(3.238.235.155) 您好!臺灣時間:2021/05/16 17:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:許志維
研究生(外文):Chih-Wei Hsu
論文名稱:AeromonassalmonicidaMAEF108所產AgaraseAS-IIIb基因轉殖至大腸桿菌與酵母菌及其表現
論文名稱(外文):Molecular Cloning and Expression of Aeromonas salmonicida MAEF108 Agarase AS-IIIb in Escherichia coli and Yeast
指導教授:潘崇良
指導教授(外文):Chorng-Liang Pan
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:144
中文關鍵詞:洋菜?基因轉殖大腸桿菌
外文關鍵詞:agaraseRF cloningEscherichia coli
相關次數:
  • 被引用被引用:11
  • 點閱點閱:310
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:2
  本研究之目的在於探討 Aeromonas salmonicida MAEF108 所產的 Agarase AS-IIIb (AS-IIIb) 經純化、N 端胺基酸定序,比對 MAEF108 genomic DNA 序列以確認 AS-IIIb 的完整 DNA 序列,依序列設計專一性引子,以 RF cloning 進行基因轉殖至大腸桿菌及酵母菌的實驗,轉殖表現後萃取純化 recombinant Agarase AS-IIIb (rAS-IIIb),分析其生化特性及其 agarose 水解液產物組成。AS-IIIb 的 N 端胺基酸定序結果比對 MAEF108 genomic DNA 序列,得知AS-IIIb 基因全長為 834 bp,可轉譯出 269 個胺基酸,分子質量約 29.6 kDa 的成熟型 AS-IIIb。使用 pET 表現系統以及無限制?剪切位基因選殖法 (RF cloning),成功建立起二株 rAS-IIIb 轉殖株 agaI 以及 agaII。二株轉殖株同時具有胞內及胞外 agarase 酵素活性的表現,且不需添加誘導劑 isopropyl β-D-1-thiogalactopyranoside (IPTG) 即可表現活性,但添加 IPTG 可增加其表現量。胞外 agarase 產量低,需經過 80-100 倍濃縮後才可測得酵素活性,後續實驗皆以轉殖株 agaII 進行。rAS-IIIb 的最適誘導培養條件是在 30oC 下培養 3 小時,酵素活性表現 1.57 U/mg。AS-IIIb 與 rAS-IIIb 分別在 40oC 及 50oC 反應條件下具有最佳的活性表現,但二者的最適反應 pH 值均為 pH 6。AS-IIIb 及 rAS-IIIb 在反應基質中添加 5 mM Mn2+ 後皆可增加其活性表現,但添加 5 mM Fe3+ 可同時完全抑制兩者之活性表現。在反應基質中添加 5 mM Ca2+ 進行反應可增加 rAS-IIIb 之活性表現,但卻會抑制 AS-IIIb 27.6% 的活性表現。0.2% agarose 分別以 AS-IIIb 及 rAS-IIIb 進行水解,所得水解產物以 Thin-layer chromatography (TLC) 及 High-performance liquid chromatography (HPLC) 進行分析,二者皆可得到二種主要的水解產物,分子大小介於neoagarohexaose (NA6) 及 neoagarobiose (NA2) 之間,HPLC 分析結果顯示兩個水解產物分別與 neoagarotetraose (NA4) 及 NA6 具有近似的 retention time。將 Agarase AS-IIIb 基因以 RF cloning 模式轉殖到酵母菌表現系統的 pPICZ�� B 載體,並成功獲得一株 DNA 序列正確無誤之 E. coli 轉殖株 Y-aga。以電穿孔的方法將 Y-aga 質體轉形至酵母菌 X-33 Pichia strain 的實驗結果已初步觀察到電轉形株菌落形成,經過計算後其電轉形率為每 �慊 DNA 可得到 10.9 株電轉形株。
The study was aimed to purify Agarase AS-IIIb (AS-IIIb) produced from Aeromonas salmonicida MAEF108 and identified the N-terminal sequence of AS-IIIb. According to the full genomic DNA sequencing results of Aeromonas salmonicida MAEF108 and N-terminal amino acid sequencing result of AS-IIIb, the full DNA sequence of AS-IIIb gene was confirmed. Specific primers were designed to clone the AS-IIIb gene into E. coli and yeast by restriction-free (RF) cloning. The recombinant Agarase AS-IIIb (rAS-IIIb) was extracted from expression host to analyze the biochemical properties and the agarose hydrolytic products composition. The Agarase AS-IIIb gene consists of 834 bp, and encodes a protein of 269 amino acids in mature type with molecular weight about 27.6 kDa. By using pET expression system and RF cloning method, two rAS-IIIb clones, agaI and agaII were constructed; both have extra- and intracellular agarase activity. Further study was focused on the agaII clone. The agarase can be produced without adding IPTG as inducer, but its addition will improve the expression on agarase activity. The extracellular agarase activity is too low to be detected in culture broth before being concentrated into 80-100 folds. The optimal agarase expression induced condition is at 30oC for 3 hr, the enzyme activity is 1.57 U/mg. AS-IIIb and rAS-IIIb are optimally active at 40oC and 50oC, respectively; both are optimally active at pH 6. The activities of two agarases were both increased by 5 mM Mn2+, while decreased by 5m M Fe3+. Ca2+ ion of 5mM concentration increases the activity of rAS-IIIb, but decreased 27.6% activity of AS-IIIb. Hydrolytic products of agarose by either AS-IIIb or rAS-IIIb were analyzed by thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). Both of the two agarases have two main hydrolytic products, which have molecular size between neoagarohexaose (NA6) and neoagarobiose (NA2); and have the similar retention time of neoagarotetraose (NA4) and NA6 separately in HPLC analysis. The Agarase AS-IIIb gene was cloned into vector pPICZ�� B (for yeast expression system) by RF cloning, and obtained a successful clone Y-aga within E. coli with correct DNA sequence. The Y-aga clone vector was transformed into X-33 Pichia strain by electroporation, the electrotransformation frequency calculated in the experiment is 10.9 transformants obtained per �慊 DNA..
目錄


目錄 i
表目錄 vi
圖目錄 vii
附錄目錄 x
中文摘要 xi
英文摘要 (Abstract) xiii
壹、前言 01
貳、文獻整理 03
一、洋菜的構造與特性 03
二、洋菜?生產菌株及其分離來源 03
三、洋菜?對洋菜水解的作用機制 04
四、洋菜?之生化特性 06
4-1 溫度和 pH 值 06
4-2 分子質量 06
4-3 金屬離子 07
五、洋菜?的應用 08
5-1 細胞的分離 08
5-2 DNA的分離 09
5-3 藻類原生質體的製作 09
5-4 海藻多醣的生產與黏度降低 10
5-5 藻類組成的分析 10
5-6 融合瘤細胞的分離 11
六、洋菜?基因的選殖 11
6-1 大腸桿菌做為宿主之轉殖系統 11
6-2 無限制?剪切位基因選殖 (Restriction-free cloning) 12
七、酵母菌簡介 13
7-1 營養需求 13
7-2 菌種 13
7-3 發酵過程之生化反應 14
7-4 基因轉殖之應用 15
7-5 胞內重組蛋白之表現 17
7-6 胞外分泌重組蛋白之表現 17
八、海藻寡醣組成成分鑑定 18
8-1 薄層層析法 (Thin-layer chromatography, TLC) 18
8-2 高效能液相層析法 (High-performance liquid chromatography, HPLC) 19
8-3 磁核共振光譜法 (Nuclear magnetic resonance, NMR) 19
8-4 液相層析串連質譜分析法 (Liquid Chromatography/
Mass Spectrometry/Mass Spectrometry, LC-MS-MS) 20
參、實驗設計 22
肆、實驗材料與方法 23
一、實驗材料 23
1-1 實驗菌株 23
1-2 試驗藥品 23
     1-2-1 藥品 23
     1-2-2 載體 26
     1-2-3 引子 26
     1-2-4 聚合?鏈鎖反應試劑 26
     1-2-5 酵素及蛋白?抑制劑 27
     1-2-6 DNA 及蛋白質萃取純化套裝試劑 27
     1-2-7 電泳標準品 27
     1-2-8 培養基組成 28
     1-2-9 洋菜?反應基質 30
     1-2-10 DNS 溶液 30
     1-2-11 電泳膠片配製 30
     1-2-12 電泳溶液 31
     1-2-13 無菌過濾 32
     1-2-14 離心式超過濾濃縮 32
     1-2-15 薄層層析矽膠片 (TLC Silica gel) 32
    1-3 儀器設備 32
二、實驗方法 33
    2-1 菌種保存與活化 33
     2-1-1 菌株保存 34
     2-1-2 菌株活化 34
    2-2 Agarase AS-IIIb的純化分離 35
     2-2-1 洋菜?之生產 35
     2-2-2 洋菜?之濃縮純化 35
     2-2-3 洋菜?的活性測定 36
     2-2-4 洋菜?活性單位定義 36
     2-2-5 蛋白質的定量 36
     2-2-6 分子量的鑑定 36
     2-2-7 洋菜? AS-IIIb N 端胺基酸定序 37
    2-3 Agarase AS-IIIb 基因以大腸桿菌系統進行選殖 37
     2-3-1 MAEF108 染色體 DNA 的萃取純化 37
     2-3-2 Agarase AS-IIIb 完整基因序列比對 38
     2-3-3 引子設計 38
     2-3-4 無限制?剪切位基因選殖 (RF cloning) 及 DpnI 限制?剪切 38
     2-3-5 勝任細胞 (competent cell) 之製作 41
     2-3-6 熱休克 (heat shock) 轉形 41
     2-3-7 利用 PCR 確認插入之基因片段大小 42
     2-3-8 DNA 序列比對 43
    2-4 Agarase 基因以酵母菌系統進行選殖 43
     2-4-1 質體接受細胞製作 43
     2-4-2 電穿孔轉形 44
    2-5 Recombinant Agarase AS-IIIb的誘導表現 44
     2-5-1 Recombinant Agarase AS-IIIb的萃取純化 44
     2-5-2 最適誘導溫度及時間 45
     2-5-3 IPTG 最適誘導濃度 46
    2-6 Agarase AS-IIIb 之生化性質測試 46
     2-6-1 最適作用溫度 46
     2-6-2 熱安定性 46
     2-6-3 最適作用 pH 值 47
     2-6-4 pH 值的安定性 47
     2-6-5 金屬離子的影響 47
    2-7 Agarase AS-IIIb之水解產物分析 47
     2-7-1 TLC 鑑定 47
     2-7-2 HPLC 鑑定 48
伍、結果與討論 49
  一、Agarase AS-IIIb 的純化分離 49
  二、Agarase AS-IIIb 基因大腸桿菌系統轉殖與表現 49
  三、Recombinant Agarase AS-IIIb 基因誘導與表現 51
  四、洋菜?之生化性質 54
    4-1 最適作用溫度及溫度安定性 54
    4-2 最適作用 pH 值及 pH 值安定性 55
    4-3 金屬離子之影響 57
    4-4 水解產物分析 58
  五、Agarase AS-IIIb 基因酵母菌系統轉殖與表現 58
陸、結論 60
柒、參考文獻 62
捌、附錄 112

表目錄


表一、 A. salmonicida MAEF108 所產洋菜?純化表 73
表二、 RF cloning 所使用之引子及其序列 74
表三、不同培養溫度對 rAS-IIIb 其表現於胞內、胞外酵素活性之
影響 75
表四、不同培養溫度及添加 IPTG 對 rAS-IIIb 其表現於胞內酵素
活性之影響 76
表五、不同培養溫度對 rAS-IIIb 其表現於胞內酵素活性之影響 77
表六、不同 IPTG 添加濃度對 rAS-IIIb 其表現於胞內酵素活性之
影響 78
表七、金屬離子對 Agarase AS-IIIb 酵素活性之影響 79
表八、金屬離子對 recombinant Agarase AS-IIIb 酵素活性之
影響 80
表九、洋菜? AS-IIIb 及 rAS-IIIb 之生化特性表 81


圖目錄


圖一、 A. salmonicida MAEF108 所產洋菜?純化過程之
12.5% SDS-PAGE 電泳分析 82
圖二、 A. salmonicida MAEF108 所產洋菜? AS-IIIb 之
12.5% SDS-PAGE 電泳分析 83
圖三、 MAEF108 agarase AS-IIIb DNA 序列所演繹之胺基酸
序列 84
圖四、 Agarase AS-IIIb 的完整 DNA 序列 85
圖五、 RF cloning 實驗過程中各階段之 PCR產物其 1%
洋菜膠電泳分析 86
圖六、 MAEF108 agarase AS-IIIb 轉殖株 (agaI clone) 基因定
序序列 87
圖七、 Agarase AS-IIIb 轉殖株 (agaI clone) 與 MAEF108
agarase AS-IIIb 基因序列比對 88
圖八、 MAEF108 agarase AS-IIIb、Pseudoalteromonas
atlantica ��-agarase 與 Aeromonas sp. ��-agarase
胺基酸序列比對 89
圖九、 轉殖株 agaI 及 agaII 之 Agarase AS-IIIb DNA 之
序列比對 90
圖十、 成熟型 Agarase AS-IIIb 基因之 E. coli BL21 (DE3)
轉殖株 91
圖十一、 成熟型 agarase AS-IIIb 基因之 E. coli BL21 (DE3)
轉殖株 (agaII clone) agarase 活性表現確認 92
圖十二、 成熟型 agarase AS-IIIb 基因之 E. coli BL21 (DE3)
轉殖株不具 agarase 活性表現之菌落轉劃培養確認 93
圖十三、 AgaII clone 及 pET21b 上 T7 promoter 及 lac
operator 區域 DNA 序列比對 94
圖十四、 AgaI clone 其胞外 agarase 酵素活性表現確認及
IPTG 對生長之影響 95
圖十五、 MAEF 108 agarase AS-IIIb 及以鎳親和管柱純化之重
組 agarase AS-IIIb其 12.5% SDS-PAGE 電泳分析圖 96
圖十六、 AgaII clone 及帶有 vector pET21b E. coli BL21 (DE3)
之胞內萃取蛋白的 12.5% SDS-PAGE 電泳分析圖 97
圖十七、 Agarase AS-IIIb 的最適作用溫度 98
圖十八、 Recombinant Agarase AS-IIIb 的最適作用溫度 99
圖十九、 溫度對 Agarase AS-IIIb 及 recombinant Agarase
AS-IIIb 酵素活性安定性的影響 100
圖二十、 Agarase AS-IIIb 的最適作用 pH 值 101
圖二十一、Recombinant agarase AS-IIIb 的最適作用 pH 值 102
圖二十二、pH 值對 Agarase AS-IIIb 及 recombinant Agarase
AS-IIIb 酵素安定性之影響 103
圖二十三、Agarase AS-IIIb 水解 agarose 0-24 小時之薄層色層
分析圖譜 104
圖二十四、Agarase rAS-IIIb 水解 agarose 0-24 小時之薄層色層
分析圖譜 105
圖二十五、Agarase AS-IIIb 及 rAS-IIIb水解 agarose 之薄層
色層分析圖譜 106
圖二十六、Agarase AS-IIIb 與 0.2% agarose 反應 0-24 hr 之
高效能液相層析圖 107
圖二十七、Agarase rAS-IIIb 與 0.2% agarose 反應 0-24 hr 之
高效能液相層析圖 108
圖二十八、RF cloning 實驗過程中各階段之 PCR產物之 1%
洋菜膠電泳分析 109
圖二十九、轉殖株 agaI 及 Y-aga 之 Agarase AS-IIIb DNA 序列
比對 110
圖三十、 以電穿孔法將 Y-aga 轉殖株載體電轉形至酵母菌
X-33 Pichia strain 111


附錄目錄


附錄一之一、 Agarose 的基本構造及洋菜?作用位置 112
附錄ㄧ之二、 Agaropectin可能組成基本單位構造 112
附錄二、 Agarases 的生產微生物、種類及分離來源 113
附錄三、 微生物所產洋菜?分解洋菜之產物 115
附錄四、 洋菜?的生化特性 117
附錄五、 RF cloning 的實驗原理流程圖 119
附錄六、 pET-21a(+) 的限制?切位及基因圖譜 120
附錄七、 pET-21a-d (+) 上基因片段插入位區域的 DNA
序列 121
附錄八、 pET 重組蛋白表現系統原理圖 122
附錄九、 Agarase AS-IIIb 基因大腸桿菌表現系統選殖反應
結果彙整表 123
附錄十、 新洋菜四糖 (RT = 26.32 min) 與新洋菜二糖
(RT = 28.16) 之高效能液相層析圖譜 124
附錄十一、 新洋菜六糖 (RT = 24.81 min) 之高效能液相層析
圖譜 125
附錄十二、 pPICZ�� B 的限制?切位及部份基因圖譜 126
附錄十三、 pPICZ�� B上基因片段插入位區域的 DNA 序列 127
附錄十四、 Agarase AS-IIIb 基因酵母菌表現系統選殖反應結
果彙整表 128
柒、參考文獻
吳紹祺。1999。海洋細菌所產 agarases 生產條件與海藻多醣經 agarase 分解所得寡醣類組成之探討。國立臺灣海洋大學食品科學系碩士學位論文,基隆,臺灣。
吳紹祺。2005。海藻多醣洋菜?水解物及其發酵產物之生理活性研究。國立臺灣海洋大學食品科學系博士學位論文,基隆,臺灣。
許文浩。2002。臺灣酒類發酵微生物之研究。食品工業。34(1): 20-26。
莊志仁。2005。食用膠之技術與應用。初版。華香園出版社,台北,台灣。pp. 48-50。
陳正賢。2002。發酵李子酒製程之研究。輔仁大學食品營養學系研究所碩士學位論文。臺北。
陳君如。2006a。海菜酒之製備及其生理活性功能探討。國立臺灣海洋大學食品科學系碩士學位論文,基隆,臺灣。
陳姿元。2006b。Aeromonas salmonicida MAEF108 菌株所產洋菜?的純化與性質之探討。國立臺灣海洋大學食品科學系碩士學位論文,基隆,臺灣。
康新楷。2007。Aeromonas salmonicida MAEF108 所產 Agarase AS-II 之純化與特性研究暨經 Agarase AS-II 水解所得藻類寡醣之生理活性探討
梁鳳鈺。1999。Pseudomonas vesicularis MA103 菌株所產洋菜?的純化與性質。國立臺灣海洋大學食品科學系碩士學位論文,基隆,臺灣。
郭熙志、劉耀光、羅達。2004。以可轉化人工染色體 (TAC) 載體為基礎的百脈根基因組文庫的構建及篩選。植物生理與分子生物學學報。30: 234-238。
黃萬滄。2001。人類 ��1-抗胰蛋白?基因在哺乳類動物細胞及酵母菌中之表現。國立中興大學畜產學系碩士學位論文,台中,臺灣。
劉英俊。1996。最新微生物應用工業。中央圖書出版社。臺北。
德永隆久、日高秀昌。1991。寒天???糖?生產?利用。???????????????。49: 28-32。
臺灣海藻資訊網。2008。何謂海藻。http://www.ntm.gov.tw/seaweeds/a/a1_01.asp (June 30, 2008, Taiwan)。
龔建榮。2004。利用逆向液相層析儀搭配電噴灑游離串聯質譜法進行大白鼠血漿中丹參酚酸 B 濃度之偵測。國立中正大學化學暨生物化學學系碩士學位論文。嘉義。
Abdelmoula-Souissi, S., L. Rekik, A. Gargouri, and R. Mokdad-Gargouri. 2007. High-level expression of human tumour suppressor P53 in the methylotrophic yeast: Pichia pastoris. Protein Expr. Purif. 54: 283-288.
Allouch, J., M. Jam, W. Helbert, T. Barbeyron, B. Kloareg, B. Henrissat, and M. Czjzek. 2003. The three-dimensional structures of two β-agarases. J. Biol. Chem. 278: 47171-47180.
Araki, T., Z. Lu, and T. Morishita. 1998a. Optimization of parameters for isolation of protoplasts from Gracilaria verrucosa (Rhodophyta). J. Mar. Biotechnol. 6: 193-197.
Araki, T., M. Hayakawa, Z. Lu, S. Karita, and T. Morishita. 1998b. Purification and characterization of agarases from a marine bacterium, Vibrio sp. PO-303. J. Mar. Biotechnol. 6: 260-265.
Belas, R., D. Barlent, and M. Silverman. 1988. Cloning and gene replacement mutagensis of a Pseudomonas atlantica agarase gene. Appl. Environ. Microbiol. 54: 30-37.
Boulton, R. B., V. L. Singleton, L. F. Bisson, and R. E. Kundee. 1996. Principles and Practices of Winemaking. Chapman and Hall, New York, USA.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Biochemistry 72: 248-254.
Burgers, P. M., and K. J. Percival. 1987. Transformation of yeast spheroplasts without cell fusion. Anal. Biochem. 163: 391–397.
Call, L. M., C. S. Moore, G. Stetten, and J. D. Gearhart. 2000. A Cre-lox recombination system for the targeted integration of circular yeast artificial chromosomes into embryonic stem cells. Hum. Mol. Genet. 9: 1745-1751.
Carlsson, J., and M. Malmqvist. 1977. Effects of bacterial agarase on agarose gel in cell culture. In Vitro 13: 417-422.
Chen, L. C.-M., J. S. Craigie, and Z. K. Xie. 1994. Protoplast production from Porphyra linearis using a simplified agarase procedure capable of commercial application. J. Appl. Phycol. 6: 35-39.
Chen, Y.-C., and Y.-M. Chiang. 1994. Development of protoplasts from Grateloupia sparsa and G. filicina (Halymeniaceae, Phodophyta). Botanica Marina 37: 361-366.
Chung, C. T., and R. H. Miller. 1993. Preparation and storage of competent Escherichia coli cells. Methods Enzymol. 218:621-627.
Clemente-Jimenez, J. M., L. Mingorance-Cazorla, S. Martinez-Rodriguez, F. J. Las Heras-Vazquez, and F. Rodriguez-Vico. 2005. Influence of sequential yeast mixtures on wine fermentation. Int. J. Food. Microbiol. 98: 301-308.
Corzo, A., J. J. Vegara, and M. C. Garcia-Jimenez. 1995. Isolation and flow cytometric characterization of protoplasts from marine macroalgae. J. Phycol. 31: 1018-1026.
Couto, L. B., E. A. Spangler, and E. M. Rubin. 1989. A method for the preparative isolation and concentration of intact yeast artificial chromosomes. Nucl. Acids Res. 17: 8010.
Dong, J., S. Hashikawa, T. Konishi, Y. Tamaru, and T. Araki. 2006. Cloning of the novel gene encoding ��-agarase C from a marine bacterium, Vibrio sp. strain PO-303, and characterization of the gene product. Appl. Environ Microbiol. 72: 6399-6401.
Dong, J., Y. Tamaru, and T. Araki. 2007. Molecular cloning, expression, and characterization of a ��-agarase gene, agaD, from marine bacterium, Vibrio sp. strain PO-303. Biosci. Biotechnol. Biochem. 71: 38-46.
Enzyme Nomenclature Database. 2008. Agarase. http://ca.expasy.org/cgi-bin/enzyme-search-ful?agarase (June 30, 2008, USA).
Fantoni, A., R. M. Bill, L. Gustafsson, and K. Hedfalk. 2007. Improved yields of full-length functional human FGF1 can be achieved using the methylotrophic yeast Pichia pastoris. Protein Expr. Purif. 52: 31-39.
Gellissen, G., K. Melber, Z. A. Janowicz, U. M. Dahlems, U. Weydemann, M. Piontek, A. W. Strasser, and C. P. Hollengerg. 1992. Heterologous protein production in yeast. Antonie van Leeuwenhoek 62: 79-93.
Gietz, R. D., and R. A. Woods. 2002. Transformation of yeast by the LiAc/ss carrier DNA/PEG. Methods Enzymol. 350: 87–96.
Gnirke, A., C. Huxley, K. Peterson, and M. V. Olson. 1993. Microinjection of intact 200-to-500-kb fragments of YAC DNA into mammalian cells. Genomics 15: 659-667.
Goffeau, A., B.G. Barrell, H. Bussey, R. W. Davis, B. Dujon, H. Feldmann, F. Galibert, J. D. Hoheisel, C. Jacq, M. Johnston, E. J. Louis, H. W. Mewes, Y. Murakami, P. Philippsen, H. Tettelin, and S. G. Oliver. 1996. Life with 6000 genes. Science 274(5287): 546, 563-567.
Gray, F., J. S. Kenney, and J. F. Dunne. l995. Secretion capture and report web: Use of affinity derivatized agarose microdroplets for the selection of hybridoma cells. J. Immunol. Methods 182: 155-163.
Ha, J. C., G. T. Kim, S. K. Kim, T. K. Oh, J. H. Yu, and I. S. Kong. 1997. β-Agarase from Pseudomonas sp. W7: Purification of the recombinant enzyme from Escherichia coli and the effects of salt on its activity. Appl. Biochem. Biotechnol. 26: 1-6.
Hensing, M. C , R. J. Rouwenhorst, J. J. Heijnen , J. P. van Dijken, and J. T. Pronk. 1995. Physiological and technological aspects of large-scale heterologous protein production with yeasts. Antonie van Leeuwenhoek 67: 261–279.
Hodgson, D. A., and K. F. Chater. 1981. A chromosomal locus controlling extracellular agarase production by Streptomyces coelicolor A3(2), and its inactivation by chromosomal integration of plasmid SCP1. J. Gen. Microbiol. 124: 339-348.
Hosoda, A., and M. Sakai. 2006. Isolation of Asticcacaulis sp. SA7, a novel agar-degrading alphaproteobacterium. Biosci. Biotechnol. Biochem. 70: 722-725.
Hosoda, A., M. Sakai, and S. Kanazawa. 2003. Isolation and characterization of agar-degrading Paenibacillus spp. associated with the rhizosphere of Spinach. Biosci. Biotechnol. Biochem. 67: 1048-1055.
Imai, T., and M. V. Olson. 1990. Second-generation approach to the construction of yeast artificial-chromosome libraries. Genomics 8: 297-303.
Invitrogen Corporation. 2002. pPICZ�� B Manual. http://tools.invitrogen.com/content/sfs/manuals/ppiczalpha_man.pdf (July 10, 2008, USA).
Kamiunten, H. l995. Involvement of a plasmid in the expression of virulence in Pseudomonas syryngae pv. eriobotryae. Nippon Shokubutsu Byori Gakkaiho 61: 376-380.
Kang, N. Y., L. Choi, T. S. Cho, B. K. Kim, B. S. Jeon, J. Y. Cha, C. H. Kim, and Y. C. Lee. 2003. Cloning, expression and characterization of a ��-agarase gen from a marine bacterium, Pseudomonas sp. SK.38. Biotechnol. Lett. 25: 1165-1170.
Kirimura, K., N. Masuda, Y. Iwasaki, H. Nakagawa, R. Kobayashi, and S. Usami. 1999. Purification and characterization of a novel β-agarase from an alkalophilic bacterium, Alteromonas sp. E-1. J. Biosci. Bioeng. 87: 436-441.
Kobayashi, T., S. Ito, and K. Horikoshi. 2005. Novel and useful enzymes from deep-sea and deep-subsurface microorganisms. International Symposium on Extremophiles and Their Application 2005. Yokosuka, Japan.
Lee, D.-G., G.-T. Park, N. Y. Kim, E.-J. Lee, M. K. Jang, Y. G. Shin, G.-S. Park, T.-M. Kom, J.-H. Lee, S.-J. Kim, and S.-H. Lee. 2006. Cloning, expression, and characterization of a glycosid hydrolase family 50 ��-agarase from a marine Agarivorans isolate. Biotechnol. Lett. 28: 1952-1932.
Leon, O., L. Quintana, G. Peruzzp, and J. C. Slebe. 1992. Purification and properties of an extracellular agarase from Alteromonas sp. strain C-1. Appl. Environ. Microbiol. 58:4060-4063.
Li, X., X. Dong, C. Zhao, Z. Chen, and F. Chen. 2003. Isolation and some properties of cellulose-degrading Vibrio sp. LX-3 with agar-liquefying ability from soil. World J. Microbiol. Biotechnol. 19: 375-379.
Liu, Y.-G., H. Liu, L. Chen, W. Qiu, Q. Zhang, H. Wu, C. Yang, J. Su, Z. Wang, D. Tain, and M. Mei. 2002. Development of new transformation-competent artificial chromosome vectors and rice genomic libraries for efficient gene cloning. Gene 282: 247-255.
Ma, C., X. Lu, C. Shi, J. Li, Y. Gu, Y. Ma, Y. Chu, F. Han, Q. Gong, and W. Yu. 2007. Molecular cloning and characterization of a novel ��-agarase, AgaB, from marine Pseudoalteromonas sp. CY24. J. Biol. Chem. 282: 3747-3754.
Maule, J. C., D. J. Porteous, and A. J. Brookes. 1994. An improved method for recovering intact pulsed field gel purified DNA, of at least 1.6 megabases. Nucleic Acids Res. 22: 3245-3246.
Merck KGaA. 1998. pET-21 a-d(+) Vector map. http://www.emdbiosciences.com/docs/docs/PROT/TB036.pdf (May 30, 2008, USA).
Merck KGaA. 2006. pET System Manual, 11th Ed. http://www.merckbiosciences.com/docs/docs/PROT/TB055.pdf (May 30, 2008, USA).
Mollet, J. C., M. C. Verdus, and H. Morvan. l995. Improved protoplast yield and cell wall regeneration in Gracilaria verrucosa (Huds.) Papenfuss (Gracilariles, Rhodophyta). J. Exp. Bot. 46: 239-247.
Morrice, J. M., M. W. McLean, W. F. Long, and F. B. Williamson. 1983a. Porphyran primary structure. An investigation using β-agarase I from Pseudomonas atlantica and 13C-NMR spectroscopy. Eur. J. Biochem. 133: 673-684.
Morrice, L. M., M. W. McLean, F. B. Williamson, W. F. Long. 1983b. β-agarase I and II from Pseudomonas atlantica. Purification and some properties. Eur. J. Biochem. 135: 553-558.
Morrice, L. M., M. W. McLean, W. F. Long, and F. B. Williamson. 1983c. ��-agarases I and II from Psseudomonas atlantica. Substrate specificities. Eur. J. Biochem. 137: 149-154.
Ohta, Y., and Y. Hatada. 2007. A novel enzyme, ��-carrageenase, isolated from a deep-sea bacterium. J. Biochem. 140: 475-481.
Ohta, Y., Y. Nogi, M. Miyazaki, Z. Li, Y. Hayada, S. Ito, and K. Horikoshi. 2004. Enzymatic properties and nucleotide and amino acid sequences of a thermostable β-agarase from the novel marine isolate, JAMB-A94. Biosci. Biotechnol. Biochem. 68: 1073-1081.
Osoegawa, K., P. Y. Woon, B. Zhao, E. Frengen, M. Tateno, J. J. Catanese, and P. J. de Jong. 1998. An improved approach for construction of bacterial artificial chromosome libraries. Genomics 52: 1-8.
Pan, H. Y., M. M. Whittaker, R. Bouveret, A. Berna, F. Bernier, and J. W. Whittaker. 2007. Characterization of wheat germin (oxalate oxidase) expressed by Pichia pastoris. Biochem. Biophy. Res. Commun. 356: 925-929.
Porro, D., and D. Mattanovich. 2004. Edited by Balbas. P., and A. Lorence. Methods in Molecular Biology, Vol. 267, 2nd edition, Humana Press Inc., NJ, USA. pp. 241–258.
Porro, D., M. Sauer, P. Branduardi, and D. Mattanovich. 2005. Recombinant protein production in yeasts. Mol. Biotechnol. 31: 245-59.
Potier, M.-C., W. L. Kuo, A. Dutriaux, J. Gray, and M. Goedert. 1992. Construction and characterization of a yeast artificial chromosome library containing 1.5 equivalents of human chromosome 2l. Genomics 14: 481-483.
Potin, P., C. Richard, C. Rochas, and B. Kloareg. 1993. Purification and characterization of the ��-agarase from Alteromonas agarlyticus (Cataldi) comb. nov., strain GJ1B. Eur. J. Biochem. 214: 599-607.
Rochas, C., P. Potin, and B. Kloareg. 1994. NMR spectroscopic investigation of agarase oligomers produced by an ��-agarase. Carbohydr. Res. 253: 69-77.
Romanos, M. A., C. A. Scorer, and J. J. Clare. 1992. Foreign gene expression in yeast: A review. Yeast 8: 423-488.
Rose, A. H. 1977. Scientific basis of alcoholic beverage production. Econ. Microbiol. 1: 10-40.
Sambrook, J., and D. W. Russell. 2006. The Condensed Protocol from Molecular Cloning: A Laboratory Manual. Cold spring harbor Lab. press, Cold Spring Harbor, NY, USA. pp. 58-59, 177, 188-192, 243, 718-725, 730, 758-760.
Sanchez, M., F. J. Iglesias, C. Santamaria, and A. Dominguez. 1993. Transformation of Kluyveromyces lactis by electroporation. Appl. Environ. Microbiol. 59: 2087–2092.
Schroeder, D. C., M. A. Jaffer, and V. C. Coyne. 2003. Investigation of the role of a β(1-4) agarase produced by Pseudoalteromonas gracilis B9 in eliciting disease symptoms in the red alga Gracilaria gracilis. Microbiology 149: 2919-2929.
She, K. 2003. So you want to work with giants: The BAC vector. Bio. Tech. J. 1: 69-74.
Shibasaki, Y., J. C. Maule, R. S. Devon, E. M. Slorach, J. R. Gosden, D. J. Porteous, and A. J. Brookes. 1995. Catch-linker + PCR labeling: A simple method to generate fluorescence in situ hybridization probes from yeast artificial chromosomes. PCR Methods Appl. 4: 209-211.
Shizuya, H., and H. Kouros-Mehr. 2001. The development and applications of the bacterial artificial chromosome cloning system. Keio J. Med. 50: 26-30.
Singh, R., P. A. Lessard, T. S. Guan, J. M. Panandam, A. Sinskey, and S.-C. Cheah. 2003. Preliminary attempts at the construction of large insert DNA libraries for oil palm. J. Oil Palm. Res. 15: 12-20.
Singh, T. 1992. Agar and Agar Production. INFOFISH, Kuala Lumpur, Malaysia. pp. 1-25.
Solursh, M. l991. Formation of cartilage tissue in vitro. J. Cell Biochem. 45: 258-260.
Stedman, T. L. 1982. Stedman’s Medical Dictionary. 24th ed. Williams and Awaikins, London. p. 30.
Sugano, Y., I. Terada, M. Arita, M. Noma, and T. Matsumoto. 1993a. Purification and characterization of a new agarase from a marine bacterium, Vibrio sp. strain JT0107. Appl. Environ. Microbiol. 59: 1549-1554.
Sugano, Y., T. Matsumoto, H. Kodama, and M. Noma. 1993b. Cloning and sequencing of agaA, a unique agarase 0107 gene from a marine bacterium, Vibrio sp. strain JT0107. Appl. Environ. Microbiol. 59: 3750-3756.
Suzuki, H., Y. Sawai, T. Suzuki, and K. Kawai. 2002. Purification and characterization of an extracellular α-neoagarooligosaccharide hydrolase from Bacillus sp. MK03. J. Biosci. Bioeng. 93: 456-463.
Suzuki, H., Y. Sawai, T. Suzuki, and K. Kawai. 2003. Purification and characterization of an extracellular β-agarase from Bacillus sp. MK03. J. Biosci. Bioeng. 95: 328-334.
Swartz, M., and N. Gordon. 1959. Agarase from an agar-digesting bacterium. J. Bacteriol. 77: 403-409.
Turvey, R., and J. Christison. 1967. The enzymic degradation of porphyran. Biochem. J. 105: 317-321.
van den Ent F., and J. Lowe. 2006. RF cloning: A restriction-free method for inserting target genes into plasmids. J. Biochem. Biophys. Methods 67: 67-74.
Vera, J., R. Alvarez, E. Murano, J. C. Slebe, and O. Leon. 1998. Identification of a marine agarolytic Pseudoalteromonas isolate and characterization of its extracellular agarase. Appl. Environ. Microbiol. 64: 4378-4383.
Volinia, S., R. P. Piva, A. Bozza, S. Stefani, D. Gandini, and L. del Senno. 1992. Simplified construction and characterization of yeast artificial chromosome libraries. Biochem. Int. 27: 45-53.
Wang, H., X. H. Zhao, and F. P. Lu. 2007. Heterologous expression of bovine lactoferricin in Pichia methanolica. Biochemistry 72: 640-643.
Yamaura, I., T. Matsumoto, M. Funatsu, H. Shigeiri, and T. Shibata. 1991. Purification and properties of agarase from Pseudomonas sp. PT-5. Agric. Biol. Chem. 55: 2531-2536.
Yaphe, W. 1957. The use of agarase from P. altantica in the identification of agar in marine algae (Rhodophyceae). Can. J. Microbiol. 3: 987-993.
Yoshizawa, Y., A. Ametani, J. Tsunehiro, K. Nomura, M. Itoh, F. Fukui, and S. Kaminogawa. 1995. Macrophage stimulation activity of the polysaccharide fraction of a marine alga (Porphyra yezoensis): Structure-function relationships and improved solubility. Biosci. Biotechnol. Biochem. 59: 1933-1937.
Young, K.S., S. S. Battacharjee, and W. Yaphe. 1978. Enzymic cleavage of the α-linkages in agarose, to yield agaro-oligosaccharides. Carbohydr. Res. 66: 207-212.
Zhang, W. W., and L. Sun. 2007. Cloning, characterization, and molecular application of a beta-agarase gene from Vibrio sp. strain V134. Appl. Environ. Microbiol. 73: 2825-2831.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 海洋細菌所產agarase生產條件與海藻多醣經agarase分解所得寡糖類組成之探討
2. PseudomonasvesicularisMA103菌株所產洋菜的純化與性質
3. 發酵李子酒製程之研究
4. AeromonassalmonicidaMAEF108菌株所產洋菜酶的純化與性質之探討
5. 海菜酒之製備及其生理活性功能探討
6. Pseudomonas vesicularis MA103 所產 Alginate lyase pal III 之基因轉殖至大腸桿菌中表現之探討
7. 人類α1-抗胰蛋白基因在哺乳動物細胞及酵母菌中之表現
8. Aeromonas salmonicida MAEF108 之 Agarase AS-IIIb 基因轉殖至乳酸菌及乳酸菌發酵含山藥藻類寡醣乳製品之探討
9. Alginate Lyase 之基因轉殖至Lactococcus lactis NZ3900表現及Alginate Lyase所產寡醣產物分析和用於酵母菌發酵生產乙醇之探討
10. 利用逆向液相層析儀搭配電噴灑游離串聯質譜法進行大白鼠血漿中丹參酚酸B濃度之偵測
11. Pseudomonas vesicularis MA103 所產 amylase Pv-AM-I 純化與澱粉酶基因 Amy-00047轉殖至大腸桿菌及其特性分析
12. Pseudomonas vesicularis MA103 carIII 基因轉殖至 Lactococcus lactis NZ3900 中表現及其所產 k-紅藻膠酶水解 k-紅藻膠所得寡醣之生理活性探討
13. 耳突麒麟菜寡醣混合物之抗氧化活性及美白功能研究
14. 鋸齒麒麟菜乳酸發酵產品之生產與抗氧化特性之探討
15. 褐藻膠裂解酶 palIII 基因轉殖至乳酸菌表現與純化以及生化特性與水解褐藻膠所得寡醣之生理活性探討
 
1. PseudomonasvesicularisMA103菌株所產AgarasePV-1b純化與基因選殖至大腸桿菌表現之探討
2. 探討AeromonassalmonicidaMAEF108所產AgaraseAS-I之基因轉殖與特性分析
3. AeromonassalmonicidaMAEF108之AgaraseAS-IIIb基因及PseudomonasvesicularisMA103之AgarasePV-Ib基因轉殖至乳酸菌及生產含藻類寡醣發酵乳製品之探討
4. PseudomonasvesicularisMA103菌株所產agarasesPV-1與PV-2之純化與性質探討
5. AeromonassalmonicidaMAEF108所產AgaraseAS-II之純化與特性研究暨經AgaraseAS-II水解所得藻類寡醣之生理活性探討
6. Aeromonas salmonicida MAEF108 之 Agarase AS-IIIb 基因轉殖至乳酸菌及乳酸菌發酵含山藥藻類寡醣乳製品之探討
7. Alginate Lyase 之基因轉殖至Lactococcus lactis NZ3900表現及Alginate Lyase所產寡醣產物分析和用於酵母菌發酵生產乙醇之探討
8. Pseudomonas vesicularis MA103 所產 Alginate lyase pal III 之基因轉殖至大腸桿菌中表現之探討
9. Thermoanaerobacteriumsaccharolyticum之β-xylosidase基因選殖與表現及重組蛋白之生化特性分析
10. 建構乳酸菌載體及探討基因轉移的方法
11. 海洋細菌PseudomonasvesicularisMA103之agarases發酵槽生產條件探討以及海藻多醣與
12. 以鹽馴養酵母菌在白土司及饅頭製程上之應用
13. 以生物取像系統探討綠色螢光蛋白在不同培養條件下之基因重組大腸桿菌內涵體的形成
14. 利用酵母菌表現重組人類SCF1-165和SCF1-141分析其生物功能上之差異性
15. 使用不同質體和透明顫菌血紅素異源共表現納豆激酶於大腸桿菌中