(3.236.214.19) 您好!臺灣時間:2021/05/07 12:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:李筱婷
研究生(外文):Hsiao-Ting Lee
論文名稱:吳郭魚稚魚對有機態鋅之利用
論文名稱(外文):Dietary zinc requirements of juvenile tilapia, Oreochromis niloticus × O.aureus, quantified as organic form
指導教授:蕭錫延蕭錫延引用關係
指導教授(外文):Shi-Yen Shiau
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:79
中文關鍵詞:吳郭魚有機態鋅
外文關鍵詞:juvenile tilapiaorganic zinc
相關次數:
  • 被引用被引用:5
  • 點閱點閱:219
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:45
  • 收藏至我的研究室書目清單書目收藏:0
為探討吳郭魚稚魚對有機態鋅(Zn)之利用,zinc methionine以0、5、10、15、20、30及50 mg Zn/kg diet等不同劑量添加於基礎飼料中,其實際Zn之分析值分?為1.16、3.23、8.62、14.16、19.48、26.15與52.04 mg Zn/kg diet,總共七組,分別餵予平均初重1.29 ± 0.01 g之吳郭魚稚魚,每組三重覆,於密閉循環系統中飼養八週。餵食8.62 mg Zn/kg diet組之魚體增重率顯著(p<0.05)高於餵食未添加鋅組;飼料效率以餵食8.62及14.16 mg Zn/kg diet二組最高,餵食3.23 mg Zn/kg diet組次之,餵食未添加鋅組最低。魚體頭腎巨噬細胞超氧陰離子產率以餵食≧8.62 mg Zn/kg diet各組高於餵食未添加鋅組;血漿溶菌?活性以餵食8.62-19.48 mg Zn/kg diet等組最高,餵食3.23、26.15及52.04 mg Zn/kg diet 三組次之,餵食未添加鋅組最低;頭腎巨噬細胞產生之一氧化氮濃度以餵食14.16及19.48 mg Zn/kg diet二組最高,餵食≦3.23及26.15 mg Zn/kg diet等組次之,餵食52.04 mg Zn/kg diet組最低;總免疫球蛋白濃度以餵食14.16及19.48 mg Zn/kg diet二組高於餵食未添加鋅組及52.04 mg Zn/kg diet二組。肝臟銅鋅超氧化歧?活性以餵食≧3.23 mg Zn/kg diet各組高於餵食未添加鋅組。肝臟中脂質過氧化指標(Thiobarbituric acid-reactive substance, TBARS)值以餵食未添加鋅組高於餵食8.62 mg Zn/kg diet組。骨骼鋅蓄積量以餵食26.15及52.04 mg Zn/kg diet二組最高,餵食8.62及14.16 mg Zn/kg diet二組次之,而以餵食未添加鋅組最低;血漿中之鋅濃度以餵食52.04 mg Zn/kg組最高,餵食3.23-19.48 mg Zn/kg diet各組次之,以餵食未添加鋅組最低。以拐點迴歸法分析魚體增重率與血漿溶菌?活性並以直線迴歸法分析全魚體鋅保留量,估得吳郭魚稚魚對有機態鋅之最適需求量為6-9 mg Zn/kg diet。
In quantifying dietary zinc (Zn) requirements from organic source for juvenile tilapia, Oreochromis niloticus × O. aureus, zinc methionine was added to the basal diet at 0, 5, 10, 15, 20, 30, and 50 mg Zn/kg diet providing the actual dietary value of 1.16, 3.23, 8.62, 14.16, 19.48, 26.15 and 52.04 mg Zn/kg diet, respectively. Each diet was fed to triplicate groups of fish (initial body weight 1.29 ± 0.01 g) in a recirculated rearing system for 8 weeks. Results indicated that fish fed diet with 8.62 mg Zn/kg diet had significantly (p < 0.05) higher weight gain (WG) than fish fed the unsupplemented control diet. Feed efficiency (FE) was highest in fish fed diets with 8.63 and 14.16 mg/kg diet, followed by fish fed diet with 3.34 mg Zn/kg diet, and lowest in fish fed the unsupplemented control diet. The differences among the three groups were significant (p < 0.05). Macrophage superoxide anion production ratio was higher in fish fed diets with ≧8.62 mg Zn/kg diet than fish fed the unsupplemented control diet. The plasma lysozyme activity was highest in fish fed diets with 8.63-19.48 mg/kg diet, followed by fish fed diets with 3.34, 26.15 and 52.04 mg Zn/kg diet, and lowest in fish fed the unsupplemented control diet. The concentration of nitric oxide in macrophage isolated from head kidney was highest in fish fed diet with 14.16 and 19.48 mg/kg diet, followed by fish fed diets with ≦3.23 and 26.15 mg Zn/kg diet, and lowest in fish fed diet with 52.04 mg Zn/kg diet. Total immunoglobulin concentration was higher in fish fed diet with 14.16 and 19.48 mg Zn/kg diet than fish fed diet with 52.04 mg Zn/kg diet and the unsupplemented control diet. Hepatic copper-zinc superoxide dismutase (CuZn SOD) activity was higher in fish fed diets with ≧3.23 mg Zn/kg diet than fish fed the unsupplemented control diet. Hepatic thiobarbituric acid-reactive substance (TBARS) values was higher in fish fed the unsupplemented control diet than fish fed diet with 8.62 mg Zn/kg diet. Zinc concentration in bone was highest in fish fed diets with 26.15 and 52.04 mg/kg diet, followed by fish fed diets with 8.62 and 14.16 mg Zn/kg diet, and lowest in fish fed the unsupplemented control diet. Plasma Zn concentration was highest in fish fed diet with 52.04 mg Zn/kg, followed by fish fed diets with 3.23-19.48 mg Zn/kg, and lowest in fish fed the unsupplemented control diet. Analysis by broken-line regression of WG and lysozyme activity, and by linear regression of whole body zinc retention of fish indicated that the optimum dietary Zn requirements for juvenile tilapia is approximately 6-9 mg/kg diet using organic zinc methionine as Zn source.
目錄
中文摘要.....................I
英文摘要.....................III
文獻整理.....................1
前言.......................20
材料方法.....................22
結果.......................40
討論.......................57
結論.......................67
參考文獻.....................68

表目錄
表一、魚類對有機態鋅及無機態鋅利用性之相關研究......18
表二、基礎飼料組成....................23
表三、實驗飼料之一般成份.................24
表四、吳郭魚稚魚餵食不同鋅含量飼料八週後之初重、末重、增重百分率及存活率....................43
表五、吳郭魚稚魚餵食不同鋅含量飼料八週後之飼料效率、蛋白質效率及肝體比.....................44
表六、吳郭魚稚魚餵食不同鋅含量飼料八週後之體組成.....45
表七、吳郭魚稚魚餵食不同鋅含量飼料八週後之白血球計數、紅血球計數、血比容與血紅素濃度..............46
表八、吳郭魚稚魚餵食不同鋅含量飼料八週後之平均紅血球體積、平均紅血球血紅素含量與平均紅血球血紅素濃度......47
表九、吳郭魚稚魚餵食不同鋅含量飼料八週後之頭腎巨噬細胞超氧陰離子產率及血漿溶菌?活性..............48
表十、吳郭魚稚魚餵食不同鋅含量飼料八週後之頭腎巨噬細胞產生之一氧化氮濃度及總免疫球蛋白濃度...........49
表十一、吳郭魚稚魚餵食不同鋅含量飼料八週後之肝臟超氧歧化?活性、銅鋅超氧歧化?活性及錳超氧歧化?活性......50
表十二、吳郭魚稚魚餵食不同鋅含量飼料八週後之血漿及肝臟TBARS值.....................51
表十三、吳郭魚稚魚餵食不同鋅含量飼料八週後之魚體、血漿、骨骼、鱗片及肝臟中鋅濃度.................52
表十四、吳郭魚稚魚餵食不同鋅含量飼料八週後之全魚體鋅保留量........................53
圖目錄
圖一、鋅手指蛋白在基因表現中的角色............2
圖二、魚類細胞內鋅攝取途徑之假設圖............13
圖三、飼料中實際鋅含量對吳郭魚稚魚增重百分率之影響....54
圖四、飼料中實際鋅含量對吳郭魚稚魚全魚體鋅保留量之影響..55
圖五、飼料中實際鋅含量對吳郭魚稚魚溶菌酵素活性之影響...56
參考文獻
Abdallah, S., Samman, S., 1993. The effect of increasing dietary zinc on the activity of superoxide-dismutase and zinc concentration in erythrocytes of healthy female subjects. Eur. J. Clin. Nutr. 47, 327-332.
Alissa, E.M., Bahijri, S.M., Lamb, D.J., Ferns, G.A., 2004. The effects of coadministration of dietary copper and zinc supplements on atherosclerosis, antioxidant enzymes and indices of lipid peroxidation in the cholesterol-fed rabbit. Int. J. Exp. Pathol. 85, 265-275.
Altaf, W., Perveen, S., Rehman, K.U., Teichberg, S., Vancurova, I., Harper, R.G., Wapnir, R.A., 2002. Zinc supplementation in oral rehydration solutions: experimental assessment and mechanisms of action. J. Am. Coll. Nutr. 21, 26-32.
Anderson, D.P., Siwicki, A.K., 1993. Basic hematology and serology for fish health programs. In: Shariff, M., Arthur, J.R., Subasinghe, R.P. (Eds.), Diseases in Asian Aquaculture II. Fish Health Section, Asian Fisheries Society, Manila, pp. 185-202.
Apines, M.J., Satoh, S., Kiron, V., Watanabe, T., Nasu, N., Fujita, S., 2001. Bioavailability of amino acids chelated and glass embedded zinc to rainbow trout, Oncorhynchus mykiss, fingerlings. Aquacult. Nutr. 7, 221-228.
Ashmead, H.D., 1992. Factors which affect the intestinal absorption of minerals. In: Ashmead, H.D. (Ed.), The roles of amino acid chelates in animal nutrition., Noyes Publications, Park Ridge, NJ, pp. 221-246.
Association of Official Analytical Chemists (A.O.A.C), 1995. Official Methods of Analysis, 16th ed. AOAC, Arlington, VA.
Berg, J.M., Shi, Y., 1996. The galvanization of biology: a growing appreciation for the roles of zinc. Science 271, 1081-1085.
Beutler, B., Cerami, A., 1989. The biology of cachectin/TNF-α primary mediator of the host response. Annu. Rev. Immunol. 7, 625-655.
Blazer, V.S., 1991. Piscine macrophage function and nutritional influences: a review. J. Aquat. Anim. Health 3, 77-86.
Bury, N.R., Walker, P.A., Glover, C.N., 2003. Nutritive metal uptake in teleost fish. J. Exp. Biol. 206, 11-23.
Case, C.L., Carlson, M.S., 2002. Effect of feeding organic and inorganic sources of additional zinc on growth performance and zinc balance in nursery pigs. J. Anim. Sci. 80, 1917-1924.
Castillo-Duran, C., Venegas, G., Villalobos, J.C., Gatica, L., Rodriguez, A., 1998. Trace mineral balance in acute diarrhea of infants. Association to etiological agents and lactose content of formula. Nutr. Res. 18, 799-808.
Chen, T.P., 1976. Tilapia culture. In: Chen, T.P. (Ed.), Aquaculture Practices in Taiwan. Fishing News Book Ltd, pp. 55-61.
Chien, X.X., Zafra-Stone, S., Bagchi, M., Bagchi, D., 2006. Bioavailability, antioxidant and immune-enhancing properties of zinc methionine. Biofactors 27, 231-244.
Clearwater, S.J., Farag, A.M., Meyer, J.S., 2002. Bioavailability and toxicity of dietborne copper and zinc to fish. Comp. Biochem. Physiol. 132C, 269-313.
Coleman, J.W., 2001. Nitric oxide in immunity and inflammation. Int. Immunopharmacol. 1, 1397-1406.
Cousins, R.J., 1998. A role of zinc in the regulation of gene expression. Proc. Nutr. Soc. 57, 307-311.
Cowey, C.B., 1976. Use of synthetic diets and biochemical criteria in the assessment of nutrient requirement of fish. J. Fish. Res. Board Can. 33, 1040-1045.
Cruz, W.S., Moxley, M.A., Corbett, J.A., Longmore, W.L., 1997. Inhibition of nitric oxide synthase attenuates NNMU-induced alveolar injury in vivo. Am. J. Physiol. 17, 1167-1173.
Cruz, T.A., Thorpe, J.A., Pullin, R.S.V., 1982. Enzyme electrophoresis in Tilapia zillii: a pattern for determining biochemical genetic markers for use in tilapia stock identification. Aquaculture 29, 311-329.
Cui, L., Blanchard, R.K., Cousins, R.J., 2003. The permissive effect of zinc deficiency on uroguanylin and inducible nitric oxide synthase gene upregulation in rat intestine induced by interleukin-1α is rapidly reversed by zinc repletion. J. Nutr. 133, 51-56.
Cui, L., Okada, A., 2000. Nitric oxide and manifestations of lesions of skin and gastrointestinal tract in zinc deficiency. Curr. Opin. Clin. Nutr. Metab. Care. 3, 247-52.
Cui, L., Takagi, Y., Wasa, M., Iiboshi, Y., Khan, J., Nezu, R., Okada A., 1997. Induction of nitric oxide synthase in rat intestine by interleukin-1α may explain diarrhea associated with zinc deficiency. J. Nutr. 127, 1729-1736.
Disilvestro, R.A., Blostein-Fujii, A., 1997. Moderate zinc deficiency in rats enhances lipoprotein oxidation in vitro. Free Radic. Biol. Med. 22, 739-742.
do Carmo e Sa, M.V., Pezzato, L.E., Barros, M.M., Magalhaes Padilha, 2005. Relative bioavailability of zinc in supplemental inorganic and organic sources for Nile tilapia Oreochromis niloticus fingerlings. Aquacult. Nutr. 11, 273-281.
Eid, A.E., Ghonim, S.I., 1994. Dietary zinc requirement of fingerling Oreochromis niloticus. Aquaculture 119, 259-264.
Fang, F.C., 1997. Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide related antimicrobial activity. J. Clin. Invest. 99, 2818-2825.
FAO Yearbooks of Fisheries Satistics, 2007. Food Agriculture Organization of the United Nations, Rome.
Fattman, C.L., Schaefer, L.M., Oury, T.D., 2003. Extracellular superoxide dismutase in biology and medicine. Free Radic. Biol. Med. 35, 236-256.
Flohe, L., Otting, F., 1984. Superoxide dismutase assays. Methods Enzymol. 105, 93-104.
Fraker, P.J., King, L.E., Laakko, T., Vollmer, T.L., 2000. The dynamic link between the integrity of the immune system and zinc status. J. Nutr. 130, 1399-1406.
Francis, G., Makkar, H.P.S., Becker., K., 2001. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199, 197-227.
Galdes, A., Vallee, B.L., 1983. Categories of zinc metalloenzymes. In : Sigel, H. (Ed.), Metal ions in biological systems. 15, New York. pp. 1-47.
Gatlin III, D.M., O’connell, J.P., Scarpa, J., 1991. Dietary zinc requirement of the red drum, Sciaenops ocellatus. Aquaculture 92, 259-265.
Gatlin III, D.M., Wilson, R.P., 1983. Dietary zinc requirement of fingerling catfish. J. Nutr. 113, 630-635.
Gatto, L.M., Samman, S., 1995. The effect of zinc supplementation on plasma-lipids and low-density lipoprotein oxidation in males. Free Radic. Biol. Med. 19, 517-521.
Glover, C.N., Hogstrand, C., 2002. In vivo characterisation of intestinal zinc uptake in freshwater rainbow trout. J. Exp. Biol. 205, 141-150.
Gomez, N.N., Davicino, R.C., Biaggio, V.S., Bianco, G.A., Alvarez, S.M., Fischer, P., Masnatta, L., Rabinovich, G.A., Gimenez, M.S., 2006. Overexpression of inducible nitric oxide synthase and cyclooxygenase-2 in rat zinc-deficient lung: Involvement of a NF-κB dependent pathway. Nitric Oxide 14, 30-38.
Gomez, N.N., Fernandez, M.R., Zirulnik, F., Ojeda, M.S., Gimenez, M.S., 2003. Chronic zinc deficiency induces antioxidant adaptive response in rat lung. Exp. Lung Res. 29, 485-502.
Green, L.C., Wagner, D.A., Glogowski, J., Skipper, P.L., Wishnok, J.S., Tannenbaum, S.R., 1982. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal. Biochem. 126, 131-138.
Groff, J.L., Gropper, S.S., 1999. Microminerals. In: Groff, J.L., Gropper, S.S. (Eds.), Advanced nutrition and human metabolism, 3rd edn., Wadsworth, USA, pp. 419-430.
Hahn, J.D., Baker, D.H., 1993. Growth and plasma zinc responses of young pigs fed pharmacologic levels of zinc. J. Anim. Sci. 71, 3020-3024.
Hardy, R.W., Shearer, K.D.,1985. Effect of dietary calcium phosphate and zinc supplementation on whole body zinc concentrations of rainbow trout (Salmo gairdneri). Can. J. Fish. Aquat. Sci. 42, 181-184.
Harris, E.D., 1992. Copper as a cofactor and regulator of copper, zinc superoxide dismutase. J. Nutr. 122, 636-640.
Henry, P.R., Ammerman, C.B., Littell, R.C., 1992. Relative bioavailability of manganese in a manganese-methionine complex and inorganic sources for ruminants. J. Dairy Sci. 75, 3473-3478.
Heuchel, R., Radtke, F., Georgiev, O., Stark, G., Aguet, M., Schaffner, W., 1994. The transcription factor MTF-1 is essential for basal and heavy metal-induced metallothionein gene expression. EMBO J. 15, 2870-2875.
Hosea, H.J., Rector, E.S., Taylor, C.G., 2003. Zinc-deficient rats have fewer recent thymic emigrant (CD90+) T lymphocytes in spleen and blood. J. Nutr. 133, 4239-4242.
Hu, L.C., Chen, M.S., Chen, H.Y., 2001. Dietary zinc for juvenile grouper Epinephelus malabaricus: requirements and immune responses of. 6th Asian Fisheries Forum, November 25-30, Kaohsiung, Taiwan. p.47.
Ibs, K.H., Rink, L., 2003. Zinc-altered immune function. J. Nutr. 133, 1452-1456.
Katouli, M., Melin, L., Jensen-Waern, M., Wallgren, P. and Mollby, R., 1999. The effect of zinc oxide supplementation on the stability of the intestinal flora with special reference to composition of coliforms in weaned pigs. J. Appl. Bacteriol. 87, 564-573.
Ketola, H.G., 1979. Influence of dietary zinc on cataracts in rainbow trout (Salmo gairdneri). J. Nutr. 109, 965-969.
Kincaid, R.L., Chew, B.P, Cronrath, J.D., 1997. Zinc oxide and amino acids as sources of dietary zinc for calves: effects on uptake and immunity. J. Dairy Sci. 80, 1381-1388.
King, L.E., Osati-Ashtiani, F., Fraker, P.J., 2002. Apoptosis plays a distinct role in the loss of precursor lymphocytes during zinc deficiency in mice. J. Nutr. 132, 974-979.
Knox, D., Cowey, C.B., Adron, J.W., 1982. Effects of dietary copper and copper: zinc ratio on rainbow trout Salmo gairdneri. Aquaculture 27, 111-119.
Kucukbay, Z., Yazlak, H., Sahin, N., Tuzcu, M., Cakmak, M.N., Gurdogan, F., Juturu, V., Sahin, K., 2006. Zinc picolinate supplementation decreases oxidative stress in rainbow trout (Oncorhynchus mykiss). Aquaculture 257, 465-469.
Labbe, M.R., Fischer, P.W.F., 1984. The effect of high dietary zinc and copper deficiency on the activity of copper requiring metalloenzymes in the growing rat. J. Nutr. 114, 813-822.
Laskin, D.L., Pendino, K.J., 1995. Macrophages and inflammatory mediators in tissue injury. Annu. Rev. Pharmacol. Toxicol. 35, 655-677.
Lee, M.H., Shiau, S.Y., 2002. Dietary copper requirement of juvenile grass shrimp, Penaeus monodon, and effects on non-specific immune responses. Fish Shellfish Immunol. 13, 259-270.
Lee, M.H., Shiau, S.Y., 2004. Vitamin E requirements of juvenile grass shrimp, Penaeus monodon, and effects on immune responses. Fish Shellfish Immunol. 16, 475-485.
Li, M.H., Robinson, E.H., 1996. Comparison of chelated zinc and zinc sulfate as zinc sources for growth and bone mineralization of channel catfish Ictalurus punctatus fed practical diet. Aquaculture 146, 237-243.
Liao, H.J., Chen, Y.H., Jeng, S.S., 2006. Association of Zn with connective tissue in the digestive tract of common carp. Fisheries Science, 72, 893-902.
Lin, Y.H., Jiang, L.C., Shiau, S.Y., 2008. Dietary zinc requirements of juvenile hybrid tilapia, Oreochromis niloticus × O. aureus. J. Fish. Soc. Taiwan 35, 117-125.
Lin, Y.H., Shiau, S.Y., 2005. Dietary selenium requirements of juvenile grouper, Epinephelus malabaricus. Aquaculture 250, 356-363.
Lin, Y.H., Shie, Y.Y., Shiau, S.Y., 2008. Dietary copper requirements of juvenile grouper, Epinephelus malabaricus. Aquaculture 274, 161-165.
Livingstone, D.R., Lips, F.P., Martinez, G., Pipe, R.K., 1992. Antioxidant enzymes in the digestive gland of the common mussel Mytilus edulis. Mar. Biol. 112, 265-276.
Lorentzen, M., Maage, A., 1999. Trace element status of juvenile Atlantic salmon Salmo salar L. fed a fish-meal based diet with or without supplementation of zinc, iron, manganese and copper from first feeding. Aquacult. Nutr. 5, 163-171.
Lowe, J.A., Wiseman, J., 1998. A comparison of the bioavailability of three dietary zinc sources using four different physiologic parameters in dogs. J. Nutr. 128, 2809-2811.
Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J., 1951. Protein measurement with the folin phenol reagent. J. Biol. Chem. 193, 265-275.
Maage, A., Julshamn, K., 1993. Assessment of zinc status in juvenile Atlantic salmon (Salmo salar) by measurement of whole body and tissue levels of zinc. Aquaculture 117, 179-191.
Maage, A., Julshamn, K., Berge, G.E., 2001. Zinc gluconate and zinc sulphate as dietary zinc sources for Atlantic salmon. Aquacult. Nutr. 7, 183-187.
Mahan, D.C., Peter, J.C., 2004. Long-term effects of dietary organic and inorganic selenium sources and levels on reproducing sows and their progeny. J. Anim. Sci. 82, 1343-1358.
Marletta, M.A., 1994. Nitric oxides synthase: aspects concerning structure and catalysis. Cell 78, 927-930.
McAndrew, B.J., Majumdar, N.C., 1983. Tilapia stock identification using electrophoretic markers. Aquaculture 30, 249-261.
McClain, W.R., Gatlin III, D.M., 1988. Dietary zinc requirement of Oreochromis aureus and effects of dietary calcium and phytate on zinc bioavailability. J. World Aquacult. Soc. 19, 103-108.
McMahon, R.J., Cousins, R.J., 1998. Mammalian zinc transporters. J. Nutr. 128, 667-670.
Meffert, M.K., Premack, B.A., Schulman, H., 1994. Nitric oxide stimulates Ca2+-independent synaptic vesicle release. Neuron 12, 1235-1244.
Moncada, S., Palmer, R.M., Higgs, E.A., 1989. Biosynthesis of nitric oxide from L-arginine: a pathway for the regulation of cell function and communication. Biochem. Pharmacol. 38, 1709-1715.
Moncada, S., Palmer, R.M., Higgs, E.A., 1991. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43, 109-142.
Moynahan, E.J., 1974. Acrodermatitis enteropathica : A lethal inherited human zinc-deficiency disorder. Lancet 2, 399-400.
Muniz-Naveiro, O., Dominguez-Gonzalez, R., Bermejo-Barrera, A., Bermejo-Barrera, P., Cocho, J.A., Fraga, J.M., 2006. Study of the bioavailability of selenium in cow’s milk after a supplementation of cow feed with different forms of selenium. Anal. Bioanal. Chem. 385, 189-196.
Nathan, C., 1992. Nitric oxide as a secretory product of mammalian cell. FASEB J. 6, 3051-3064.
Nathan, C., 1997. Inducible nitric oxide syntjase: what difference dose it make? J. Clin. Invest. 100, 2417-2423.
National Research Council (NRC), 1993. Nutrient Requirements of Fish. National Academy Press, Washington, D.C.
Obach, A., Quentel, C., Laurencin, F.B., 1993. Effects of alpha-tocopherol and dietary oxidized fish oil on the immune response of sea bass Dicentrarchus labrax. Dis. Aquat. Org. 15, 175-185.
Ogino, C., Yang, G.Y., 1978. Requirement of rainbow trout for dietary zinc. Bull. Jpn. Soc. Sci. Fish. 44, 1015-1018.
Ogino, C., Yang, G.Y., 1979. Requirement of carp for dietary zinc. Bull. Jpn. Soc. Sci. Fish. 45, 967-969.
Paripatananont, T., Lovell, R.T., 1995a. Chelated zinc reduces the dietary zinc requirement of channel catfish, Ictalurus punctatus. Aquaculture 133, 73-82.
Paripatananont, T., Lovell, R.T., 1995b. Responses of channel catfish fed organic and inorganic source of zinc to Edwardsiella ictaluri challenge. J. Aquat. Anim. Health 7, 147-154.
Paripatananont, T., Lovell, R.T., 1997. Comparative net absorption of chelated and inorganic trace minerals in channel catfish Ictalurus punctatus Diets. J. World Aquacult. Soc. 28, 62-67.
Park, C.W., Shimizu, C., 1989. Suitable level of zinc supplementation to the formulated. Bull. Jpn. Soc. Sci. Fish. 55, 2137-2141.
Prasad, A.S., Halsted, J.A., Nadimi, M., 1961. Syndrome of iron deficiency anemia, hepatosplenomegaly, hypogonadism, dwarfism and geophagia. Am. J. Med. 31, 532-546.
Puangkaew, J., Kiron, V., Somamoto, T., Okamoto, N., Satoh, S., Takeuchi, T., Watanabe, T., 2004. Nonspecific immune response of rainbow trout (Oncorhynchus mykiss Walbaum) in relation to different status of vitamin E and highly unsaturated fatty acids. Fish Shellfish Immunol. 16, 25-39.
Roberts, R.J., 1989. The immunology of teleosts. In: Roberts, R.J. (Ed.), Fish Pathology. USA, pp. 92-104.
Rossmini, R.M., Perlo, F., Perez-alvarez, J.A., Pagan-morenno, M.J., Gaga-gago, A., Lopez-santove?a, F., Aranda-catala, V., 1996. TBA test by an extractive method applied to pate. Meat Sci. 42, 103-110.
Sahin, K., Smith, M.O., Onderci, M., Sahin, N., Gursu, M.F., Kucuk, O., 2005. Supplementation of zinc from organic or inorganic source improves performance and antioxidant status of heat-distressed quail. Poult. Sci. 84, 882-887.
Satoh, S., Apines, M.J., Tsukioka, T., Kiron, V., Watanabe, T., Fujita, S., 2001. Bioavailability of amino acids chelated and glass embedded manganese to rainbow trout, Oncorhynchus mykiss, fingerlings. Aquacult. Res. 32, 18-25.
Schlegel, P., Windisch, W., 2006. Bioavailability of zinc glycinate in comparison with zinc sulphate in the presence of dietary phytate in an animal model with 65Zn labelled rats. J. Anim. Physiol. Anim. Nutr. 90, 216-222.
Schell, T.C., Kornegay, E.T., 1996. Zinc concentration in tissues and performance of weanling pigs fed pharmacological levels of zinc from ZnO, Zn-methionine, Zn-lysine, or ZnSO4. J. Anim. Sci. 74, 1584-1593.
Secombes, C.J., Fletcher, T.C., 1992. The role of phagocytes in the protective mechanisms of fish. Ann. Rev. Fish Dis. 2, 53-71.
Shankar, A.H., Prasad, A.S., 1998. Zinc and immune function: the biological basis of altered resistance to infection. Am. J. Clin. Nutr. 8, 447-463.
Shears, M.A., Fletcher, G.L., 1983. Regulation of Zn2+ uptake from the gastrointestinal tract of a marine teleost, the winter flounder (Pseudopleuronectes americanus). Can. J. Fish. Aquat. Sci. 40, 197 -205.
Shears, M.A., Fletcher, G.L., 1984. The relationship between metallothionein and intestinal zinc absorption in the winter flounder. Can. J. Zool. 62, 2211-2220.
Shi, Y., Berg, J.M., 1996. DNA unwinding induced by zinc finger protein binding. Biochemistry 35, 3845-3848.
Shiau, S.Y., Hsieh, J.F., 2001. Quantifying the dietary potassium requirement of juvenile hybrid tilapia, Oreochromis niloticus �e O. aureus. Br. J. Nutr. 85, 213-218.
Shiau, S.Y., Jiang, L.C., 2006. Dietary zinc requirements of grass shrimp, Penaeus monodon, and effects on immune responses. Aquaculture 254, 476-482.
Shiau, S.Y., Lu, L.S., 2004. Dietary sodium requirement determined for juvenile hybrid tilapia (Oreochromis niloticus × O. aureus) reared in fresh water and seawater. Br. J. Nutr. 91, 585-590.
Shiau, S.Y., Ning, Y.C., 2003. Estimating of dietary copper requirements for juvenile tilapia, Oreochromis niloticus × O. aureus. Anim. Sci. 77, 287-292.
Siwicki, A.K., Anderson, D.P., Rumsey, G.L., 1994. Dietary intake of immunostimulants by rainbow trout affects non-specific immunity and protection against furunculosis. Vet. Immunol. Immunopathol. 41, 125-139.
Song, Y.L., Hsieh, Y.T., 1994. Immunostimulation of tiger shrimp (Penaeus monodon) hemocytes for generation of microbicidal substances: analysis of reactive oxygen species. Dev. Comp. Immunol. 18, 201-209.
Spry, D.J., Wood, C.M., 1989. A kinetic method for the measurement of zinc influx in vivo in the rainbow trout, and the effects of waterborne calcium on flux rates. J. Exp. Biol. 142, 425-446.
Steinbrecher, U.P., Zhang H., Lougheed M., 1990. Role of oxidatively modified LDL in atherosclerosis. Free Radic. Biol. Med. 9, 155-168.
Stolen, J.S., Fletcher, T.C., Anderson, D.P., Roberson, B.S., van Muiswinkel, W.B., 1990. Techniques in fish immunology. Fair Haven, NJ, USA, pp. 11-12.
Stoskopf, M.K., 1993. Immunology. In: Saunder, W.B. (Ed.), Fish Medicine. Philadelphia, USA. pp. 149-159.
Sun, L.T., Jeng, S.S., 1998. Comparative zinc concentrations in tissues of common carp and other aquatic organisms, Zoological Studies 37, 184-190.
Swinkels, J.W., Kornegay, E.T., Zhou,W., Lindemann, M.D., Webb, K.E.J., Verstegen, M.W., 1996. Effectiveness of a zinc amino acid chelate and zinc sulfate in restoring serum and soft tissue zinc concentrations when fed to zinc-depleted pigs. J. Anim. Sci. 74, 2420-2430.
Tainer, J.A., Getzoff, E.D., Beem, K.M., Richerdson, D., 1983. Structure and mechanism of copper, zinc superoxide dismutase. Nature 306, 284-286.
Tan, B., Mai, K., 2001. Zinc methionine and zinc sulfate as sources of dietary zinc for juvenile abalone, Haliotis discus hannai Ino. Aquaculture 192, 67-84.
Templeton, D.M., Cherian, M.G., 1991. Toxicological significance of metallothionein. Meth. Enzymol. 205, 11-24.
Tepperman, B.L., Brown, J.F., Whittle, B.J., 1993. Nitric oxide synthase induction and intestinal epithelial cell viability in rats. Am. J. Physiol. 265, 214-218.
Todd, W.W., Elvehjem, C.A., Hart, E.G., 1934. Zinc in the nutrition of the rat. Am. J. Physiol. 107, 146-156.
Uchiyama, M., Mihara, M., 1978. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem. 86, 271-278.
van Heugten, E., Spears, J.W., Kegley, E.B.,Ward, J.D., Qureshi, M.A., 2003. Effects of organic forms of zinc on growth performance, tissue zinc distribution, and immune response of weanling pigs. J. Anim. Sci. 81, 2063-2071.
Warr, G.W., 1995. The immunoglobulin genes of fish. Dev. Comp. Immunol. 19, 1-12.
Watanabe, T., Kiron,V., Satoh, S., 1997. Trace mineral in fish nutrition. Aquaculture 151, 185-207.
Wedekind, K.J., Hortin, A.E., Baker, D.H., 1992. Methodology for assessing zinc bioavailability: Efficacy estimates for zinc-methionine, zinc sulfate, and zinc oxide. J. Anim. Sci. 70, 178-187.
Wedekind, K.J., Lewis, A.J., Giesemann, M.A., Miller, P.S., 1994. Bioavailability of zinc from inorganic and organic sources for pigs fed corn-soybean meal diets. J. Anim. Sci. 72, 2681-2689.
Willis, J.N., Sunda, W.G., 1984. Relative contributions of food and water in the accumulation of zinc by two species of marine fish. Mar. Biol. 80, 273-279.
Wilson, R.P., El Naggar, G., 1992. Potassium requirement of fingerling channel catfish, Ictalurus punctatus. Aquaculture 108, 169-175.
Wright, C.L., Spears, J.W., 2004. Effect of zinc source and dietary level on zinc metabolism in holstein calves. J. Dairy Sci. 87, 1085-1091.
Yamaguchi, M., 1998. Role of zinc in bone formation and bone resorption. J. Trace Elem. Exp. Med. 11, 119-135.
Yu, Z.P., Le, G.W., Shi, Y.H., 2005. Effect of zinc sulphate and zinc methionine on growth, plasma growth hormone concentration, growth hormone receptor and insulin-like growth factor-I gene expression in mice. Clin. Exp. Pharmacol. Physiol. 32, 273-278.
Zeitoun, I.H., Ullrey, D.E., Magee, W.T., 1976. Quantifying nutrient requirements of fish. J. Fish. Res. Board Can. 33, 167-172.
行政院農委會,2007。中華民國臺灣地區漁業年報九十六年版。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔