. R., Gwinn, M. L., Dodson, R. J., Haft, D. H., Hickey, E. K., Peterson, J. D., Nelson, W. C., Ketchum, K. A., McDonald, L., Utterback, T. R., Malek, J. A., Linher, K. D., Garrett, M. M., Stewart, A. M., Cotton, M. D., Pratt, M. S., Phillips, C. A., Richardson, D., Heidelberg, J., Sutton, G. G., Fleischmann, R. D., White, O., Salzberg, S. L., Smith, H. O., Venter, J. C. and Fraser, C. M. 1999. Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritime. Nature 399:323-329.
Nishinari, K., Williams, P. A. and Phillips, G. O. 1992. Review of the physico-chemical characteristics and properties of konjac mannan. Food Hydrocoll. 6:199-222.
Nonogaki, H., Nomaguchi, M. and Morohashi, Y. 1992. Galactomannan hydrolyzing activity develops during priming in the micropylar endosperm tip of tomato seeds. Physiologia Plantarum. 85: 167-172.
Nonogaki, H., Nomaguchi, M. and Morohashi, Y. 1995. Endo-s-mannanases in the endosperm of germinated tomato seeds. Physiologia Plantarum. 94: 328-334.
Nonogaki, H. and Morohashi, Y. 1996. An endo-s-mannanase develops exclusively in the micropylar endosperm of tomato seeds prior to radicle emergence. Physiologia Plantarum. 110: 555-559.
Nunes, F. M. and Coimbra, M. A. 1998. Influence of polysaccharide composition in foam stability of espresso coffee. Carbohydrate polymers.37: 283–285.
Nunes, F. M., Reis, A., Domingues, M. R. and Coimbra, M. A. 2006. Characterization of galactomannan derivatives in roasted coffee beverages. Journal of Agricultural and Food Chemistry. 54: 3428–3439.
Okazaki, M., Fujikawa, S. and Matsumoto, N. 1990. Effect of xylooligosaccharide on the growth of bifidobacteria. Bifidobacteria Microflora. 9: 77-86.
Ooi, T. and Kikuchi, D. 1995. Purification and some properties of L-mannanase from Bacillus sp. World J. Microbiol. Biotechnology. 11: 310-314.
Palackal, N., Christopher, L., Zaidi, S., Luginbuhl, P., Dupree, P. and Goubet, F. 2006. A multifunctional hybrid glycosyl hydrolase discovered in an uncultured microbial consortium from ruminant gut. Applied Microbiology and Biotechnology. 74: 113–124.
Pason, P., Kyu, K. L. and Ratanakhanokchai, K. 2006. Paenibacillus curdlanolyticus Strain B-6 xylanolytic-cellulolytic enzyme system that degrades insoluble polysaccharides. Applied Microbiology and Biotechnology. 72: 2483–2490.
Pettey, L. A., Carter, S. D., Senne, B. W. and Shriver, J. A. 2002. Effects of β-mannanase addition to corn-soybean meal diets on growth performance, carcass traits, and nutrient digestibility of weaning and growing-finishing pigs. Journal of Animal Science. 80: 1012–1019.
Puchart, V., Vrsˇanska, M., Svoboda, P., Pohl, J. and Biely, P. 2004. Purification and characterization of two forms of endo- β-1,4-mannanase from a thermotolerant fungus, Aspergillus fumigatus IMI 385708 (formerly T. lanuginosus IMI 158749). Biochimica et biophysica Acta. 1674: 239–250.
Reid, J. S. G., C. Davies, and H. Meier. 1977. Endo-s-mannanase, the leguminous aleurone layer and the storage galactomannans in germinating seeds of Trigonella foenum-graecum L. Planta 133:219-222.
Richmond, P. A. 1991. Occurrence and functions of native cellulose. In:Biosynthesis and Biodegradation of Cellulose. Eds. Haigler, C. H. and Weimer, P. J., pp. 5-23. Marcel Dekker, New York, USA.
Roberfroid, M. B. 1998. Prebiotics and synbiotics: concepts and nutritional properties. The British Journal of Nutrition. 80: 197-202.
Royer, J. C. and Nakas, J. P. 1989a. Xylanase enzymes: potential applications and production by Trichoderma longibrachiatum. In: Valentine, F. A. (ed). Forest and Biotechnology: Progress and Prospects. Springer-Verlag, New York, 363-381.
Royer, J. C. and Nakas, J. P. 1989b. Xylanase production by Trichoderma longibrachiatum. Enzyme and Microbial Technology. 110:405-410. Wiley-Interscience. p.112, New York, USA.
Sabini, E., Schubert, H., Murshudov, G., Wilson, K. S., Siika-Aho, M. and Penttila, M. 2000. The three-dimensional structure of a Trichoderma reesei beta-mannanase from glycoside hydrolase family 5. Acta Crystallogr.Biology. Crystallogr. 56: 3-13.
Siedenberg, D., Gerlach, S. R., Schugerl, K., Giuseppin, M. L. F. and Hunik, J. 1998. Production of xylanase by Aspergillus awamori on synthetic medium in shake flask cultures. Process Biochemistry. 33:429-433.
Stalbrand, H., Saloheimo, A., Vehmaanpera, J. and Penttila, M. 1993. cDNA encoding Trichoderma reesei beta-mannanase. Unpublished Stoddart, J. F. 1971. Stereochemistry of carbohydrates.
Subramaniyan, S. and Prema, P. 2000. Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiology Letters. 183: 1-7.
Sunn, A., Puls, J. and Antranikian, G. 1996. Purification and characterization of two thermostable endo-1,4-D-xylanases from Thermotoga thermarum. Biotechnology and Applied Biochemistry. 24:177-185.
Tako, M. 1991. Synergistic interaction between xanthan and tara bean gum. Carbohydrate polymers. 14: 239-52.
Takigami, S., Takiguchi, T. and Phillips, G. O. 1997. Microscopical studies of the tissue structure of konjac tubers. Food Hydrocoll. 11:479-484.
Takigami, S. 2000. Konjac mannan. In: Phillips GO, Williams PA, editors. Handbook of hydrocolloids. Boca Raton, FL: Woodhead Publishing Limited and CRC Press LLC. p 413-424.
Tan, L. U. L., Wong, K. K. Y. and Saddler, J. N. 1985. Functional characteristics of two D-xylanases purified from Trichoderma harzianum. Enzyme and Microbial Technology. 7:431.
Tamaru, Y., Araki, T., Amagoi, H., Mori, H. and Morishita, T. 1995. Purification and Characterization of an Extracellular β-1,4- Mannanase from a Marine Bacterium, Vibrio sp. Strain MA-138 Applied and Environmental Microbiology. 4454–4458.
Tenkanen, M. 1998. Action of Trichoderma reesei and Aspergillus oryzae esterases in the deacetylation of hemicelluloses. Biotechnology. Applied. Biochemistry. 27: 19–24.
Thomas, W. R. 1997. Konjac gum. In: Imeson A, editor. Thickening and gelling agents for food. 2nd ed. London, UK: Blackie Academic & Professional. 169-179.
Thomson, J. A. 1993. Molecular biology of xylan degradation. FEMS Microbiology Reviews. 104: 65-82.
Timell, T. E. and Syracus, N. Y. 1967. Recent progress in the chemistry of wood hemucellulose. Wood Science and Technology. 1:45-70
Tomomatsu, H. 1994. Health effects of oligosaccharides. Food Technology. 61-65.
Wang, A., Li, J. and Bewley, D. 2004. Molecular cloning and characterization of an endo-β-mannanase gene expressed in the lettuce endosperm following radicle emergence. Seed Science. Resources. 14: 267-276.
Whistler, R. L., BeNiller, J. N. 1997. Polysaccharides In: Whistler R. L., BeNiller J. N., (Ed). Carbohydrate cheristry for food seientists. Paul S.T., MN, USA EaganPress. 63-89.
Williams, P. A. and Phillips, G.O. 2000. Introduction to food hydrocolloids. In: Phillips, G. O. and Williams, P.A. editors. Handbook of hydrocolloids. Boca Raton, FL: Woodhead Publishing Limited and CRC Press LLC. 1-19.
Woodword, J. 1984. Xylanases : functions, properties and applications. Topics in Enzyme and Fermentation Biotechnology. 8: 9-30.
Yoshida, S., Sako, Y., and Uchida A. 1998. Cloning, sequence analysis, and expression in Escherichia coli of a gene coding for an enzyme from Bacillus circulans K-1 that degrades guar gum. Biosci. Biotechnol. Biochem. 62(3): 514–520.
Young, J. 1998. European market developments in prebiotic andprobiotic-containing foodstuffs. The British Journal of Nutrition. 80: 231-233.
Zakaria, M. M., Yamamoto, S. and Yagi, T. 1998. Purification and characterization of an endo-1,4-β-mannanase from Bacillus subtilis KU-1 FEMS Microbiology Letters. 158:25-31.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔