跳到主要內容

臺灣博碩士論文加值系統

(44.220.255.141) 您好!臺灣時間:2024/11/04 03:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳智宏
研究生(外文):Chih-Hung Chen
論文名稱:硫酸還原菌與鐵還原菌生理生化鑑定及其生物復育之應用研究
論文名稱(外文):Isolation & characterization of some sulfate-reducing & iron-reducing bacteria, and application of these bacteria in bioremediation
指導教授:劉秀美劉秀美引用關係
指導教授(外文):Prof. Shiu-Mei, Liu
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:海洋生物研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:208
中文關鍵詞:鐵還原菌硫酸還原菌五氯酚脫色偶氮染劑三苯甲烷染劑蔥?染劑生物分解
外文關鍵詞:Shewanellairon reducing bacteriasulfate reducing bacteriadecolorizationpentachlorophenolazo dyetriphenylmethane dyeanthraquinone dyebiodegradationbiocorrosion
相關次數:
  • 被引用被引用:3
  • 點閱點閱:1506
  • 評分評分:
  • 下載下載:157
  • 收藏至我的研究室書目清單書目收藏:0
過去諸多的研究報告指出,鐵還原菌以及硫酸還原菌等厭氧微生物在環境污染物生物復育過程中佔有相當重要的角色與地位,因此本論文希望藉由化學分析技術、分子生物技術以及純種微生物培養及鑑定技術,探討鐵還原菌以及硫酸還原菌在於環境污染物如五氯酚、環境金屬生物腐蝕過程或是染料成分分解應用時之應用價值。
首先在環境污染物五氯酚方面,作者過去的研究發現,淡水河關渡宮河口底泥內的厭氧微生物族群具有五氯酚還原脫氯的能力,而且不同電子提供者或電子接受者加入底泥中,會造成五氯酚不同還原脫氯的速率,因此在本研究中欲以添加不同電子提供者(乳酸鹽或丙酮酸鹽)與電子接受者(硫酸鹽或亞硫酸鹽)於河口底泥中,探討在不同基質利用狀態下五氯酚脫氯速率以及底泥中主要的脫氯菌群為何。結果發現,添加乳酸鹽與硫酸鹽培養時五氯酚之脫氯速率為其他組的8倍以上,同時五氯酚脫氯伴隨硫酸還原作用而進行,非但不會抑制五氯酚脫氯,反而明顯的促進脫氯菌群進行五氯酚脫氯,顯示脫氯菌不受硫酸還原作用抑制,而就前人相關的研究中得知,厭氧河口或海洋環境中分離出的脫氯菌大都是硫酸還原菌屬之Desulfovibrio。因此本實驗中以Desulfuromonas, Desulfitobacterium, Dehalococcoides, Desulfomonile teidjei, Desulfotomaculum, and Desulfovibrio專一性的引子作為探討五氯酚脫氯過程中脫氯菌種類確認的證據之一,在各五氯酚脫氯實驗組萃取所需之DNA,再以專一性引子經PCR放大後發現,所有實驗組無論是甲烷生成狀態(methanogenic condition)、硫酸還原狀態(sulfate reducing condition)、亞硫酸還原狀態(sulfite reducing condition)或是丙酮酸發酵狀態(pyruvate fermentation condition)下,即使經過巢式聚合?鏈反應(nested PCR),所有基因序列(gene sequence)中完全沒有發現任何Desulfomonile或Desulfotomaculum的基因序列,其他基因序列除Desulfovibrio以外,包括Desulfuromonas, Desulfitobacterium, Dehalococcoides雖存在於大部分的底泥中,但培養時額外添加五氯酚並不能誘導這些菌群數量增加,而且他們的基因序列個別會受到硫酸鹽或亞硫酸鹽、亞硫酸鹽、五氯酚之影響而無法像無添加培養之底泥中穩定存在,甚至菌株Dehalococcoides與Desulfitobacterium的基因序列會因為硫酸鹽添加之後的硫酸還原狀態而減少,反之Desulfovibrio大量存在於各底泥中,且數量遠高於其他三個脫氯菌群,更在硫酸還原脫氯狀態下旺盛的生長,所以認為Desulfovibrio應該是此河口底泥在五氯酚脫氯過程中優勢的菌群,並且也推測菌株Desulfovibrio的存在會與五氯酚的脫氯有很大的關連性。Desulfovibrio之基因序列經變性梯度膠體電泳(DGGE)分離後顯示,添加乳酸鹽與硫酸鹽或亞硫酸鹽培養後相較於其他組別額外多出二個明顯的亮帶,共有六個亮帶,也由於硫酸還原狀態下五氯酚的脫氯速率明顯增加,而且經變性梯度膠體電泳(DGGE)表較之後菌群種類有顯著著差異,所以本實驗更進一步針對硫酸還原狀態下的基因進行基因選殖(gene cloning),結果證Desulfovibrio菌群中包含有兩株菌株的基因序列分別與Desulfovibrio strain TBP1以及Desulfovibrio strain PCP1最接近,
而這兩株菌株過去有都主要是應用於氯酚類化合物或溴酚類化合物之生物降解之用,結合所有證據包括五氯酚降解速率結果、PCR基因放大實驗、變性梯度膠體電泳、基因選殖以及過去碩士班以16S rRNA探針標定的實驗,有充分的證據證明Desulfovibrio菌屬為淡水河關渡宮底泥中降解五氯酚主要之硫酸還原菌族群。
在生物腐蝕研究方面,本實驗採取中油熱交換冷卻水系統腐蝕管線沈積物,以分子生物鑑定、最大可能數(MPN)微生物計數方式、微生物純化培養、金屬腐蝕率計算、電子顯微鏡觀察以及元素分析方式,希望瞭解硫酸還原菌和其他菌株在金屬管線腐蝕過程中扮演的角色,期望瞭解中油熱交換冷卻水系統腐蝕管線沈積物中分離出的菌種,包括:硫酸還原菌Desulfovibrio、Shewanella以及Clostridium,三者在中油金屬管線腐蝕過程所扮演的角色,實驗結果發現整個冷卻水系統各管線水樣中都只有少量的硫酸還原菌存在,而且只有少部分被腐蝕的金屬沈積物呈現黑色與硫酸還原菌進行硫酸還原作用產生之硫化鐵,其中大多被腐蝕的金屬沈積物是呈現黃色至深褐色的顏色,對整個研究結果所代表的意義都釐清之後,認為冷卻水循環系統中除少部分金屬生物腐蝕作用為厭氧硫酸還原菌所主導外,另外應該還有更重要的微生物族群主導冷卻循環水系統的生物腐蝕作用,這些微生物族群可能包含一些鐵還原菌(如:Shewanella或Geobacter)以及可提供金屬腐蝕氧化還原過程電子的產氫菌, 首先我們選用一組專為硫酸還原酵素(sulfite reductase)設計的引子(primer)DSR1F與DSR4R,測試菌株與硫酸還原的關連性,結果菌株中只有Desulfovibrio sp.與Shewanella sp.具有硫酸還原酵素(sulfite reductase),後續的研究也證實這兩株菌都可以利用硫酸鹽並產生更還原態之其他硫化物,例如:亞硫酸鹽等,因此也認為,如果中油冷卻循環水系統之生物腐蝕與硫酸鹽之還原有關,那Desulfovibrio sp.與Shewanella sp.同時都有參與反應的機會就相當高。而另外一個實驗發現我們所分離的菌株Clostridium sp.具有產氫之能力,氫氣產能大約佔血清瓶中上層氣體12.6 ~ 21.2%(大約可以產生6.3 ~ 10.6 ml以上體積之純氫氣),然而在我們的研究中也發現菌株Shewanella sp.可以有效利用氫氣作為電子提供者,因此在生物腐蝕作用中,菌株Clostridium sp. 與Shewanella sp的關連性就顯而易見了。
在實驗室層級,以單一菌株Clostridium sp.、Desulfovibrio sp.和Shewanella sp.、或菌株與菌株兩兩混合、或三株菌珠混合培養之後對碳鋼片進行生物腐蝕,實驗中無論是菌株生物量或生長情形(OD600)、pH值的變化或是碳鋼腐蝕速率(miles per year; mpy)之計算,都證實當三株菌株混合時隨時間變化,總菌量明顯增加、pH值顯著下降而碳鋼片腐蝕速率也大大提升。若單獨以菌種差異來看,Desulfovibrio sp.之碳鋼腐蝕能力最強約為0.184 mpy (miles per year),其次為Clostridium sp.的0.034 mpy,最差為Shewanella sp.的0.019 mpy,當兩種純菌混合測試時發現,與Desulfovibrio sp.混合的組別腐蝕效率會高些,如:Desulfovibrio sp.和Clostridium sp.混合時腐蝕速率為0.38 mpy,Desulfovibrio sp.和Shewanella sp.混合時腐蝕速率為更高的0.44 mpy,而Shewanella sp.和Clostridium sp.混合之腐蝕速率就差了許多為0.23 mpy,不過腐蝕情況最嚴重的還是當三種菌株混合時,腐蝕速率可高達0.84 mpy,相較於Desulfovibrio sp.單一菌株之腐蝕速率為0.184 mpy,明顯快上4.5倍,這樣的結果也相對證實了中油冷卻循環系統碳鋼金屬腐蝕的時候,並非全靠一株硫酸還原菌Desulfovibrio sp.菌株,當有其他菌株例如本實驗中的Shewanella sp.和Clostridium sp.參與反應時,腐蝕的情況可能以數倍的方式成長,但不可否認的是,單就單一菌株或菌株兩兩混合時之腐蝕速率來看,硫酸還原菌還是金屬腐蝕的主要元凶,此外若是配合OD600與pH數值變化來看,在培養基中加入鐵片作為電子接受者時,結果能有效提升菌株或菌群之OD600值,而混合菌菌量多寡也相對應於腐蝕速率的變化,在OD600值的結果為:Clostridium+Dsulfovibrio+Shewanella > Desulfovibrio+Clostridium > Desulfovibrio+Shewanella > Clostridium+Shewanella > Desulfovibrio,金屬腐蝕速率結果相同也是類似於OD600值的結果,因此認為生物量(biomass)與其生物腐蝕(biocorrosion)有較大的關連性,而pH變化不會因為培養基中多加鐵片使pH降至更低,不過pH變化似乎與金屬腐蝕上也有相對應之關連性的關連性,因此認為pH變化也有可能影響金屬之生物腐蝕作用,但是因為數據資料有限,所以在此仍然對pH與生物腐蝕相關性保持保留態度。
由煉油廠冷卻系統中分離出的兼性厭氧鐵還原菌株,經進一步鑑定之後確認為Shewanella菌屬,同時也命名為Shewanella decolorationis NTOU1,其鑑定結果如以下所示:此革蘭氏陰性菌株屬於γ proteobacteria,沒有孢子產生,有單一極性鞭毛(single polar flagellum),培養於培養基上菌落外觀呈現圓形不透明橘色,橘色色素其吸光值在342 nm與396 nm具有高峰,菌體大小約為0.70∼0.85 μm(寬)×1.5∼2.5 μm(長),可生長在pH5∼pH9之間、鹽度0?∼75?之間、溫度10~40 oC,生化特性測試菌株具有觸?(catalase)、氧化?(oxidase)、澱粉?(amylase)、尿素?(urease)、明膠酵素(gelatinase)以及硫酸還原酵素(sulfite reductase)活性,而不具有脂肪?(lipase)活性,可利用Fe(III)、Mn(IV)、nitrate、iron oxide、sulfate、sulfite、thiosulfate、sulfur、arsenate以及selenate作為厭氧呼吸作用之電子接受者,以H2、lactate、pyruvate或formate作為生長所需之電子提供者,細胞含有Coenzyme Q =泛?(Ubiquinone):主要為Q7與Q8,細胞膜上之主要脂肪酸組成為C16:0、 iso-15:0、C16:1ω7c以及17:1ω8c,沒有發現20:5ω3的存在,DNA序列之G+C比例為50.3 mol %,基於1150 bp的16S rDNA基因序列片段放大分析,並與另外21株Shewanella菌種比對發現,菌株NTOU1之16S rDNA基因序列分別與S. decolorationis 以及S. putrefaciens有97%以及96%的相似度,另外再以1040 bp的gyrB基因序列鑑定發現,分別與S. decolorationis 以及S. oneidensis有97%以及90%的相似度,與S. decolorationisDNA-DNA雜交的測試實驗分析結果為74.4%,根據以上分子生物方法分析結果,都顯示此菌株應同屬於S. decolorationis,因此將菌株命名為S. decolorationis NTOU1,目前保存於台灣新竹食工所生物資源保存及研究中心(Bioresource Collection and Research Center; BCRC)編號為BCRC 910321T以及日本菌種保存中心(Japan Collection of Microorganisms; JCM)編號為JCM 14211T。
也因菌株S. decolorationis具有染劑脫色能力,所以在本研究中我們測試菌株S. decolorationis NTOU1是否也具脫色降解偶氮染劑(azo dye)、三苯甲烷染劑(triphenylmethane dye)及蔥?染劑(anthraquinone dye)的能力,首先針對偶氮染劑研究之結果發現,菌株S. decolorationis NTOU1可在沒有電子載體(electron carrier)的狀況下有效的將多種偶氮染劑﹝剛果紅(congo red)、蘇丹黑(sudan black)、酸性橙(acid orange)、橘G (orange G)、甲基橙(methyl orange)及甲基紅(methyl red)﹞脫色降解,而脫色降解過程最適的酸鹼度值及溫度分別為pH 6.0-7.0 及 30oC-40oC。實驗中發現以氫氣(H2)、甲酸鹽( formate)及丙酮酸( pyruvate)為電子提供者時有最好的脫色效率,添加檸檬酸鐵(ferric citrate)、鐵氧化物(manganese oxide)、硒酸(selenate)、鐵氧化物(ferric oxide)、硝酸(nitrate)或硫酸(thiosulfate)時可增加菌株S. decolorationis NTOU1對剛果紅之脫色率。在剛果紅厭氧脫色完成後轉至耗氧條件下培養,剛果紅之厭氧脫色產物,聯苯胺(benzidine),可在耗氧狀態下由菌株S. decolorationis NTOU1更迅速的進一步分解,這樣的結果證實菌株S. decolorationis NTOU1不僅可以有效的處理有色之染劑廢水,更可以在後續耗氧狀態下進一步處理高毒性之苯胺類代謝產物。
菌株S. decolorationis NTOU1在厭氧鐵還原條件下,以20 mM甲酸鹽(formate)作為電子提供者(electron donor)可以迅速降解多種的三苯甲烷染劑(basic fuchsin, bromophenol blue, crystal violet, malachite green, and methyl violet B),以200 mg l-1濃度條件下三苯甲烷染劑分解速率快慢依序為:malachite green > crystal violet > methyl violet B > basic fuchsin > bromophenol blue,菌株S. decolorationis NTOU1不僅可廣泛的分解多種三苯甲烷染劑,同時也可以對高濃度的三苯甲烷進行分解,以結晶紫為例,即使結晶紫染劑濃度高達1500 mg l-1時菌株S. decolorationis NTOU1仍可有效的將結晶紫脫色(315.7 mg l-1 h-1)並去除毒性,其脫色之最適pH值及溫度分別為pH 8-9 及30-40oC。
在實驗中也發現菌株S. decolorationis NTOU1對結晶紫脫色過程中,如果添加檸檬酸鐵(ferric citrate)非但不會抑制結晶紫的脫色,相反的可以促進結晶紫的脫色,相較於檸檬酸鐵若是添加其他電子接受者,如:硫代硫酸鹽(thiosulfate)、三價氧化鐵(ferric oxide)或氧化錳(manganese oxide)脫色速率則會有些微的下降,此外若以亞硝酸鹽(nitrite) (20 mM)作為脫色時之電子接受者,則菌株S. decolorationis NTOU1的脫色能力會被完全抑制,根據GC/MS偵測結晶紫經此菌株脫色前後之產物可看出,結晶紫會先被還原裂解為Michler’s ketone及N,N-dimethylaminophenol。Michler’s ketone 又可進一步裂解N,N-dimethylaminobenzaldehyde及 N,N-dimethylaminophenol。Michler’s ketone 也可去甲基化而成 [4,4’-dimethylamino phenyl] [4-methylaminophenyl] benzophenone。根據GC/MS偵測孔雀綠經菌株S. decolorationis NTOU1脫色前後之產物可看出,孔雀綠經脫色後之中間代謝產物主要包括有leucomalachite green、 N,N,N’-trimethyl-4,4’-benzylidenedianiline、[N,N-dimethylaminophenyl] [phenyl] benzophenone與N,N-dimethylaminophenol,根據GC/MS偵測甲基紫經菌株S. decolorationis NTOU1脫色前後之產物可看出,甲基紫經脫色後之中間代謝產物主要包括有leucomethyl violet B、N,N’-bis [dimethylamino] benzophenone (Michler’s ketone)、[N,N-dimethylaminophenyl] [N’-methylaminophenyl] benzophenone、N,N-dimethylaminobenzaldehyde、N,N-dimethylaminophenol、 N-methylaminobenzaldehyde與N-methylaminophenol。此外我們還分別利用老鼠組織細胞clone L-929以及菌株E. coli strain JM 109,針對結晶紫、孔雀綠以及甲基紫三種三苯甲烷染劑在脫色前後的細胞毒性性或抑制微生物生長毒性進行測試,也發現三種測試的三苯甲烷染劑經菌株S. decolorationis NTOU1脫色後之產物毒性有非常明顯的下降,顯示菌株S. decolorationis NTOU1脫色前後對三苯甲烷染劑的脫色過程不僅止於脫色作用,同時也是相當好的一個去毒步驟,這樣的結果說明了,菌株S. decolorationis NTOU1除了利用氧化還原的方式將多種三苯甲烷染劑,如:結晶紫、孔雀綠或甲基紫等染劑的顏色去除之外,還可以將這些三苯甲烷染劑的結構進一步還原降解成結構更簡單的化合物,本實驗的圖表之中也清楚呈現菌株S. decolorationis NTOU1降解三苯甲烷染劑的降解途徑,或降解過程中中間代謝產物相對應時間的關係圖,染劑代謝產物毒性測試的實驗更發現,菌株S. decolorationis NTOU1除了可以去除染劑顏色,更可以去除染劑原有之細胞或抑制微生物之毒性,這樣完整瞭解菌株S. decolorationis NTOU1對三苯甲烷染劑最佳的的脫色降解條件、脫色能力的鑑定、對整個染劑脫色降解時化學結構之變化途徑的鑑定以及脫色過程相對應之去毒效果,證實了菌株S. decolorationis NTOU1未來應用於三苯甲烷染料廢水處理之可行與潛力性,也相信這些數據對於未來應用菌株S. decolorationis NTOU1於三苯甲烷染劑廢水生物處理,應該會有相當大的助益。
除了偶氮染劑與三苯甲烷染劑之外,菌株S. decolorationis NTOU1還可以對多種蔥?染劑包括RB4、RB19、MR11、DR15與DB3進行生物降解脫色,菌株脫色最適合之酸鹼值及溫度條件分別為pH 8.0-9.0以及45oC,脫色過程中添加電子提供者formate以及電子接受者ferric citrate可以達到最佳之脫色速率,而初始脫色速率會隨著初始添加的染劑濃度(100 mg l 1 ~ 1000 mg l-1)增加而增加,當初始脫色速率增加時,染劑脫色百分比大多也會相對提升,以GC/MS分析蔥?染劑RB4與RB19脫色後的代謝產物,測得包括:1-amino-anthraquinone、2,3-dihydro-9,10-dihydroxy-1,4-anthracenedione與leuco-1,4-diaminoanthraquinone,而MR11代謝產物中測得1-hydroxy-9,10-anthracenedione, DR15代謝產物中測得1,4-dihydroxy-9,10- -anthracenedione and 2,3-dihydro-9,10-dihydroxy-1,4-anthracenedione,DB3代謝產物中測得leuco-1,4-diaminoanthraquinone。
在本研究中發現無論是硫酸還原菌或是鐵還原菌,常常可以在多樣化的環境中發現,除此之外也經常與環境污染物的生物降解息息相關,也由於兩種菌彼此間生存之氧化還原電位不同、可以利用之基質不同或是酵素系統上的差異,使得兩種菌之間可能存在電子交換的可能性,這樣的可能性也環境污染物之生物復育帶來更多的潛力,因為環境中存在的微生物種數以千萬計,所以環境透過微生物降解污染物的自淨能力是可以被期待的,綜合來說,事實上過去在自然環境的污染物生物復育研究與純菌株污染物處理研究觀點以及技術上都有很大的差異,未來如果可以將純菌株的概念加入到混合菌生物復育應用的過程加以探討,相信將會有新的概念及理論產生,並且可以以最簡化的程序、最節約的成本以及最少的人力達成環境污染物生物復育的效果。
Bioremediation technology has fast developed over the last 30 years in many industrialised countries. However, the rate and the extent of development has baffled by unexpectable relationships between microorganisms. A successful bioremediation scheme relies on the management of soil microbial populations capable of catabolising the contaminants. The role of soil microbiota in the biochemical conversion of organic and inorganic contaminants has been realised, priority research needs have been identified and effort has been made to understand the ecological, biochemical and genetic basis of microbial contaminant degradation, with a view to enhancing microbial capabilities and thus designing more effective bioremediation processes.
Previous reports have shown that sulfate-reducing or iron-reducing bacteria could oxidize simple organic molecules using the sulfate or iron ion as an electron acceptor. This process produces hydrogen sulfide (H2?S) and the bicarbonate ion (HCO3-). Hydrogen sulfide readily reacts with heavy metal ions (iron) to immobilize the metals as insoluble metal sulfides, while the bicarbonate ions buffer the pH to significantly higher levels (Dvorak et al. 1992). Thus, sulfate is removed as hydrogen sulfide gas and immobilized metal sulfides, metals are removed as metal sulfides, while pH is raised, improving water quality. In order to maintain bacterial metabolism, the bacteria must be given both an organic carbon source and some times substrate for attachment. Although these microorganisms can degrade organic contaminants in polluted aquifers, the process can be slow.
In this thesis, we have demonstrated that sulfate-reducing bacteria can dehalogenate chlorinated aromatic compounds and iron-reducing bacteria can decolozed and detoxified dyes of different chemical structure under different incubation conditions, e.g. under different pH, temperature, electron donors or electron acceptors. In order to further characterization of these anaerobic microbial communities, physiological analysis, biochemical analysis, traditional and molecular biotechnology, for microorganism isolation and characterization are needed to fully understand the role of these microorganisms in the biodegradation of contaminants in the environments.
In pentachlorophenol biodegradation study, PCR and primers specific to several dechlorinating bacteria, e.g. Desulfomonile, Desulfotomaculum, Desulfuromonas, Dehalococcoides, Desulfitobacterium, and Desulfovibrio were used to detect the presence of these dechlorinating bacteria during reductive dechlorination of pentachlorophenol (PCP) in estuarine sediment slurries. PCP dechlorination rates in anoxic sediment slurries amended with lactate plus sulfate were about eight times higher than those in anoxic sediment slurries amended with lactate plus sulfite or pyruvate, or without any amendment. Gene sequences of Desulfomonile and Desulfotomaculum were not present, while gene sequences of Desulfuromonas and Desulfovibrio were present in all tested sediment slurries. Gene sequences of Dehalococcoides and Desulfitobacterium were found in sediment slurries without any amendment. When under methanogenic and pyruvate fermentation conditions, PCP enrichment did not change the amount of these types of bacteria, however, when sulfate or sulfite was amended the amount of these types of bacteria decreased. The clones from the genes amplified from DNA extracted from PCP dechlorinating sediment slurries amended with sulfate and lactate, and primers specific to Desulfovibrio fell into four phylogenetic lineages. Among them two clones were close related to Desulfovibrio sp. TBT-1 (12.5%) and Desulfovibrio sp. PCP-1 (12.5%), respectively.
In the second study, in order to study the presence or the effects of sulfate reducing bacteria (SRB) in the heat exchange cooling system of a petroleum refinery, water and sediment were sampled from 7 sites of the heat exchange cooling system to investigate the relationship between SRB population and the microbiologically influenced corrosion. Desulfotomaculum was found in sediments collected from the carbon steel condenser and the bottom tank of tower number 7, while Desulfovibrio was found in sediment of carbon steel condenser. Results of most probable number (MPN) tests also showed that the total number of microorganism ranges from 106 to 107 cells / 100 ml and the number of SRB is lower than 2 × 103 cells / 100 ml. One SRB strain was isolated from a carbon steel condenser in this study. 16S rDNA sequence analysis attested that this strain is closely related to gram negative bacterium Desulfovibrio vulgaris subsp. vulgaris str. Hildenborough. This strain can couple ferrous iron oxidation with sulfate reduction. Based on the results of SRB isolation, most probable number (MPN) analysis and the biocorrosion states of sampling sites it seems that SRB did not play a major role in biocorrosion of heat exchange cooling system.
An iron-reducing bacterium, strain NTOU1, was isolated from the precipitate suspension collected from a heat exchange cooling system of a refinery plant in Taoyuan, in northern Taiwan. Cells of this strain were Gram-negative, rod-shaped, pink to orange-pigmented and motile with a single polar flagellum. No endospores are formed. This strain can grow under aerobic conditions. It was not able to ferment glucose, but was capable of anaerobic growth utilizing a variety of electron acceptors, including Fe(III), Mn(IV), iron oxide, sulfate, sulfite, thiosulfate, nitrate, nitrite, arsenate selenate, and selenite. Lactate, pyruvate, formate and H2 were used as carbon and energy sources. Physiochemical tests showed that this strain is a facultative, catalase-, oxidase-, amylase-, urease-, gelatinase- and sulfite reductase-positive, lipase-negative bacterium. The orange to pink pigment of this strain has absorption peaks at 342 and 396 nm. It grows at 10-37oC, pH 5-9 and NaCl concentration from 0 up to 5.5%. The predominant menaquinone was MK-7 and the predominant ubiquinones were Q-7 and Q-8. The major fatty acid compositions of the membrane lipids were 16:0, iso-15:0, 16:1ω7c, and 17:1ω8c. The DNA G+C content of this strain was 50.3 mol%. 16S rRNA gene sequence analysis indicated that this strain has 97% and 96% similarity with Shewanella decolorationis and Shewanella putrefaciens, respectively. The gyrB gene sequence analysis also indicated that this strain has 97% and 86% similarity with S. decolorationis and S. putrefaciens, respectively. DNA-DNA hybridization showed relatedness values of 74.4% with S. decolorationis S12T. Despite a number of phenotypic and physiological differences between strain NTOU1 and S. decolorationis we propose including strain NTOU1 as a subspecies of S. decolorationis for which we propose the name Shewanella decolorationis subspecies taiwanensis. The type strain is NTOU1 (=BCRC 910321T =JCM 14211T).
S. decolorationis NTOU1 which could decolorize a range of azo dyes (congo red, sudan black. acid orange, orange G, methyl orange, and methyl red) at high efficiency without a mediator. The most suitable pH values and temperatures for decolorization are pH 6.0-7.0 and 30-40oC. Decolorization rates are highest when H2, formate, or pyruvate is used as the electron donor. Addition of ferric citrate, manganese oxide, selenate, nitrate, ferric oxide, or thiosulfate increases decolorization rates of congo red by this strain. It seems that when the incubation condition is changed to aerobic condition after decolorization of congo red under anaerobic condition, benzidine, anaerobic decolorization product is further degraded under aerobic conditions by this species.
S. decolorationis NTOU1 also could decolorize a range of triphenylmethane dyes without a mediator. Crystal violet could be decolorized by this species under anaerobic, but not under aerobic condition. The most suitable pH values and temperatures for decolorization of crystal violet were pH 8-9 and 30-40oC, respectively. Formate (20 mM) was the better electron donor, while nitrate (20 mM) and ferric citrate (20 mM) were the better electron acceptors for this strain to decolorize crystal violet under anaerobic conditions. By supplementing the anoxic phosphate buffered medium (pH 8) with formate (20 mM) and ferric citrate (20 mM) and cultivating it at 35 oC, this strain could decolorize these above mentioned dyes (200 mg l-1) within 2-11 h under anaerobic conditions, with the initial color removal rates being: malachite green > crystal violet > methyl violet B > basic fuchsin > bromophenol blue. By supplementing the medium with formate and ferric citrate and cultivating it under optimum pH and temperature, this strain could remove crystal violet, at a concentration of 1500 mg l-1, at the rate of 298 mg l-1 h-1 (during decolorization the OD600 of the cell culture increased from ~0.6 to ~1.2).
GC/MS analysis of the degradation products of crystal violet detected the presence of N,N’-bis(dimethylamino) benzophenone (Michler’s Ketone), [N,N-dimethylaminophenyl] [N-methylaminophenyl] benzophenone, N,N-dimethylaminobenzaldehyde, N,N-dimethylaminophenol, and 4-methylaminophenol. These results suggest that crystal violet was biotransformed into N,N-dimethylaminophenol and Michler’s Ketone prior to further degradation of these intermediates. This thesis proposes probable pathways for the degradation of crystal violet by this Shewanella sp. Cytotoxicity and antimicrobial tests showed that the process of decolorization also detoxify crystal violet.
GC/MS analysis of the intermediate compounds during decolorization and degradation of malachite green and methyl violet B detected leucomalachite green, N,N,N’-trimethyl-4,4’-benzylidenedianiline, [N,N-dimethylaminophenyl] [phenyl] benzophenone, and N,N-dimethylaminophenol, and leucomethyl violet B, N,N’-bis [dimethylamino] benzophenone (Michler’s ketone), [N,N-dimethylaminophenyl] [N’-methylaminophenyl] benzophenone, N,N-dimethylaminobenzaldehyde, N,N-dimethylaminophenol, N-methylaminobenzaldehyde, and N-methylaminophenol, repectively. Probable pathways for the decolorization and degradation of malachite green and methyl violet B by this strain were proposed based on the time course of degradation of parent compound and sequential biotransformation of intermediate compounds. Cytotoxicity antimicrobial tests showed that the toxicity of malachite green or methyl violet was slightly decreased just after decolorization, however, along with further incubation, the toxicity increased again.
Shewanella sp. NTOU1 was able to decolorize a range of anthraquinone dyes [Reactive Blue 4 (RB4), Reactive Blue 19 (RB19), Mordant Red 11 (MR11), Disperse Red 15 (DR15), and Disperse Blue 3 (DB3)] under anaerobic conditions. By supplementing the medium with formate and ferric citrate as the electron donor and acceptor, respectively and cultivating it under the optimum pH (8.0-9.0) and temperature (45 oC), this strain could decolorize these dyes (1000 mg l-1) at the initial color removal rates of 15-126 mg l-1 h-1 and the rates among them were RB19 > RB4 > DB3 > DR15 > MR11. The extent of color removal of these dyes was more than 39% at a dye concentration of 1000 mg l-1.
1-aminoanthraquinone, 2,3-dihydro-9,10-dihydroxy-1,4-anthracenedione, and leuco-1,4-diaminoanthraquinone were detected with GC/MS after color removal from both RB4 and RB19, while 1-hydroxy-9,10-anthracenedione was detected from MR11, 1,4-dihydroxy-9,10-anthracenedione and 2,3-dihydro-9,10-dihydroxy-1,4- anthracenedione were detected from DR15, and leuco-1,4-diaminoanthraquinone was detected from DB3. Based on the decolorization products, probable pathways for the decolorization of these dyes by this strain were proposed.
第一章 以分子生物技術探討淡水河河口底泥於硫酸還原狀態下五氯酚
脫氯之菌群與菌相研究

一、中文摘要............................................1

二、英文摘要............................................2

三、前言...............................................2

四、材料與方法..........................................6

(一)、實驗底泥之採集與處理..............................6
(二)、淡水河底泥有機質利用及氯酚類化合物分解試驗...........7
(三)、利用分子生物方法探討淡水河口底泥中之五氯酚分解與脫
氯菌群菌相之關聯性................................8
(四)、實驗藥品與儀器設備...............................17
(五)、完整之實驗架構圖.................................19

五、結果與討論..........................................20

(一)、關渡宮河口底泥混合液在不同培養條件下針對五氯酚之脫氯
情形...........................................20
(二)、以巢式聚合酵素鏈反應技術(nested PCR technique )進行底泥
中五氯酚脫氯菌族群組成分析........................23
(三)、變性度膠體電泳(denaturing gradient gel
electrophoresis; DGGE)與DNA選殖(DNA clonin).....27
(四)、結語............................................32

六、參考文獻............................................32


第二章 中油熱交換冷卻循環系統管線腐蝕沈積物中微生物對管線腐
蝕影響及菌株分離鑑定之研究

一、中文摘要............................................37

二、英文摘要............................................40

三、前言...............................................40

四、材料方法............................................43

(一)、.冷卻水與附著沈積物採樣方法.......................43
(二)、最大可能數(most probable number; MPN)之方法.....44
(三)、培養基成分與配製.................................46
(四)、本實驗所使用之標準菌株............................48
(五)、DNA萃取與PCR實驗方法..............................49
(六)、實驗中使用之軟鋼試片以及前處理方法..................54
(七)、利用掃瞄式電子顯微鏡觀察菌株外部型態................55
(八)、穿透式電子顯微觀察(負染法).......................56
(九)、軟鋼試片腐蝕後之重量損失測定........................57
(十)、革蘭氏染色(Gram stain)..........................58
(十一)、運動能力測試(motility test......................59
(十二)、DNA 之鹼基組成(G+C mol%).......................59
(十三)、Quinone 樣品分析-TLC + HPLC 方法................60
(十四)、脂肪酸(fatty acid)樣品分析-GC/MS...............61
(十五)、多醣類聚合物分解及酵素活性測試.....................61
(十六)、Sufur 還原能力之測試.............................62
(十七)、電子接受者之測試.................................63
(十八)、DNA-DNA雜合(hybridization)....................64
(十九)、基質利用(Substrates utilization)測試及酵素活性分析
(Enzyme assays).................................67
(二十)、金屬腐蝕研究流程圖...............................68
(二十一)、Shewanella 菌株鑑定研究流程圖..................69

五、結果討論..............................................71

(一)、中油冷卻循環水系統金屬腐蝕硫酸還原菌研究..............71
(二)、中油金屬腐蝕沈積物中菌株之分離純化...................78
(三)、鐵還原菌S. dcolorationis NTOU1之外在型態(morphology)
及細胞組成特性(cellular properties)鑑定...........97
(四)、鐵還原菌Shewanella sp. NTOU1之生理(physiological)生
化(biochemical)特性探討............................99
(五)、鐵還原菌Shewanella sp. NTOU1之生化分類
(chemotaxonomy)特性探討............................101
(六)、鐵還原菌S. dcolorationis NTOU1之基因親源關係
(phylogenetic analysis)鑑定......................102
(七)、鐵還原菌Shewanella decolorationis NTOU1之特性語....104

六、參考文獻..............................................105


第三章 菌株S. dcolorationis NTOU1於偶氮染劑(azo dyes)、
三酚甲烷染劑(triphenylmethane dyes)以及蔥?染劑
(anthraquinone dyes)生物降解脫色之研究

一、中文摘要.............................................110

二、英文摘要.............................................113

三、前言.................................................115

四、材料方法.............................................125

(一)、偶氮染劑(azo dyes)、三酚甲烷染劑(triphenylmethane
dyes)以及蔥?染劑(anthraquinone dyes)結構特
性...............................................125
(二)、苯胺(aromatic amine)化合物......................128
(三)、聚合?鏈反應(PCR)測試放大菌株S. decolorationis
NTOU1中之偶氮還原酵素(azo reductase).............129
(四)、蔥?染劑(anthraquinone dye)水解活化測試...........129
(五)、菌株來源..........................................130
(六)、培養基成分........................................130
(七)、染劑脫色之培養條件.................................130
(八)、電子提供者與電子接受者對染劑脫色之影響................132
(九)、染劑脫色之最適溫度以及最適酸鹼度.....................132
(十)、測試偶氮染劑(azo dyes)、三酚甲烷染劑
(triphenylmethane dyes)以及蔥?染劑(anthraquinone
dyes)在不同濃度下對脫色之影響.......................132
(十一)、結晶紫染劑脫色後產生之二氧化碳(CO2)及氨氮(NH3)之
定量分析...........................................133
(十二)、偶氮染劑(azo dyes)、三酚甲烷染劑(triphenylmethane
dyes)與蔥?染劑(anthraquinone dyes)代謝產物分析方
法................................................134
(十三)、細胞毒性分析(cytotoxicity)與抗菌測試(antimicrobial)
實驗...............................................135

五、結果與討論............................................136

(一)、偶氮染劑..........................................136
1.菌株S. dcolorationis NTOU1生物降解偶氮染劑(azo dye)....136
2.菌株S. dcolorationis NTOU1將剛果紅(congo red)脫色降解之
最適溫度及pH 值.........................................137
3.不同電子接受者對菌株S. dcolorationis NTOU1將剛果紅
(congo red)脫色降解之影響...............................139
4.氫氣(H2)及其他碳源對菌株S. dcolorationis NTOU1將剛果紅
(congo red)脫色降解之影響...............................140
5.剛果紅(congo red)經菌株S. dcolorationis NTOU1生物降解後
代謝產物GC/MS 分析結果...................................144
6.菌株S. dcolorationis NTOU1與其他Shewanella 屬菌株之脫色能
力比較..................................................147
7.結論...................................................148

(二)、三苯甲烷染劑.........................................148
1.利用菌株S. dcolorationis NTOU1分解三苯甲烷染劑
(triphenylmethene dye).................................148
2.比較菌株S. dcolorationis NTOU1和其他報告中細菌或真菌之脫
色能力..................................................149
3.菌株S. decolorationis NTOU1將結晶紫(crystal violet)脫色之
最適條件................................................152
4.結晶紫經菌株S. dcolorationis NTOU1生物降解後代謝產物
GC/MS分析結果...........................................155
5.孔雀綠(malachite green)經菌株S. dcolorationis NTOU1的脫
色降解產物GC/MS 分析結果.................................158
6.甲基紫B(methyl violet B)經菌株S. dcolorationis NTOU1的
脫色降解產物GC/MS 分析結果...............................162
7.結晶紫、孔雀綠與甲基紫經菌株S. decolorationis NTOU1生物降
解後代謝產物生成與時間之關連性(GC/MS分析)..................165
8.結晶紫、孔雀綠與甲基藍經菌株S. dcolorationis NTOU1脫色前
後細胞毒性(cytotoxicity)與微生物抗性(antimicrobial)測
試.....................................................172
9.過前人研究研究發表之菌株與菌株S. dcolorationis NTOU1對三
苯甲烷脫色降解能力之比較.................................179
10.結論.................................................181

(三)、蔥?染劑………………………………………..………….……..183
1.菌株S. dcolorationis NTOU1生物降解蔥?染劑(anthraquinone
dye..................................................184
2.菌株S. dcolorationis NTOU1生物降解蔥?染劑(anthraquinone
dye)之最適溫度(optimum temperature)及最適酸鹼度
(optimum pH)........................................184
3.電子接受者以及電子提供者對菌株S. dcolorationis NTOU1生
物降解蔥?染劑(anthraquinone dye)之影響...............185
4.不同濃度之生物降解蔥?染劑(anthraquinone dye)對菌株
S. dcolorationis NTOU1生物脫色之影響...................185
5.蔥?染劑脫色(anthraquinone dye)產物代謝途徑............193
6.結論..................................................195

六、參考文獻.............................................195
第一章 參考文獻

王一雄。1997。工業化學品土壤污染。土壤環境污染與農藥。國立編譯館。台北。155-200頁。
林畢修平、張裕釧、蔡慧穎。2000。環境中含氯有機污染源生物復育之可行性介紹。微生物與環境荷爾蒙研討會論文集。66-84頁。
張晉峰。1999。曾文溪底泥中硫酸還原菌的分離鑑定及菌群分佈的探討。碩士論文。中華民國,台灣,海洋大海洋生物研究所。I-Ⅴ,1-106頁。
郭加恩。1995。氯酚類在厭氧河口底泥之生物分解。碩士論文。中華民國,台灣,海洋大海洋生物研究所。I-Ⅳ,1-67頁。
郭烈銘。1990。有害物質滲漏地下水層污染調查研究報告。行政院環保署。35-36頁。
Adrian, L., Szewzyk, U., Wecke, J., Gorisch, H., 2000. Bacterial dehalorespiration with chlorinated benzenes. Nature 408, 580-583.
Alleman, B.C., Logan, B.E., Gilbertson, R.L., 1992. Toxicity of pentachlorophenol to six species of white rot fungi as a function as a function of chemical does. Appl. Environ. Microbiol. 58, 4048-4050.
Bak, F., Widdel, F., 1986. Anaerobic degradation of phenol and phenol derivates by Desulfobacterium phenolicum sp. nov. Arch. Microbiol. 146, 177-180.
Ballerstedt, H., Hantke, J., Bunge, M., Werner, B., Gerritse, J., Andreesen, J. R., Lechner, U., 2004. Properties of a trichlorobenzo-p-dioxin-dechlorinating mixed culture with a Dehalococcoides as putative dechlorinating species. FEMS Microbiol. Ecol. 47, 223-234.
Borthwick, P.W., Schimmel, S.C., 1978. Toxicity of pentachlorophenol and related compounds to earlylife stages of selected estuarine animals. In: Ranga Rao K. (Ed.). Pentachlorophenol, chemistry, pharmacology and environmental toxicology. Plenum Press, New York, USA, pp. 141-146.
Bouchard, B., Beaudet, R., Villemur, R., McSween, G., Lepine, F., Bisaillon, J.G., 1996. Isolation and characterization of Desulfitobacterium frappieri sp. nov., an anaerobic bacterium which reductively dechlorinates pentachlorophenol to 3-chlorophenol. Int. J. Syst. Bacteriol. 46, 1010-1015.
Bunge, M., Adrian, L., Kraus, A., Opel, M., Lorenz, W.G., Andreesen, J.R., Gorisch, H., Lechner, U., 2003. Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium. Nature 421, 357-60.
Chrisiansen, N., Ahring., B.K., 1996. Desulfitobacterium hafniense sp. nov., an anaerobic, reductively dechlorinating bacterium. Int. J. Syst. Bacteriol. 46, 442-448.
Christiansen, N., Ahring, B.K., 1996. Desulfitobacterium hafniense sp. nov., an anaerobic, reductively dechlorinating bacterium. Int. J. Syst. Bacteriol. 46, 442-448.
Christopher, S.M., Jones, W.J., Caroline, T.S., 2003. H2 consumption during the microbial reductive dehalogenation of chlorinated phenols and tetrachloroethene. Biodegradation 14, 285-295.
Devereux, R., Delaney, M., Widdel, F., Stahl, D.A., 1989. Natural relationship among sulfate-reducing eubacteria. Syst. Appl. Microbiol. 171, 6689-6695.
Devereux, R., Kane, M.D., winfrey, J., Stahl, D.A., 1992. Genus- and group-specific hybridization probes for determinative and environmental studies of sulfate-reducing bacteria. Syst. Appl. Microbiol. 15, 601-609.
Drzyzga, O., Gerritse, J., Dijk, J.A., Elissen, H., Gottschal, J.C., 2001. Coexistence of a sulphate-reducing Desulfovibrio species and the dehalorespiring Desulfitobacterium frappieri TCE1 in defined chemostat cultures grown with various combinations of sulphate and tetrachloroethene. Environ. Microbiol. 3, 92-99.
Drzyzga, O., Gottschal, J.C., 2002. Tetrachloroethene dehalorespiration and growth of Desulfitobacterium frappieri TCE1 in strict dependence on the activity of Desulfovibrio fructosivorans. Appl. Environ. Microbiol. 68, 642-649.
El Fantroussi, S., Naveau, H., Agathos, S. N., 1998. Anaerobic dechlorinating bacteria. Biotechnol. Prog. 14, 67-188.
Fennell, D.E., Rhee, S.K., Ahn, Y.B., Haggblom, M.M., Kerkhof, L.J., 2004. Detection and characterization of a dehalogenating microorganism by terminal restriction fragment length polymorphism fingerprinting of 16S rRNA in a sulfidogenic, 2-bromophenol-utilizing enrichment. Appl. Environ. Microbiol. 70, 1169-1175.
Gerritse, J., Renard, V., Gome, T.M.P., Lawson, P.A., Collins, M.D., Gottschal, J.C., 1996. Desulfitobacterium sp. strain PCE1, an anaerobic Bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Arch. Microbiol. 165, 132-140.
Goeriltz, D.F., Troutman, D.E., Godsy, E.M., Franks, B.J., 1985. Migration
of wood-preserving chemicals in contaminated groundwater in a sand
aquifer at Pensacola. Florida. Environ. Sci. 19, 955-961.
Haggblom, M.M., Rivera, M.D., Young, L.Y., 1993. Effects of auxiliary carbon sources acceptors on methanogenic degradation of chlorinated phenols. Environ. Toxicol. Chem. 12, 1395-1403.
Haggblom, M.M., Young, L.Y., 1995. Anaerobic degradation of halogenated phenols by sulfate-reducing consortia. Appl. Environ. Microbiol. 61, 1546-1550.
Jorgensen, B.B., 1982. Mineralization of organic matter in the sea-bed - The role of sulphate reduction. Nature. 296, 643-645.
Kohring, G..W., Zhang, X., Wiegel, J., 1989. Anaerobic dechlorination of 2,4-dichlorophenol in freshwater sediment in the presence of sulfate. Appl. Environ. Microbiol. 55, 2735-2737.
Kengen, S.W.M., Breidenbach, C.G., Felske, A., Stams, A.J.M., Schraa, G., de Vos, W.M., 1999. Reductive dechlorination of tetrachloroethene to cis-1,2-dichloroethene by a thermophilic anaerobic enrichment culture. Appl. Environ. Microbiol. 65, 2312-2316.
Krumholz, L.R., 1997. Desulfuromonas chloroethenica sp. nov. uses tetrachloroethylene and trichloroethylene as electron acceptors. Int. J. Syst. Bacteriol. 47, 1262-1263.
Loffler, F.E., Sun, Q., Tiedje, J.M., 2000. 16S rRNA gene-base detection of
Tetrachloroethene-dechlorinating Desulfuronomas and Dehalococcoides species. Appl. Environ. Microbiol. 66, 1369-1374.
Liu, S.M., Kuo, C.E., Hsu, T.B., 1996. Reductive dechlorination of chlorophenols and pentachlorophenol in anoxic estuarine sediments. Chemosphere 32, 1287-1300.
Mackiewicz, M., Wiegel, J., 1998. Comparison of energy and growth yields for Desulfitobacterium dehalogenans during utilization of chlorophenol and various traditional electron acceptors. Appl. Environ. Microbiol. 64, 352-355.
Maymo-Gatell, X., Anguish, T., Zinder, S.H., 1999. Reductive dechlorination of chlorinated ethenes and 1,2-dichloroethane by “Dehalococcoides ethenogenes” 195. Appl. Environ. Microbiol. 65, 3108-3113.
Nilsen, R.K., Beeder, J., Thorstenson, T., Torsvik, T., 1996. Distribution of thermophilic marine sulfate reducers in north sea oil reservoirs. Appl. Environ. Micribiol. 62, 1793-1798.
Patel, G.B., Agnew, B.J., Dicaire, C.J.,1991. Inhibition of pure cultures of methanogens by benzene ring compounds. Appl. Environ. Microbiol. 57, 2969-2974.
Postgate, J.R., 1984. The sulphate-reducing bacteria. 2nd ed. Cambridge, Unviversity press.
Purdy, K.J., Nedwell, D.B., Embley, T.M., Takii, S., 2001. Using 16S rRNA-targeted oligonucleotide probes to investigate the distribution of sulfate-reducing bacteria in a Japanese estuary. FEMS Microbiol. Ecol. 36, 165-168.
Rooney-Varga, J.N., Genthner, B.R.G., Devereux, R., Willis, S.G., Friedman, S.D., Hine, M.E., 1998. Phylogenetic and physiological diversity sulfate-reducing bacteria isolated from a salt marsh sediment. Syst. Appl. Microbiol. 21,557-568.
Ruckdeschel, G., Renner, G., 1987. Effects of pentachlorophenol and some of its know and possible metablites on different species of bacteria. Appl. Environ. Microbiol. 53, 2689-2692.
Ruzgas, T., Emneus, J., Gorton, L., Marko, V.G., 1995. The development of a peroxidase biosensor for monitoring phenol and related aromatic compounds. Anal. Chem. Acta. 31, 245–253.
Sanford, R.A., Cole, J.R., Loffler, F.E., Tiedje, J.M., 1996. Character-azation of Desulfitobacterium chlororespirans sp nov.,which grows by coupling the oxidation of lactate to the reductive dechlorination of 3-chloro-4-hydroxybenzoate. Appl. Envrion. Microbiol. 62, 3800-3808.
Schnell, S., Bak, F., Pfenning, N., 1989. Anaerobic degradation of aniline and dihydroxybenzenes by newly isolated sulfate-reducing bacteria and description of Desulfobacterium aniline. Arc. Microbiol. 152, 556-563.
Shelton, D.R., Tiedje, J.M., 1984. Isolation and partial characterization
of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic
acid. Appl. Environ. Micribiol. 48, 840-848.
Skyring, G.W., 1987. Sulfate reduction in coastal ecosytems. Geomicrobiol. J. 5, 295-374.
Singleton, R.J., 1993. The sulfate-reducing bacteria: an overview. In: Odom, J.M., Singleton, R. (Eds.). The sulfate-reducing bacteria: contemporary perspectives. Jr. Springer-Verlag, Inc. New York, USA, pp. 1-20.
Sunito, L.R., shiu, W.Y., Mackay, D., 1988. A review of the nature and Properties of chemicals present in pulp mill effluents. Chemosphere 17, 1249-1290.
Takii, S., Fukui, M., 1991. Relative importance of methanogenesis, sulfate reduction and denitrification in sediments of the lower Tama river. Bull. Jap. Soc. Micribiol. Ecol. 6, 1-8.
Tam, T.Y., Trevor, J.T., 1981. Toxicity of pentachlorophenol to Azotobacter vinelandii. Bill. Environ. Contamin. Toxicol. 27, 230-234.
Tartakovsky, B., Manuel, M.F., Beaumier, D., Greer, C.W., Guiot, S.R., 2001. Enhanced selection of an anaerobic pentachlorophenol-degrading consortium. Biotech. Bioeng. 73, 476–483.
Vallecillo, A., Garcia-Encina, P.A., P?na, M., 1999. Anaerobic biodegradability and toxicity of chlorophenols. Wat. Sci. Tech. 40, 161–168.
Widdle, F., 1988. Microbiology and ecology of sulfate- and sulfur-reducing bacteria. In: Zehnder, A.J.B. (Ed.). Biology of anaerobic microorganisms. John Wiley & Sons, Inc. New York,USA, pp. 469-585.
Xie, T.M., Abrahamsson, K., Fogelqvist, E., Josefsson, B., 1986. Distribution of chlorophenolic in a marine environment. Environ. Sci. Technol. 20, 457-463.
Ye, F.X., Shen, D.S., 2004. Acclimation of anaerobic sludge degrading chlorophenols and the biodegradation kinetics during acclimation period. Chemosphere 54, 1573-1580.
Yokoyama, M.T., Johnson, K.A., Gierzak, J., 1988. Sensitivity of ruminal microorganisms to pentachlorophenol. Appl. Environ. Micribiol. 54, 2619-2624.
Zhang, X., Wiegel, J., 1990. Sequential anaerobic degradation of 2,4-dichlorophenol
in freshwater sediment. Appl. Environ. Microbiol. 56, 1119-1127.


第二章 參考文獻

陳致戎。1993。軟鋼在厭氧海水中生物腐蝕之研究。碩士論文。中華民國,台灣,海洋大學海洋生物研究所。1-52頁。
Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J., 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Res. 25, 3389–3402.
Beloglazov, S.M., Dzhafarov, Z.I., Polyakov, V.N., Demushin, N.N., 1991. Quaternary ammonium salts as corrosion inhibitors of steel in the presence of sulfate-reducing bacteria. Prot Met (USSR) 27, 810-813.
Borenstein, S.W., 1994. Microbiologically influenced corrosion handbook. Woodhead, Cambridge, England.
Brettar, L., Christen, R., Hofle, M.G., 2002. Shewanella denitrificans sp. nov., a vigorously denitrifying bacterium isolated from the oxic-anoxic interface of the Gotland Deep in the central Baltic Sea. Int. J. Syst. Evol. Microbiol. 52, 2211-2217.
Caccavo, F., Schamberger, P.C., Keidong, K., Nielsen, P.H., 1997. Role of hydrophobicity in adhesion of the dissimilatory Fe(III)-reducing bacterium Shewanella alga to amorphous Fe(III) oxide. Appl. Environ. Microbiol. 63, 3837-3843.
Carpentier, W., Sandra, K., De Smet, I., Brige, A., De Smet, L., Van Beeumen, J., 2003. Microbial reduction and precipitation of vanadium by Shewanella oneidensis. Appl. Environ. Microbiol. 69, 3636-3639.
Cervantes, F.J., van der Velde, S., Lettinga, G., Field, J.A., 2000. Competition between methanogenesis and quinone respiration for ecologically important substrates in anaerobic consortia. FEMS Microbiol. Ecol. 34, 161-171.
DiChristina, T.J., Delong, E.F., 1993. Design and application of rRNA-targeted oligonucleotide probes for the dissimilatory iron- and manganese-reducing bacterium Shewanella putrefaciens. Appl. Environ. Microbiol. 49, 711-745.
Dubiel, M., Hsu, C.H., Chien, C.C., Mansfeld, F., Newman, D.K., 2002. Microbial iron respiration can protect steel corrosion. Appl. Environ. Microbiol. 68, 1440-1445.
Eden, P.E., Schmidt, T.M., Blakemore, R.P., Pace, N.R., 1991. Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase reaction-amplified 16S rRNA-specific DNA. Int. J. Syst. Bacteriol. 41, 324-325.
Ezaki, T., Hashimoto, Y., Yabuuchi, E., 1989. Fluorometric deoxyribonucleic acid-
deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol. 39, 224-229.
Feio, M.J., Rainha, V., Reis, M.A., Lino, A.R., 2000. The Influence of the Desulfovibrio desulfuricans ATCC 27774 on the Corrosion of Mild Stell. FITE Mater. Corros. 51, 691-697.
Gherna, R., Pienta, P., Cote, R., 1992. American type culture collection catalogue of bacteria and phages. 18th edn. American type culture collection, Rockville, Md.
Hamilton,W.A., 1998. Bioenergetics of sulphate-reducing bacteria in relation to their environmental impact. Biodegradation 9, 201-212.
Hamilton,W.A., 2003. Microbially infiuenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis. Biofouling 19, 65-76.
Hernandez, M.E., Kappler, A., Newman, K., 2004. Phenazines and other redox-active antibiotics promote microbial mineral reduction. Appl. Environ. Microbiol. 70, 921-928.
Hoppert, M., Holzenburg, A., 1998. Electron microscopy in microbiology. BIOS scientific publisher, UK.
Jeanmougin, F., Thompson, J.D., Gouy, M., Higgins, D.G., Gibson, T.J., 1998. Multiple sequence alignment with Clustal X. Trends. Biochem. Sci. 23, 403–
405.
Kato, C., Li, L., Nogi, Y., Nakamura, Y., Tamaoka, J., Horikoshi, K., 1998. Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl. Environ. Microbiol. 64, 1510–1513.
Kato, C., Nogi, Y., 2001. Correlation between phylogenetic structure and function: examples from deep-sea Schewanella. FEMS Microbiol. Ecol. 35, 223-230.
Lee, W., Andowski, Z.L., Nielsen, P.H., Hamilton, W.A., 1995. Role of sulphate-reducing bacteria in corrosion of mild steel: A review. Biofouling 8, 165-194.
Lee, A.K., Buehler, M.G., Newman, D.K., 2006a. Influence of a dual-species biofilm on the corrosion of mild steel. Corrosion Science 46, 165-178.
Lee, Y.H., Matthews, R.D., Pavlostathis, S.G., 2006b. Biological decolorization of reactive anthraquinone and phthalocyanine dyes under various oxidation-reduction conditions. Water Environ. Res. 78, 156-169.
Li, L., Kato, C., Horikoshi, K., 1999. Microbial diversity in sediments collected from the deepest cold-seep area, the Japan Trench at a depth of 6400 m. Mar. Biotechnol. 1, 391-400.
Licina, G.J., 1988. Sourcebook for microbiologically influenced corrosion in nuclear power plants RP 2812-2. Electric Power Research Institute, Palo Alto, Calif.
Liu,H., Xu, L., Zeng, J., 2000. Role of corrosion products in biofilms in microbiologically induced corrosion of carbon steel. Brit. Corros. J. 35 (2), 131-135.
Lovley, D.R., Phillips, E.J.P., 1988. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54, 1472-1480.
Lovley, D.R., Phillips, E.J.P., Gorby, Y.A., Landa, E.R., 1991. Microbial reduction of uranium. Nature 350, 413-416.
Lloyd, J.R., Macaskie, L.E., 1996. A novel phosphoimager-based technique for monitoring the microbial reduction of technetium. Appl. Environ. Microbiol. 62, 578-582.
Lovley, D.R., Holmes, D.E., Nevin, K.P., 2004. Dissimilatory Fe(III) and Mn(IV) reduction. Adv. Microb. Physiol. 49, 219-286.
Maiers, D.T., Wichlacz, P.L., Thompson, D.L., Bruhn, D.F., 1988. Selenate reduction by bacteria from a selenium-rich environment. Appl. Environ. Microbiol. 54, 2591-2593.
Miller, J.D.A., 1981. Metals. In: Rose, A.H. (Ed.). Microbial biodeterioration. Academic Press, New York, USA, pp. 149-202.
Moser, D.P., Nealson, K.H., 1996. Growth of the facultative anaerobe Shewanella putrefaciens by elemental sulfur reduction. Appl. Environ. Microbiol. 62, 2100-2105.
Murray, W.A., Wood, Keieg, N.R. (Eds.). Methods of General Molecule & Bacteriology. American society for Microbiology. Washington, D.C.
Myers, J.M., Antholine, W.E., Myers, C.R., 2004. Vanadium (V) reduction by Shewanella oneidensis MR-1 requires menaquinone and cytochromes from the cytoplasmic and outer membranes. Appl. Environ. Microbiol. 70, 1405-1412.
Myers, C.R., Carstens, B.P., Antholine, W.E., Myers, J.M., 2000. Chromium (VI) reductase activity is associated with the cytoplasmic membrane of anaerobically grown Shewanella putrefaciens MR-1. J. Appl. Microbiol. 88, 98-106.
Nakasone, K., Ikegami, A., Kato, C., Usami, R., Horikoshi, K., 1999. Analysis of cis-elements upstream of the pressure-regulated operon in the deep sea barophilic bacterium Shewanella violacea strain DSS12. FEMS Microbiol. Lett. 176, 351–356.
Nogi, Y., Kato, C., Horikoshi, K., 1998. Taxonomic studies of deep-sea barophilic Shewanella species, and Shewanella violacea sp. nov., a new barophilic bacterial species. Arch. Microbiol. 170, 331–338.
Oremland, R.S., Blum, J.S., Culbertson, C.W., Visscher, P.T., Miller, L.G., Dowdle, P.R., Strohmaier, F.E., 1994. Isolation, growth, and metabolism of an obligately anaerobic, selenate-respiring bacterium, strain SES-3. Appl. Environ. Microbiol. 60, 3011–3019.
Popa, R., Kinkle, B.K., 2000. Discrimination among iron sulfide species formed in microbial cultures. J. Microbiol. Meth. 42, 167-174.
Saffarini, D.A., Blumerman, S.L., Mansoorabadi, K.J., 2002. Role of menaquinones in Fe (Ⅲ) reduction by membrane fractions of Shewanella putrefaciens. J. Bacterio. 184, 846 - 848.
Saito, N., Nei, M., 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406-452.
Saltikov, C.W., Cifuentes, A., Venkateswaran, K., Newman, D.K., 2003. The ars detoxification system is advantageous but not required for As(V) respiration by the genetically trac表 Shewanella species strain ANA-3. Appl. Environ. Microbiol. 69, 2800-2809.
Sambrook, J., Fritsch, E.F., Maniatis, T., 1989. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor, New York, USA.
Stackebrandt, E., Goebel, B.M., 1994. A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44, 846-849.
Tamegai, H., Kato, C., Horikoshi, K., 1998. Pressure-regulated respiratory system in barotolerant bacterium, Shewanella sp. Strain DSS12. J. Biochem. Mol. Biol. Biophys. 1, 213–220.
Venkateswaran, K., Moser, D.P., Dollhopf, M.E., Lies, D.P., Saffarini, D.A., MacGregor, B.J., Ringelberg, D.B., White, D.C., Nishijima, M., Sano, H., Burgkardt, J., Stackebrandt, E., Nealson, K.H., 1999. Polyphasic taxonomy of the genus Schewanella and description of Shewanella oneidensis sp. nov.. Int. J. Syst. Bacteriol. 49, 705-724.
Wang, C.C., Chang, C.W., Chu, C.P., Lee, D.J., Chang, B.-V., Liao, C.S., 2003. Producing hydrogen from wastewater sludge by Clostridium bifermentans. J. Biotechnol. 102, 83-92.
Wayne, L.G., Brenner, D.J., Colwell, R.R., Grimont, P.A.D., Kandler, O., Krichevsky, M.I., Moore, L.H., Moore, W.E.C., Murray, R.G.E., Stackebrandt, E., Starr, M.P., Truper, H.G., 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37, 463–464.
Weimer, P.J., van Kavelaar, M.J., Michel, C.B., Ng, T.K., 1988. Effect of Phosphate on the Corrosion of Carbon Steel and on the Composition of Corrosion Products in Two-Stage Continuous Cultures of Desulfovibrio desulfuricans. Appl. Environ. Microbiol. 54, 386-396.
Xu, M., Guo, J., Cen, Y., Zhong, X., Cao, W., Sun, G., 2005. Shewanella decolorationis sp. nov., a dye-decolorizing bacterium isolated from activated sludge of a waste-water treatment plant. Int. J. Syst. Bacteriol. 55, 363-368.
Xu, M., Guo, J., Zeng, G., Zhong, X., 2006. Decolorization of anthraquinone dye by Shewanella decolorationis S12. Appl. Microbiol. Biotechnol. 71, 246-251.
Zhang, H., Bruns, M.A., Logan, B.E., 2006. Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor. Water Res. 40, 728-734.
Ziemke, F., Hofle, M.G., Lalucat, J., Rosello-Mora, R., 1998. Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov.. Int. J. Syst. Bacteriol. 48, 179-186.


第三章 參考文獻

林家寧。2007。利用奈米級氧化鎂破壞性吸附染料廢水之反應機制。碩士論文。中華民國,台灣,國立中山大學環境工程研究所。
周怡君。2004。在連續之厭氧好氧二階段生物處理系統內利用固定化菌體顆粒同時除去染整廢水色度及COD之研究。碩士論文。中華民國,台灣,私立中華大學土木工程學系
陳致戎。1993。軟鋼在厭氧海水中生物腐蝕之研究。碩士論文。中華民國,台灣,海洋大學海洋生物研究所。1-52頁。
Adreleanu, I., Margineanu, D.G., Vais, H., 1983. Electrochemical conversion in biofuel cells using Clostridium butyricum or Staphylococcus aureus oxford. J Bioelectrochem. Bioenerg.11, 273-277.
Allen, J.L., Hunn, J.B., 1986. Fate and distribution of some drugs used in aquaculture. Vet. Hum. Toxicol. 28, 21-24.
An, S.Y., Min, S.K., Cha, I.H., Choi, Y.L., Cho, Y.S., Kim, C.H., Lee, Y.C., 2002. Decolorization of triphenylmethane and azo dyes by Citrobacter sp. Biotechnol. Lett. 24, 1037-1040.
Arnold, R.G., Hoffmann, M.R., DiChristina, T.J., Picardal, F.W., 1990. Regulation of dissimilatory Fe(III) reduction activity in Shewanella putrefaciens. Appl. Environ. Microbiol. 56, 2811-2817
Aspland, J.R.,1997. Textile Dyeing and Coloration. Research Triangle Park, American Association of Textile Chemists and Colorists, North Carolina, USA.
Azmi, W., Sani, R.K, Banerjee, U.C., 1998. Biodegradation of triphenylmethane dyes. Enzyme Microb. Technol. 22, 185-191.
Banat, I.M., Nigam, P., Singh, D., Marchant, R., 1996. Microbial decolorization of textile-dye-containing effluents: a review. Biores. Technol. 58, 217-227.
Baughman, G.L., Weber, E.J., 1994. Transformation of dyes and related compounds in anoxic sediment-kinetics and products. Environ. Sci. Technol. 28, 267-276.
Beliaev, A.S., Saffarini, D.A., 1998. Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction. J. Bacteriol. 23, 6292-6297
Bennetto, H.P., 1984. Microbial fuel cells. In: Life chemistry reports. London. Harwood Academic., p. 363–453.
Beydilli, I.M., Pavlostathis, S.G., Tincher, W.C., 1998. Decolorization and toxicity screening of selected reactive azo dyes under methanogenic conditions. Water Sci. Technol. 38, 225-232.
Beydilli, I.M., Pavlostathis, S.G., Tincher, W.C., 2000. Biological decolorization of the azo dye Reactive red 2 under various oxidation-reduction conditions. Water Environ. Res. 72, 698-705.
Bond, D.R., Lovley, D.R., 2003. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69, 1548-1555.
Bond, D.R., Lovley, D.R., 2005. Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl. Environ. Microbiol. 71, 2186-2189
Bond, D.R., Holmes, D.E., Tender, L.M., Lovley, D.R., 2002. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295, 483-485
Brown, D., Laboureur, P., 1983. The aerobic biodegradability of primary aromatic amines. Chemophere 12, 405-414.
Brown, D., Hamburger, B., 1987. The degradation of dyestuffs part III-investigation of their ultimate degradability. Chemosphere 16, 1539-1553.
Bumpus, J.A., Brock, B.J., 1988. Biodegradation of crystal violet by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 54, 1143-1150.
Caccavo, F., Debra, J.R., Lonergan, J., Lovley, D.R., Davis , M., Stolz, J.F., 1994. Geobacter sulfurreducens sp. nov., a hydrogen- and acetateoxidising dissimilatory metal-reducing microorganism. Appl. Environ. Microbiol. 60, 3752-3759.
Caccavo, J.F., Coates, J.D., Rossello-Mora, R.A., Ludwig, W., Schleifer, K.H., Lovley, D.R., Mcinerney, M.J., 1996. Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe(III)-reducing bacterium. Arch. Microbiol.165, 370-376.
Cervantes F.J., Duong-Dac T., Ivanova A.E., Roest K., Akkermans A.D.L., Lettinga G., 2003. Selective enrichment of Geobacter sulfurreducens from anaerobic granular sludge with quinones as terminal electron acceptors. Biotechnol. Lett. 25, 39-45.
Chaudhuri, S.K., Lovley, D.R., 2003. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnol. 21, 1229-1232
Cha, C.J., Doerge, D.R., Cerniglia, C.E., 2001. Biotransformation of Malachite green by the fungus Cunninghamella elegans. Appl. Environ. Microbiol. 67, 4358-4360.
Chang, J.S., Kuo, T.S., Chao, Y.P., Ho, J.Y., Lin, P.J., 2000. Azo dye decolorization with amutant Escherichia coli strain. Biotechnol. Lett. 22, 807-812.
Chang J.S., Chou C., Lin Y.C., Lin P.J., Ho J.Y., Hu T.L., 2001. Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola. Water Res. 35, 2841-2850.
Chang, J.S., Lin, C.Y., 2001. Decolorization kinetics of a recombinant Escherichia coli strain harboring azo-dye-decolorizing determinants from Rhodococcus sp.. Biotechnol. Lett. 23, 631-636.
Chen K.C., Huang W.T., Wu J.Y., Houng J.Y., 1999. Microbial decolorization of azo dyes by Proteus mirabilis. J. Ind. Microbiol. Biotech. 23, 686-690.
Chen B.Y., 2002. Understanding decolorization characteristics of reactive azo dyes by Pseudomonas luteola: toxicity and kinetics. Process Biochem. 38, 437-346.
Chen, K.C., Wu, J.Y., Liou, D.J., Hwang, S.C.J., 2003. Decolorization of the textile dyes by newly isolated bacterial strains. J. Biotechnol. 101, 57-68.
Chen, K.C., Wu, J.Y., Huang C.C., Liang Y.M., Hwang S.C.J., 2003. Decolorization of azo dye using PVA-immobilized microorganisms. J. Biotechnol. 101, 241-252.
Chen, C.H., Chang, C.F., Ho, C.H., Chi, W.C., Liu, S.M., 2008. Biodegradation of crystal violet by a Shewanella sp. NTOU1. Chemosphere. (accepted)
Choi, Y., Song, J., Jung, S., Kim, S., 2001. Optimization of the performance of microbial fuel cells containing alkalophilic Bacillus sp. J. Microbiol. Biotechnol. 11, 863-869.
Cooling III, F.B., Maloney, C.L., Nagel, E., Tabinowski, J., Odom, J.M., 1996. Inhibition of sulfate reduction by 1,8-dihydroxyanthraquinone and other anthraquinone derivatives. Appl. Environ. Microbiol. 62, 2999-3004.
Cooney, M. J., Roschi, E., Marison, I.W., Comninellis, Ch., Stockar, U.V., 1996. Physiologic studies with the sulfate-reducing bacterium Desulfovibrio desulfuricans: Evaluation for use in a biofuel cell. Enzyme Microb. Technol. 18, 358-365.
Culp, S.J., Beland, F.A., 1996. Malachite green: a toxicological review. J. Am. Coll. Toxicol. 15, 219-238.
Dos Santos, A.B., Bisschops, J.A.E., Cervantes, F.J., Van Lier, J.B., 2005. The transformation and toxicity of anthraquinone dyes during thermophilic (55oC) and mesophilic (30oC) anaerobic treatments. J. Biotechnol. 115, 345-353.
Dubiel, M., Hsu, C.H., Chien, C.C., Mansfeld, F., Newman, D.K., 2002. Microbial iron respiration can protect steel corrosion. Appl. Environ. Microbiol. 68, 1440-1445.
Duggan, O., Allen, S.J, 1997. Study of the physical and chemical characteristics of a range of chemically treated lignite based carbons. Water. Sci. Technol. 35, 21-27.
Epling, G.A., Lin, C., 2002. Photoassisted bleaching of dyes utilizing TiO2 and visible light. Chemosphere 46, 561-570.
Fessard, V., Godard, T., Huet, S., Mourot, A., Poul, J.M., 1999. Mutagenicity of Malachite green and leucoMalachite green in in vitro tests. J. Appl. Toxicol. 19, 421-430.
Field, J.A., Stams, A.J.M., Kato, M., Schraa, G., 1995. Enhanced biodegradation of aromatic pollutant in coculture of anaerobic and aerobic bacterial consortia. Antonie. Van. Leeuwen. 67, 47-77.
Fontenot, E.J., Beydilli, M.I., Lee, Y.H., Pavlostathis, S.G., 2002 Kinetics and inhibition during the decolorization of reactive anthraquinone dyes under methanogenic conditions. Water Sci. Technol. 45, 105-111.
Forgacs, E., Cserhati, T., Oros, G., 2004. Removal of synthetic dyes from wastewaters: a review. Environ. Int. 30, 953 - 971.
Gregory, P., 1993. Dyes and dyes intermediates. In: Kroschwitz JI (Ed.) Encyclopedia of chemical technology, John Wiley& Sons, New York, USA, pp. 544-545.
Hayase, N., Kounoo, K., Ushio, K., 2000. Isolation and characterization of Aeromonas sp. B-5 capable of decolorizing various dyes. J. Biosci. Bioeng. 90, 570-573.
Heidelberg, J.F., Paulsen, I.T., Nelson, K.E., Gaidos, E.J., Nelson, W.C., Read, T.D., Eisen, J.A., Seshadri, R., Ward, N., Methe, B., Clayton, R.A., Meyer, T., Tsapin, A., Scott, J., Beanan, M., Brinkac, L., Daugherty, S., DeBoy, R.T., Dodson, R.J., Durkin, A.S., Haft, D.H., Kolonay, J.F., Madupu, R., Peterson, J.D., Umayam, L.A., White, O., Wolf, A.M., Vamathevan, J., Weidman, J., Impraim, M., Lee, K., Berry, K., Lee, C., Mueller, J., Khouri, H., Gill, J., Utterback, T.R., McDonald, L.A., Feldblyum, T.V., Smith, H.O., Venter, J.C., Nealson, K.H., Fraser, C.M, 2002. Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat. Biotechnol. 20, 1118-1123.
Heider, J., Fuchs, G., 1997. Anaerobic metabolism of aromatic compounds. Eur. J. Biochem. 243, 577-596.
Henderson, A.L., Schmitt, T.C., Heinze, T. M., Cerniglia, C.E., 1997. Reduction of malachite green to leucoMalachite green by intestinal bacteria. Appl. Environ. Microbiol 63, 4099-4101.
Holmes, D.E., Bond, D.R., Lovley, D.R., 2004. Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl. Environ. Microbiol. 70, 1234-1237.
Hong, Y., Chen, X., Guo, J., Xu Z., Xu, M., Sun, G., 2007a.Effects of electron donors and acceptors on anaerobic reduction of azo dyes by Shewanella decolorationis S12. Appl. Microbiol. Biotechnol. 74, 230–238
Hong, Y., Xu, M., Guo, J., Xu, Z., Chen, X., Sun, G., 2007b. Respiration and growth of Shewanella decolorationis S12 with an azo compound as the sole electron acceptor. Appl. Environ. Microbiol. 73, 64–72.
Holmes, D.E., Bond, D.R., O’Neil, R.A., Reimers, C.E., Tender, L.R., Lovley, D.R., 2004. Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb. Ecol. 48, 178-190.
Hu T.L., 1998. Degradation of azo dye RP2B by Pseudomonas luteola. Water Sci. Technol. 38, 299-306.
Hu T.L., 2001. Kinetics of azoreductase and assessment of toxicity of metabolic products from azo dyes by Pseudomonas luteola. Water Sci. Technol. 43, 261-269.
Hyun, M.S., Kim, B.H., Chang, I.S., Park, H.S., Kim, H.J., Kim, G.T., Kim, M.A., Park, D.H., 1999. Isolation and identification of an anaerobic dissimilatory Fe(III)-reducing bacterium, Shewanella putrefaciens IR-1. J. Microbiol. 37, 206-212.
Ieropoulos, I.A., Greenman, J., Melhuish, C., Hart, J., 2005. Comparative study of three types of microbial fuel cell. Enzyme Microb. Technol. 37, 238-245.
Ioannis, A., Ieropoulos, I.A., Greenman, J., Melhuish, C., Hart, J., 2005. Comparative study of three types of microbial fuel cell. Enzyme microbial. Technol. 37, 238-245.
ISO 10993, 2002. Biological evaluation of medical devices-part 5 : Test for in vitro cytotoxicity.
Itoh, K., Yatome, C., Ogawa, T., 1993. Biodegradation of anthraquinone dyes by Bacillus subtilus. Bull. Environ. Contam. Toxicol. 50, 522-527.
Itoh, K., Kitade, Y., Yatome, C., 1996. A pathway for biodegradation of anthraquinone dye, C. I. disperse red 15, by a yeast strain Pichia anomala. Bull. Environ. Contam. Toxicol. 56, 413-418.
Jadhav, J.P., Govindwar, S.P., 2006. Biotransformation of malachite green by Saccharomyces cerevisiae MTCC 463. Yeast 23, 315-323.
Jang, M.S., Lee, Y.M., Kim, C.H., Lee, J.H., Kang, D.W., Kim, S.J., Lee, Y.C., 2005. Triphenylmethane reductase from Citrobacter sp. strain KCTC 18061P: purification, characterization, gene cloning, and over expression of a functional protein in Escherichia coli. Appl. Environ. Microbiol. 71, 7955-7960.
Jefferey, G..H., Bassett, J., Mendham, J., Denney, R.C., 1989. Vogel’s Textbook of Quantitative Chemical Analysis, Fifth ed. Longmann Publishers, UK, pp. 300-302.
Kim, B.H., Kim, H.J., Hyun, M.S., Park, D.S., 1999. Direct electrode reaction of Fe(III) reducing bacterium, Shewanella putrefaciens. J. Microb.Biotechnol. 9, 127–131.
Kim, G.T., Hyun, M.S., Chang, I.S., Kim, H.J., Park, H.S., Kim,B.H., Kim, S.D., Wimpenny, J.W.T., Weightman, A.J., 2005. Dissimilatory Fe(III) reduction by an electrochemically active lactic acid bacterium phylogenetically related to Enterococcus gallinarum isolated from submerged soil. J. Appl. Microbiol. 99, 1365-2672
Kim, H.J., Bennetto, H.P., Halablab, M.A., 1995. A novel liposome-based electrochemical biosensor for the detection of haemolytic microorganisms. Biotechnol. Technique 9, 389-94.
Kim, H.J., Park, H.S., Hyun, M.S., Chang, I.S., Kim, M., Kim, B.H.,2002. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb. Technol. 30, 145-152.
Kim, N., Choi, Y., Jung, S., Kim, S., 2000. Effect of initial carbon sources on the performance of microbial fuel cells containing Proteus vulgaris. Biotechnol. Bioeng. 70, 109-114.
Kim, T.S., Kim, H.Y., Kim, B.H., 1990. Petroleum desulfurization by Desulfovibrio desulfuricans M6 using electrochemically supplied reducing equivalent. Biotechnol. Lett. 12, 757-60.
Kim, T.S. Kim, B.H., 1988. Modulation of Clostridium acetobutylicum fermentation by electrochemically supplied reducing equivalent. Biotechnol. Lett. 10, 123-8.
Koch, A.L., 1993. Growth measurement. In: Gerhadt, p., Murray, R.G..E., Wood, W.A., Krieg, N.R. (Eds.), Methods for General Molecular & Bacteriology. American Society for Microbiology, Washington, DC. pp.248-276.
Kudlich M., Keck, A., Klein, J., Stolz, A., 1997. Localization of the enzyme system involved in anaerobic reduction of azo dyes by Sphingomonas sp. strain BN6 and effect of artificial redox mediators on the rate of azo dye reduction. Appl. Environ. Microbiol. 63, 3691-3694.
Kuhn, E.P., Suflita, J.M., 1989. Anaerobic biodegradation of nitrogen-substituted and sulfonated benzene aquifer contaminants. Hazard. Waste Hazard. Mater. 6, 121-134.
Kwasniewska, K., 1985. Biodegradation of crystal violet (hexamethyl-p-rosaniline chloride) by oxidative red yeast. Bull. Environ. Contam. Toxicol. 34, 323-330.
Lall, R., Mutharasan, R., Shah, Y.T., Dhurjati, P., 2003. Decolorization of the dye, Reactive blue 19, using ozonation, ultrasounds, and utrasounds-enhanced ozonation. Water Environ. Res. 75, 171-170.
Laszlo, J.A., 2000. Regeneration of Azo-Dye-Saturated Cellulosic Anion Exchange Resin by Burkholderia cepacia Anaerobic Dye Reduction. Environ. Sci. Technol. 34, 167-172.
Lee, Y.H., Pavlostathis, S.G., 2004. Decolorization and toxicity of reactive anthraquinone textile dyes under methanogenic conditions. Water Res. 38, 1838-1852.
Lee, Y.H., Matthews, R.D., Pavlostathis, S.G., 2006. Biological decolorization of reactive anthraquinone and phthalocyanine dyes under various oxidation-reduction conditions. Water Environ. Res. 78, 156-169.
Lin, S.H., Chen, M.L., 1997. Treatment of textile wastewater by chemical methods for reuse. Water Res. 31, 868-876.
Liu, H., Ramnarayanan, R., Logan, B.E., 2004. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol. 38, 2281-2285.
Logan, B.E., Murano, C., Scott, K., Gray, N.D., Head, I.M., 2005. Electricity generation from cysteine in a microbial fuel cell. Water Res. 39, 942-952
Lovley, D.R., 1993. Dissimilatory metal reduction. Annu. Rev. Microbiol. 47, 263-299.
Lovley, D.R., Phillips, E.J.P., Lonergan, D.J., 1989 Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens. Appl. Environ. Microbiol. 55, 700-706.
Lovley, D.R., Giovannoni, S.J., White, D.C., Champine, J.E., Phillips, E.J.P., Gorby, Y.A., Goodwin, S., 1993. Geobacter metallireducens gen nov sp nov, a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch. Microbiol. 159, 336-344
Malpei, F., Andreoni, V., Daffonchio, D., Rozzi, A., 1998. Anaerobic digestion of print pastes: a preliminary screening of inhibition by dyes and biodegradability of thickeners. Bioresour. Technol. 63, 49-56.
McDonald, J.J., Cerniglia, C.E., 1984. Biotransformation of gentian violet to leucogentian violet by human, rat, and chicken intestinal microflora. Drug Metab. Dispos. 12, 330-336.
Min, B., Chenga, S., Logan, B.E., 2005. Electricity generation using membrane and salt bridge microbial fuel cells. Water Res. 39, 1675-1686.
Min, B., Logan, B.E., 2004. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ. Sci. Technol. 38, 5809-5841.
Myers, C.R., Myers, J.M., 1992. Localization of cytochromes to the outer membranes of anaerobically grown Shewanella putrefaciens MR-1. J. Bacteriol. 174, 3429-38.
Myers, C.R., Myers, J.M., 1997. Outer membrane cytochromes of Shewanella putrefaciens MR-1: spectral analysis, and purification of the 83-kDA c-type cytochrome. Biochim. Biophys. Acta. 1326, 307–318.
Myers, J., Myers, C., 2001. Role for outer membrane cytochromes OmcA and OmcB of Schewanella putrefaciens MR-1 in reduction of manganese dioxide. Appl. Environ. Microbiol. 67, 260-269.
Nakanishi, M., Yatome, C., Ishida, N., Kitade, Y., 2001. Putative ACP phosphodiesterase gene (acpD) encodes an azoreductase. J. Biol. Chem. 276, 46394-46399.
Newman, D.K., Kolter, R., 2000. A role for excreted quinones in extracellular electron transfer. Nature, 405, 94-97.
Niessen, J., Schroder, U., Scholz, F., 2004. Exploiting complex carbohydrates for microbial electricity generation - a bacterial fuel cell operating on starch. Electro. Commun. 6, 955-958.
Oblinger, J.L., Koburger, J.A., 1975. Understanding and teaching the most probable number technique. J. Milk Food Technol. 38, 540-545.
Ollikka, P., Alhonmaki, K., Leppanen, V.M., Glumoff, T., Raijola, T., Suominen, I., 1993. Decolorization of azo, triphenyl methane, heterocyclic, and polymeric dyes by lignin peroxidase isoenzymes from Phanerochaete chrysosporium. Appl. Environ. Microbiol. 59, 4010–4016.
O’Neill, C., Lopez, A., Esteves, S., Hawkes, F.R., Hawkes, D.L., Wilcox, S., 2000 Azo-dye degradation in an anaerobic-aerobic treatment system operating on simulated textile effluent. Appl. Microbiol. Biotechnol. 53, 249-254.
Panswad, T., Luangdilok, W., 2000. Decolorization of reactive dyes with different molecular structures under different environmental conditions. Water. Res. 34, 4177-4184.
Park, D.H., Zeikus, J.G., 1999. Utilization of electrically reduced neutral red by actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181, 2403-2410.
Park, D.H., Zeikus, J.G.., 2003. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng. 81, 348-355.
Park, D.H. Zeikus, J.G., 2000. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol. 66, 1292-1297.
Park, H.S., Kim, B.H., Kim, H.S., Kim, H.J., Kim, G..T., Kim, M., Chang, I.S., Park, Y.K., Chang, H.I., 2001. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7, 297-306.
Parshetti, G., Kalme, S., Saratale, G., Govindwar, S., 2006. Biodegradation of malachite green by Kocuria rosea MTCC 1532. Acta. Chim. Slov. 53, 492-498.
Pearce, C.I., Lloyd, J.R., Guthrie, J.T., 2003. The removal of color from textile wastewater using whole bacterial cells: a review. Dye. Pig. 58, 179-196.
Pearce, C.I., Christie, R., Boothman, C., von Canstein, H., Guthrie, J.T., and Lloyd, R; 2006. Reactive azo dye reduction by Shewanella strain J18 143. Biotechnol. Bioeng. 95, 692-703.
Pierce, J., 1994. Color in textile effluents-the origins of the problem. J. Soc. Dyers. Color. 110, 131-133.
Rabaey, K., Lissens, G., Siciliano, S.D., Verstraete, W., 2003. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol. Lett. 25, 1531-1535.
Rafii, F., Franklin, W., Cerniglia, C.E., 1990. Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora. Appl. Environ. Microbiol. 56, 2146-2151.
Rajaguru, P., Kalaiselvi, K., Palanivel, M., Subburam, V., 2000. Biodegradation of azo dyes in a sequential anaerobic-aerobic system. Appl. Microbiol. Biotechnol. 54, 268-273.
Rau, J., Knackmuss, H.J., Stolz, A., 2002. Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria. Environ. Sci. Technol. 36, 1497-1504.
Rawson, D.M. Willmer, A.J., 1989. Whole-cell biosensors for environmental monitoring. Biosensors. 4, 299-311.
Razo-Flores, E., Donlon, B.A., Field, J.A., Lettinga, G., 1996. Biodegradability of N-substituted aromatics and alkylphenols under methanogenic conditions using granular sludge. FEMS Microbiol. Rev. 20, 525-538.
Reife, A., 1993. Dyes: environmental chemistry. In: Kroschwitz JI (Ed). Encyclopedia of Chemical Technology. John Wiley& Sons, New York.
Reimers, C.E., Tender, L.M., Ferig, S., Wang, W., 2001. Harvesting energy from the marine sediment–water interface. Environ. Sci. Technol. 35,192–195.
Ren, S., Guo, J., Zeng, G., Sun, G., 2006. Decolorization of triphenylmethane, azo, and anthraquinone dyes by a newly isolated Aeromonas hydrophila strain. Appl. Microbiol. Biotechnol. 72, 1316-1321.
Richardson, N.J., Gardner, S., Rawson, D.M., 1991. A chemically mediated amperometric biosensor for monitoring of eubacterial respiration. J. Appl. Bacteriol. 70, 422-426.
Sani, R.K., Banerjee, U.C., 1999. Decolorization of triphenylmethane dyes and textile dye-stuff effluent by Kurthia sp. Enzyme. Microb. Technol. 24, 433–437.
Sarnaik, S., Kanekar, P., 1999. Biodegradation of methyl violet by Pseudomonas mendocina MCM B-402. Appl. Microbiol. Biotechnol. 52, 251-254.
Seshadri, S., Bishop, P.I., Agha, A.M., 1994. Anaerobic/aerobic treatment of selected azo dyes in wastewater. Waste manage. 15, 127-137.
Sijpesteijn, A.K., 1949. Cellulose-decomposing bacteria from the rumen of cattle. Ant. Van. Leeuwen. 15, 49-52.
Shin, K.S., Kim, C.J., 1998. Decolorization of artificial dyes by peroxidase from the white-rot fungus Pleurotus ostreatus. Biotechnol. Lett. 20, 569-572.
Stolz, A., 2001. Basic and applied aspects in the microbial degradation of azo dyes. Appl. Microbiol. Biotechnol. 56, 69-80.
Subbalakshmi, C., Nagaraj, R., Sitaram, N., 2001. Biological activities of retro and diastereo analogs of a 13-residue peptide with antimicrobial and hemolytic activities. J. Peptide Res. 57, 59-67
Tender, L.M., Reimers, C.E., Stecher III, H.A., Holmes, D.E., Bond, D.R., Lowy, D.A., Pilobello, K., Fertig, S.J., Lovley, D.R., 2002. Harnessing microbially generated power on theseafloor. Nat. Biotechnol. 20, 821–825.
Tayhas, G., Palmore, R., Whitesides, M., 1994. Microbial and enzymatic biofuel cells. In: Himmel ME, Baker JO, Overend RP editors. Enzymatic conversion of biomass for fuels production. American Chemical Society, Washington D.C., USA. pp. 271–290.
Thurston, C.F., Bennetto, H.P., Delaney, G.M., Mason, J.R., Roller, S.D., Stirling, J.L., 1985. Glucose metabolism in a microbial fuel cell. Stoichiometry of product formation in a thionine-mediated Proteus vulgaris fuel cell and its relation to coulombic yields. J. Gen. Microbiol. 131, 1393-1401.
Tsuda, M., Dino, W.A., Kasai, H, 2005. Hydrogenase-based nanomaterials as anode electrode catalyst in polymer electrolyte fuel cells. Solid State Commun. 133, 589-591
Turnipseed, S.B., Poybal, J.E., Rupp, H.S., Hurlbut, J.A., Long, A.R., 1995. Particle beam liquid chromatography-mass spectrometry of triphenylmethane dyes: application to confirmation of Malachite green in incurred catfish tissue. J. Chromatogr. B 670, 55-62.
Vandevivere, P.C., Bianchi, R., Verstraete, W., 1998. Treatment and reuse of wastewater from the textile wet-processing industry; review of emerging technologies. J. Chem. Technol. Biotechnol. 72, 289-302.
van der Zee, F.P., Bouwman, R.H.M., Strik, D.P.B.T., Lettinga, G., Field, J.A., 2001. Application of redox mediators to accelerate the transformation of reactive azo dyes in anaerobic bioreactors. Biotechnol. Bioeng. 75, 691-701.
van der Zee, F.P., 2002. Anaerobic azo dye reduction Ph.D. Thesis Wageningen University, Wageningen, The Netherlands, pp 1-154.
van der Zee, F.P., Bisschops, I.A.E., Lettinga, G., 2003. Activated carbon as an electron acceptor and redox mediator during the anaerobic biotransformation of azo dyes. Environ. Sci. Technol. 37, 402-408.
Vasdev, K., Kuhad, R.C., Saxena, R.K., 1995. Decolorization of triphenylmethane dyes by the birds nest fungus. Cyathus bulleri. Curr. Microbiol. 30, 269–272.
Vega, C.A., Fernandez, I., 1987. Mediating effect of ferric chelate compounds in microbial fuel cells with Lactobacillus plantarum, Streptococcus lactis and Erwinia dissolvens. J. Bioelectrochem. Bioenerg.17, 217–222.
Wong, P.K., Yuen P.Y., 1998. Decolorization and biodegradation of N,N'-dimethly-p-phenylene-diamine by Klebsiella pneumoniae RS-13 and Acetobacter liquefaciens S-1. J. Appl. Microbiol. 85, 79-87.
Xu, M., Guo, J., Cen, Y., Zhong, X., Cao, W., Sun, G., 2005. Shewanella decolorationis sp. nov., a dye-decolorizing bacterium isolated from activated sludge of a waste-water treatment plant. Int. J. Syst. Bacteriol. 55, 363-368.
Xu, M., Guo, J., Zeng, G., Zhong, X., 2005. Decolorization of anthraquinone dyes by Shewanella decolorationis S12. Appl. Microbiol. Biotechnol. 71, 246-251.
Xu, M., Guo, J., Kong, X., Chen, X., Sun, G., 2007. Fe(III)-enhanced azo reduction by Shewanella decolorationis S12. Appl. Microbiol. Biotechnol. 74, 1342–1349.
Yatome, C., Ogawa, T., Koga, D., Idaka, E., 1981. Biodegradability of azo and triphenylmethane dyes by Pseudomonas pseudomallei 13 NA. J. Soc. Dye. Col. 97, 166-169.
Yatome, C., Ogawa, T., Matsui, M., 1991. Degradation of crystal violet by Bacillus subtilus. J. Environ. Sci. Health. A 26, 75-87.
Yatome, C., Yamada, S., Ogawa, T., Matsui, M., 1993. Degradation of crystal violet by Nocardia coralline. Appl. Microbiol. Biotechnol. 38, 565-569.
Yoo E.S., Libra J., Wiesmann U., 2000. Reduction of azo dyes by Desulfovibrio desulfuricans. Water Sci. Technol. 41, 15-22.
Zollinger, H., 1987. Color chemistry, 2nd edn. VCH Publishers, New York, USA.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊