(3.236.214.19) 您好!臺灣時間:2021/05/10 08:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:王佳慧
研究生(外文):Chia-Hui Wang
論文名稱:綠藻水解物對α-葡萄糖??之抑制與活性物質的純化
論文名稱(外文):Inhibition of α-Glucosidase and Purification of Bioactive Substances from Hydrolysate of Chlorella pyrenoidosa
指導教授:蔡震壽蔡震壽引用關係
指導教授(外文):Jenn-Shou Tsai
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:78
中文關鍵詞:綠藻α-葡萄糖??糖尿病
外文關鍵詞:Chlorella pyrenoidosaα-GlucosidaseDiabetes Mellitus
相關次數:
  • 被引用被引用:10
  • 點閱點閱:458
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:115
  • 收藏至我的研究室書目清單書目收藏:0
綠藻 (Chlorella pyrenoidosa)經纖維素?與蛋白?水解後之水解物,探討其對α-glucosidase之抑制作用,以評估調節血糖的生理效果。破胞、未破胞綠藻與綠藻渣添加3與5%的Cellulase R-10水解3小時,水解物之總糖量、可溶性蛋白質與胜?含量隨著酵素濃度增加而提高。其中以破胞綠藻具有較佳之產製率21.4%,且其對α-glucosidase之IC50值為27.48 mg/mL。將此水解物經膠體過濾層析法 (Sephadex G-50)可劃分為三個部分,以C劃分物對α-glucosidase之抑制率最佳,其IC50值降至0.103 mg carbohydrate/mL與0.038 mg peptide/mL。相較於市售藥物Acarbose (α-glucosidase抑制劑)對α-glucosidase之IC50值為0.394 mg/mL。為提高破胞、未破胞綠藻與綠藻渣之水解率,同時添加5%纖維素? (Cellulase AP3)與2%蛋白? (Protease N)進行水解綠藻,其產率分別為41.02、45.78與32.01%。將破胞綠藻水解物經Sephadex G-15層析後之劃分物Ⅲ對α-glucosidase之IC50值為0.074 mg carbohydrate/mL與0.099 mg peptide/mL。劃分物Ⅲ進一步經高效能液相層析法分離,僅波峰Ⅲ-1對α-glucosidase具有抑制力,其IER值為2531.8 %/mg/mL。
The inhibitory effects of Chlorella hydrolysates (hydrolyzed by cellulase and protease) against α-glucosidase were investigated and the physiological effect on regulation of blood sugar was also evaluated. The carbohydrate, soluble protein and peptide content of three Chlorella hydrolysates (pulverized cell, unpulverized cell and residue) were increased as cellulase was added to 5%. The hydrolysate (pulverized cell) showed the highest yield being 21.40%, and α-glucosidase IC50 was 27.48 mg/mL. The hydrolysate (pulverized cell) was separated into three fractions by size exclusion chromatography on a Sephadex-50 column. The third fraction of the hydrolysate showed the lowest α-glucosidase IC50 being 0.103 mg carbohydrate/mL and 0.038 mg peptide/mL (the drug of Acarbose was 0.394 mg/mL). The yield of hydrolysates increased to 41.02 (pulverized cell), 45.78 (unpulverized cell) and 32.01% (residue), respectively, as by 5% Cellulase AP3 and 2% Protease N hydrolyzed. Then, the hydrolysate (pulverized cell) was separated into three fractions by size exclusion chromatography on a Sephadex-15 column. The third fraction of the hydrolysate showed the lowest α-glucosidase IC50 being 0.074 mg carbohydrate/mL and 0.099 mg peptide/mL. The third fraction was further analyzed by HPLC, only peak Ⅲ-1 had inhibitory effect on α-glucosidase and inhibitory efficiency ratio (IER) was 2531.8 %/mg/mL.
頁次
中文摘要.......................................................................................... Ⅰ
英文摘要.......................................................................................... Ⅱ
目錄.................................................................................................. Ⅲ
表目錄.............................................................................................. Ⅶ
圖目錄.............................................................................................. Ⅷ
壹、前言............................................................................................ 01
貳、文獻回顧.................................................................................... 03
一、綠藻之介紹.............................................................................. 03
1. 簡述......................................................................................... 03
2. 養殖概況................................................................................. 03
3. 一般組成份............................................................................. 04
4. 加工產品................................................................................. 05
5. 保健功效................................................................................. 05
二、糖尿病...................................................................................... 06
1. 定義......................................................................................... 06
2. 分類......................................................................................... 07
(1) 第一型糖尿病…................................................................. 08
(2) 第二型糖尿病…................................................................. 08
(3) 其他特有病因型糖尿病…................................................. 08
(4) 妊娠型糖尿病…................................................................. 09
3. 治療方式................................................................................. 09
(1) 飲食控制…......................................................................... 09
(2) 口服降血糖藥物…............................................................. 09
(3) 胰島素治療…..................................................................... 10
(4) 其他類藥物…..................................................................... 10
三、α-Glucosidase對血糖的影響.................................................. 10
1. α-Glucosidase之生化特性...................................................... 10
2. α-Glucosidase抑制劑之降血糖機制...................................... 10
3. α-Glucosidase抑制劑之臨床應用.......................................... 11
四、α-Glucosidase抑制劑 (AGI)之來源...................................... 12
1. 動物性來源之AGI................................................................. 12
2. 植物性來源之AGI................................................................. 12
(1) 中草藥................................................................................. 12
(2) 茶類..................................................................................... 15
(3) 藻類..................................................................................... 15
(4) 發酵製品............................................................................. 16
3. 微生物來源之AGI................................................................. 17
五、酵素水解作用.......................................................................... 19
參、材料與方法................................................................................ 22
一、實驗材料.................................................................................. 22
1. 綠藻......................................................................................... 22
2. 纖維素?................................................................................. 22
3. 蛋白?…................................................................................. 22
4. 酵素與基質............................................................................. 22
二、實驗方法.................................................................................. 23
1. 綠藻水解物之製備................................................................. 23
(1) 單一酵素法......................................................................... 23
(2) 混合酵素法......................................................................... 23
a. 同時添加........................................................................... 23
b. 分段添加........................................................................... 24
2. 水解產製率之測定................................................................. 24
3. 水解物性質之分析................................................................. 25
(1) 可溶性蛋白質含量............................................................. 25
(2) 胜?含量............................................................................. 25
(3) 游離胺基酸含量................................................................. 26
(4) 總糖含量............................................................................. 26
4. 水解物對α-glucosidase之抑制活性...................................... 27
(1) 對α-glucosidase抑制能力之測定...................................... 27
(2) 對α-glucosidase之IC50值的測定....................................... 28
5. 膠過濾層析............................................................................. 28
(1) 水解物的分離..................................................................... 28
a. 大分子量物質的劃分....................................................... 28
b. 小分子量物質的劃分....................................................... 29
(2) 劃分收集物對α-glucosidas抑制活性之測定.................... 30
6. 高效能液相層析..................................................................... 30
7. 胺基酸序列分析..................................................................... 31
8. 各胜?對α-glucosidase之IC50值的測定.............................. 31
9. 統計分析................................................................................. 32
肆、結果與討論................................................................................ 33
一、水解條件對綠藻水解物性質之影響...................................... 33
1. 水解時間與溫度..................................................................... 33
2. 單一纖維素?與纖維素?混合蛋白?之比較..................... 33
(1) 單一纖維素?..................................................................... 33
a. 纖維素?對綠藻水解物成分之影響................................. 33
b. 綠藻水解物對α-glucosidase的IC50值之影響.................. 34
c. 纖維素?對綠藻水解物產製率與固形物含量之影響..... 36
(2) 混合纖維素?與蛋白?..................................................... 36
二、綠藻水解物之分子量對抑制α-glucosidase活性之影響........................................................................................... 38
1. 纖維素?對綠藻水解物之分子量分布的影響..................... 38
2. 纖維素?對綠藻水解物之劃分物其α-glucosidase IC50值的影響...................................................................................... 39
3. 纖維素?與蛋白?對綠藻水解物之分子量分布的影響..... 41
4. 纖維素?與蛋白?對綠藻水解物之劃分物其α-glucosidase IC50值的影響.................................................... 42
5. 處理方式對綠藻水解物之分子量分布與α-glucosidase IC50值的影響........................................................................... 43
6. 纖維素?與蛋白?對綠藻水解物之活性物質的純化......... 44
三、分離並純化可抑制α-glucosidase之活性物質....................... 45
1. 高效能液相層析法................................................................. 45
2. 胺基酸序列之鑑定................................................................. 46
3. 胜?對抑制α-glucosidase活性之潛力.................................. 46
伍、結論............................................................................................ 49
陸、參考文獻.................................................................................... 50
柒、表................................................................................................ 60
捌、附表............................................................................................ 70
玖、圖................................................................................................ 71


表目錄
頁次
表一、纖維素? (R-10)對綠藻水解物之成分的影響................... 60
表二、纖維素? (R-10)水解綠藻後之水解物對 α-glucosidase IC50值的影響..................................................................... 61
表三、不同纖維素?水解對綠藻水解物之產製率與固形物含量的影響.................................................................................. 62
表四、纖維素?與蛋白?水解對綠藻水解物之產製率與其對 α-glucosidase IC50值的影響................................................ 63
表五、綠藻 (破胞)以5% Cellulase R-10水解後之膠體層析 (Sephadex G-50)劃分物對 α-glucosidase IC50值的影響... 64
表六、綠藻 (破胞)以纖維素?與蛋白?水解後之膠體層析 (Sephadex G-50)劃分物對α-glucosidase IC50值的影響.... 65
表七、水解方式對綠藻水解物之α-glucosidase IC50值的影響.......................................................................................... 66
表八、綠藻 (破胞)以纖維素?與蛋白?水解後之膠體層析 (Sephadex G-15)劃分物對α-glucosidase IC50值的影響.... 67
表九、綠藻 (破胞)以5% Cellulase AP3與2% Protease N水解後之水解物的膠體過濾劃分物Ⅲ經逆相高效能液相層析分離之波峰Ⅲ-1至Ⅲ-10之α-glucosidase有效抑制百分比 (IER) .......................................................................... 68
表十、不同樣品之有效胜?對α-glucosidase IC50值的影響….... 69
附表一、本研究使用之纖維素?特性............................................ 70

圖目錄
頁次
圖一、綠藻經5% Cellulase R-10水解後之水解物的膠體過濾 (Sephadex G-50)層析圖....................................................... 71
圖二、綠藻 (破胞)經纖維素? (R-10)水解後之水解物的膠體過濾 (Sephadex G-50)層析圖............................................. 72
圖三、綠藻 (破胞)經不同酵素水解後水解物之膠體過濾 (Sephadex G-50)層析圖....................................................... 73
圖四、綠藻經5%纖維素?和2%蛋白?水解後水解物之膠體過濾 (Sephadex G-50)層析圖............................................. 74
圖五、綠藻 (破胞)經5% Cellulase AP3與2% Protease N水解後之水解物的膠體過濾 (Sephadex G-50)層析圖............. 75
圖六、不同乾燥方法之熱水抽出物 (綠藻生長因子)的膠體過濾 (Sephadex G-50)層析圖................................................. 76
圖七、綠藻 (破胞)以5% Cellulase AP3與2% Protease N水解後之水解物的膠體過濾 (Sephadex G-15)層析圖............. 77
圖八、綠藻 (破胞)以5% Cellulase AP3與2% Protease N水解後之水解物的膠體過濾劃分物Ⅲ經逆相高效能液相層析分離之圖譜...................................................................... 78
行政院農業委員會,2007。台灣地區主要死亡原因。台北。
江佳霖,2006。牡犡水解物中胜?對血管升壓素轉換?之抑制與其純化。國立台灣海洋大學食品科學系碩士論文。基隆。
李旻,2006。綠藻中α-glucosidase抑制物之分離與特性鑑定。靜宜大學食品營養學系碩士論文。台中。
林子青,2004。貝類熱水抽出物與水解物中胜?對血管升壓素轉換?之抑制與其純化。國立台灣海洋大學食品科學系碩士論文。基隆。
林貴萍,2002。綠藻之機能性與其分析方法。食品工業。34(11): 21-25。新竹。
胡智伯,2002。口服降血糖製劑與天然調節血糖物質。食品工業。34(6): 19-37。新竹。
陳美惠,2001。淺談綠藻。食品工業 33(9): 48-56。新竹。
陳紀樺,2002。血糖調節機制功效評估。食品工業。34(6): 2-18。新竹。
陳佳伶,2005a。文蛤水解物中胜?對血管升壓素轉換?之抑制與其純化 。國立台灣海洋大學食品科學系碩士論文。基隆。
陳盈志,2005b。綠藻異營培養基組成最適化及其萃取物之抗氧化性研究。國立中興大學食品暨應用生物科技學系碩士論文。台中。
黃悌儀,2000。綠藻對於大白鼠體內脂質代謝的影響。台北醫學大學保健營養學研究所碩士論文。台北。
黃金宗,2006。綠藻與綠藻成長素。食品工業。38(12): 23-30。新竹。
賈有元,2004。綠藻Chlorella pyrenoidosa NCHU-6之最適異營培養條 件暨培養方法之研究。國立中興大學食品暨應用生物科技學系碩士論文。台中。
劉正儀,2004。綠藻對BALB/c小鼠全身性及腸道免疫之影響。台北醫學大學醫學研究所碩士論文。台北。
Apostolidis, E., Kwon, Y. I., and Shetty, K. 2006. Potential of select yogurts for diabetes and hypertension management. Journal of Food Biochemistry 30: 699-717.
Apostolidis, E., Kwon, Y. I., and Shetty, K. 2007. Inhibitory potential of herb, fruit, and fungal-enriched cheese against key enzymes linked to type 2 diabetes and hypertension. Innovative Food Science and Emerging Technologies 8: 46-54.
Asano, N. 2003. Glycosidase inhibitors: update and perspectives on practical use. Glycobiology 13: 93R-104R.
Baron, A. D. 1998. Postprandial hyperglycaemia and α-glucosidase inhibitors. Diabetes Research and Clinical Practice 40 Suppl.: S51-S55.
Bessesen, D. H. 2001. The role of carbohydrates in insulin resistance. Journal of Nutrition 131: 2782-2786.
Bharatham, K., Bharatham, N., Park, K. H., and Lee, K. W. 2008. Binding mode analyses and pharmacophore model development for sulfonamide chalcone derivatives, a new class of α-glucosidase inhibitors. Journal of Molecular Graphics and Modelling 26: 1202-1212.
Binderup, C., Libessart, N., and Preiss, J. 2000. Slow-binding inhibition of branching enzyme by the pseudooligosaccharide BAY e4609. Archives of Biochemistry and Biophysics 374: 73-78.
Brunkhorst, C., and Schneider, E. 2005. Characterization of maltose and maltotriose transport in the acarbose-producing bacterium Actinoplanes sp. Research in Microbiology 156: 851-857.
Casirola, D. M., and Ferraris, R. P. 2006. α-Glucosidase inhibitors prevent diet-induced increases in intestinal sugar transport in diabetic mice. Metabolism-Clinical and Experimental 55: 832-841.
Cherng, J. Y., and Shih, M. F. 2005a. Preventing dyslipidemia by Chlorella pyrenoidosa in rats and hamsters after chronic high fat diet treatment. Life Sciences 76: 3001-3013.
Cherng, J. Y., and Shih, M. F. 2005b. Potential hypoglycemic effects of Chlorella in streptozotocin-induced diabetic mice. Life Sciences 77: 980-990.
Church, F. C., Swaisgood, H. E., Porter, D. H., and Catignani, G. L. 1983. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. Journal of Dairy Science 66: 1219-1227.
Doi, E., Shibata, D., and Matoba, T. 1981. Modified colorimetric ninhydrin methods for peptidase assay. Analytical Biochemistry 118: 173-184.
Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28: 350-356.
Eichler, J., Lucka, A. W., Pinilla, C., and Houghten, R. A. 1995. Novel α-glucosidase inhibitors identified using multiple cyclic peptides combinatorial libraries. Molecular Diversity 1: 233-240.
Fujisawa, T., Ikegami, H., Inoue, K., Kawabata, Y., and Ogihara, T. 2005. Effect of two α-glucosidase inhibitors, voglibose and acarbose, on postprandial hyperglycemia correlates with subjective abdominal symptoms. Metabolism-Clinical and Experimental 54: 387-390.
Fujita, H., Yamagami, T., and Ohshima, K. 2001a. Long-term ingestion of a fermented soybean-derived Touchi-extract with α-glucosidase inhibitory activity is safe and effective in humans with borderline and mild type-2 diabetes. Journal of Nutritional Biochemistry 131: 2105-2108.
Fujita, H., and Yamagami, T. 2001b. Fermented soybean-derived Touchi-extract with anti-diabetic effect via α-glucosidase inhibitory action in a long-term administration study with KKAy mice. Life Sciences 70: 219-227.
Fujita, H., Yamagami, T., and Ohshima, K. 2003. Long-term ingestion of Touchi-extract, an α-glucosidase inhibitor, by borderline and mild type-2 diabetic subjects is safe and significantly reduces blood glucose levels. Nutrition Research 23: 713-722.
Giovana, G. C., Polizeli, M. T., Terenzi, H. F., and Jorge, J. A. 2006. A novel α-glucosidase from Chaetomium thermophilum var. coprophilum that converts maltose into trehalose: Purification and partial characterization of the enzyme. Process Biochemistry 41: 1729-1735.
Hartmann, R., and Meisel, H. 2007. Food-derived peptides with biological activity: from research to food applications. Current Opinion in Biotechnology 18: 163-169.
Hasegawa, T., Kimura, Y., Hiromatsu, K., Kobayashi, N., Yamada, A., Makino, M., Okuda, M., Sano, T., Nomoto, K., and Yoshikai, Y. 1997. Effect of hot water extract of Chlorella vulgaris on cytokine expression patterns in mice with murine acquired immunodeficiency syndrome after infection with Listeria monocytogenes. International Immunopharmacology 35: 273-282.
Holman, R. R. 1998. Assessing the potential for α-glucosidase inhibitors in prediabetic states. Diabetes Research and Clinical Practice 40 Suppl.: S21-S25.
Hu, Q., Pan, B., Xu, J., Sheng, J., and Shi, Y. 2007. Effects of supercritical carbon dioxide extraction conditions on yields and antioxidant activity of Chlorella pyrenoidosa extracts. Journal of Food Engineering 80: 997-1001.
Huang, W., Niu, H., Li, Z., Li, L., and Wang, W. 2008. Ellagic acid from acorn fringe by enzymatic hydrolysis and combined effects of operational variables and enzymes on yield of the production. Bioresource Technology 99: 1518-1525.
Hussain, A., Claussen, B., Ramachandran, A., and Williams, R. 2007. Prevention of type 2 diabetes: A review. Diabetes Research and Clinical Practice 76: 317-326.
Inzucchi, S. E. 2002. Oral antihyperglycemic therapy for type 2 diabetes. JAMA-Journal of the American Medical Association 287: 360-372.
Jong-Anurakkun, N., Bhandari, M. R., Kawabata, J. 2007. α-Glucosidase inhibitors from Devil tree (Alstonia scholaris). Food Chemistry 103: 1319-1323.
Kim, S. H., Hyun, S. H., and Choung, S. Y. 2006. Anti-diabetic effect of cinnamon extract on blood glucose in db/db mice. Journal of Ethnopharmacology 104: 119-123.
Kim, Y. M., Wang, M. H., and Rhee, H. I. 2004. A novel α-glucosidase inhibitor from pine bark. Carbohydrate Research 339: 715-717.
Kim, Y. M., Jeong, Y. K., Wang, M. H., Lee, W. Y., and Rhee, H. I. 2005. Inhibitory effect of pine extract on α-glucosidase activity and postprandial hyperglycemia. Nutrition 21: 756-761.
Kimura, T., Nakagawa, K., Kubota, H., Kojima, Y., Goto, Y., Yamagishi, K., Oita, S., Oikawa, S., and Miyazawa, T. 2007. Food-grade mulberry powder enriched with 1-deoxynojirimycin suppresses the elevation of postprandial blood glucose in human. Journal of Agricultural and Food Chemistry 55: 5869-5874.
Lattova, E., Kapkova, P., Krokhin, O., and Perreault, H. 2006. Method for investigation of oligosaccharide from glycopeptides: direct determination of glycosylation sites in protein. Analytical Chemistry 78: 2977-2984.
Lee, D. S., and Lee, S. H. 2001. Genistein, a soy isoflavone, is a potent α-glucosidase inhibitor. FEBS Letters 501: 84-86.
Li, T., Liu, J., and Zhang, X. 2007. Antidiabetic activity of lipophilic (-)-epigallocatechin-3-gallate derivative under its role of α-glucosidase inhibition. Biomedicine & Pharmacotherapy 61: 91-96.
Li, X., Niu, R., Fan, X., Han, L., and Zhang, L. 2005. Macroalage as a source of alpha-glucosidase inhibitors. Chinese Journal of Oceanology and Limnology 23: 354-356.
Luna, B., Pharm, D., BCPS., and Mark, N. 2001. Oral agents in the management of type 2 diabetes mellitus. American Family Physician 63: 1747-1756.
Luo, J. G., Wang, X. B., Ma, L., and Kong, L. Y. 2007. Gypsophin: A novel α-glucosidase inhibitory cyclic peptide from the roots of Gypsophila oldhamiana. Bioorganic & Medicinal Chemistry Letters 17: 4460-4463.
Luo, J. G., Ma, L., and Kong, L. Y. 2008. New tirterpenoid saponins eith strong α-glucosidase inhibitory activity from the roots of Gypsophila oldhamiana. Bioorganic & Medicinal Chemistry 16: 2912-2920.
Matsumoto, K., Sera, Y., Abe, Y., Tominaga, T., Ueki, Y., and Miyake, S. 2002. Combination therapy of alpha-glucosidase inhibitor and a sulfonylurea compound prolongs the duration of good glycemic control. Metabolism-Clinical and Experimental 51: 1548-1552.
Matsui, T., Yoshimoto, C., Osajima, K., Oki, T., and Osajima, Y. 1996. In vitro survey of α-glucosidase inhibitory food components. Bioscience Biotechnology and Biochemistry 60: 2019-2022.
Matsui, T., Oki, T., and Osajima, Y. 1999. Isolation and identification of peptidic α-glucosidase inhibitors derived from sardine muscle hydrolyzate. Zeitschrift fur naturforschung section B-A journal of chemical sciences 60: 2019-2022.
Matsui, T., Ueda, T., Oki, T., Sugita, K., Terahara, N., and Matsumoto, K. 2001a. α-Glucosidase inhibitory action of natural acylated anthocyanins. 1. Survey of natural pigments with potent inhibitory activity. Journal of Agricultural and Food Chemistry 49: 1948-1951.
Matsui, T., Ueda, T., Oki, T., Sugita, K., Terahara, N., and Matsumoto, K. 2001b. α-Glucosidase inhibitory action of natural acylated anthocyanins. 1. α-Glucosidase inhibition by isolated acylated anthocyanins. Journal of Agricultural and Food Chemistry 49: 1952-1956.
Matsui, T., Oki, T., and Osajima, Y. 2007. α-Glucosidase inhibitory profile of catechins and theaflavins. Journal of Agricultural and Food Chemistry 55: 99-105.
Morita, K., Matsueda, T., Lida, T., and Hasegawa, T. 1999. Chlorella accelerates dioxin excretion in rats. Journal of Nutrition 129: 1731-1736.
Morris, H. J., Almarales, A., Carrillo, O., and Bermudez, C. R. 2008. Utilisation of Chlorella vulgaris cell biomass for the production of enzymatic protein hydrolysates. Bioresource Technology 99: 7723-7729..
Nakao, Y., Uehara, T., Matsunaga, S., Fusetani, N., and van Soest, R. W. M. 2002. Callyspongynic acid, a polyacetylenic acid ehich inhibits α-glucosidase, from the marine sponge Callyspongia truncata. Journal of Natural Products 65: 922-924.
Nakao, Y., Maki, T., Matsunaga, S., van Soest, R. W. M., and Fusetani, N. 2004. Penasulfate A, a new α-glucosidase inhibitor from a marine sponge Penares sp. Journal of Natural Products 67: 1346-1350.
Ortiz-Andrade, R. R., Garcia-Jimenez, S., Castillo-Espana, P., Ramirez-Avila, G., Villalobos-Molina, R., and Estrada-Soto, S. 2007. α-Glucosidase inhibitory activity of the methanolic extract from Tournefortia hartwegiana: An anti-hyperglycemic agent. Journal of Ethnopharmacology 109: 48-53.
Peterson, G. L. 1979. Review of the Folin phenol protein quantitation mothod of Lowry, Rosebrough, Farr, and Randall. Analytical Biochemistry 100: 201-220.
Sheng, J., Yu, F., Xin, Z., Zhao, L., Zhu, X., and Hu, Q. 2007. Preparation, identification and their antitumor activities in vitro of polysaccharides from Chlorella pyrenoidosa. Food Chemistry 105: 533-539.
Suetsuna, K., and Chen, J. R. 2001. Identification of antihypertensive peptides from peptic digests of two microalgae, Chlorella vulgaris and Spirulina platensis. Marine Biotechnology 3: 305-309.
Takada, K., Uehara, T., Nakao, Y., Matsunaga, S., van Soest, R. W. M., and Fusetani, N. 2004. Schulzeines A-C, new α-glucosidase inhibitors from the marine sponge Penares schulzei. Journal of the American Chemical Society 126: 187-193.
Tchorbanov, B., and Bozhkova, M. 1988. Enzymatic hydrolysis of cell proteins in green algae Chlorella and Scenedesmus after extraction with organic solvents. Enzyme and Microbial Technology 10: 233-238.
Tsai, J. S., Lin, T. C., Chen, J. L., and Pan, B. S. 2006. The inhibitory effects of freshwater clam (Corbicula fluminea, Muller) muscle protein hydrolysates on angiotensin I converting enzyme. Process Biochemistry 41: 2276-2281.
Tsai, J. S., Chen, T. J., Pan, B. S., Gong, S. D., and Chung, M. Y. 2008. Antihypertensive effect of bioactive peptides produced by protease-facilitated lactic acid fermentation of milk. Food Chemistry 106:552-538.
Wilkins, M. R., Widmer, W. W., Grohman, K., and Cameron , R. G. 2007. Hydrolysis of grapefruit peel waste with cellulose and pectinase enzyme. Bioresource Technology 98: 1596-1601.
Wood, T. M., and Bhat, K. M. 1988. Methods for measuring cellulase activities. Methods in Enzymology 160: 87-112.
World Health Organization.1999. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. Geneva.
Wu, L. C., Ho, J. A., Shieh, M. C., and Lu, I. W. 2005. Antioxidant and antiproliferative activities of spirulina and chlorella water extracts. Journal of Agricultural and Food Chemistry 53: 4207-4212.
Yatsunami, K., Ichida, M., and Onodera, S. 2007. The relationship between 1-deoxynojirimycin content and α-glucosidase inhibitory activity in leaves of 276 mulberry cultivars (Morus spp.) in Kyoto, Japan. Journal of Natural Medicines. Journal of Natural Medicines 62: 63-66.
Ye, F., Shen, Z., and Xie, M. 2002. Alpha-glucosidase inhibition from a Chinese medical herb (Ramulus mori) in normal and diabetic rats and mice. Phytomedicine 9: 161-166.
Yu, Y., Hu, J., Bai, X., Du, Y., and Lin, B. 2006. Preparation and function of oligopeptide-enriched hydrolysate from globin by pepsin. Process Biochemistry 41: 1589-1593.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔