第一章 參考文獻
王一雄。1997。工業化學品土壤污染。土壤環境污染與農藥。國立編譯館。台北。155-200頁。
林畢修平、張裕釧、蔡慧穎。2000。環境中含氯有機污染源生物復育之可行性介紹。微生物與環境荷爾蒙研討會論文集。66-84頁。
張晉峰。1999。曾文溪底泥中硫酸還原菌的分離鑑定及菌群分佈的探討。碩士論文。中華民國,台灣,海洋大海洋生物研究所。I-Ⅴ,1-106頁。郭加恩。1995。氯酚類在厭氧河口底泥之生物分解。碩士論文。中華民國,台灣,海洋大海洋生物研究所。I-Ⅳ,1-67頁。郭烈銘。1990。有害物質滲漏地下水層污染調查研究報告。行政院環保署。35-36頁。
Adrian, L., Szewzyk, U., Wecke, J., Gorisch, H., 2000. Bacterial dehalorespiration with chlorinated benzenes. Nature 408, 580-583.
Alleman, B.C., Logan, B.E., Gilbertson, R.L., 1992. Toxicity of pentachlorophenol to six species of white rot fungi as a function as a function of chemical does. Appl. Environ. Microbiol. 58, 4048-4050.
Bak, F., Widdel, F., 1986. Anaerobic degradation of phenol and phenol derivates by Desulfobacterium phenolicum sp. nov. Arch. Microbiol. 146, 177-180.
Ballerstedt, H., Hantke, J., Bunge, M., Werner, B., Gerritse, J., Andreesen, J. R., Lechner, U., 2004. Properties of a trichlorobenzo-p-dioxin-dechlorinating mixed culture with a Dehalococcoides as putative dechlorinating species. FEMS Microbiol. Ecol. 47, 223-234.
Borthwick, P.W., Schimmel, S.C., 1978. Toxicity of pentachlorophenol and related compounds to earlylife stages of selected estuarine animals. In: Ranga Rao K. (Ed.). Pentachlorophenol, chemistry, pharmacology and environmental toxicology. Plenum Press, New York, USA, pp. 141-146.
Bouchard, B., Beaudet, R., Villemur, R., McSween, G., Lepine, F., Bisaillon, J.G., 1996. Isolation and characterization of Desulfitobacterium frappieri sp. nov., an anaerobic bacterium which reductively dechlorinates pentachlorophenol to 3-chlorophenol. Int. J. Syst. Bacteriol. 46, 1010-1015.
Bunge, M., Adrian, L., Kraus, A., Opel, M., Lorenz, W.G., Andreesen, J.R., Gorisch, H., Lechner, U., 2003. Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium. Nature 421, 357-60.
Chrisiansen, N., Ahring., B.K., 1996. Desulfitobacterium hafniense sp. nov., an anaerobic, reductively dechlorinating bacterium. Int. J. Syst. Bacteriol. 46, 442-448.
Christiansen, N., Ahring, B.K., 1996. Desulfitobacterium hafniense sp. nov., an anaerobic, reductively dechlorinating bacterium. Int. J. Syst. Bacteriol. 46, 442-448.
Christopher, S.M., Jones, W.J., Caroline, T.S., 2003. H2 consumption during the microbial reductive dehalogenation of chlorinated phenols and tetrachloroethene. Biodegradation 14, 285-295.
Devereux, R., Delaney, M., Widdel, F., Stahl, D.A., 1989. Natural relationship among sulfate-reducing eubacteria. Syst. Appl. Microbiol. 171, 6689-6695.
Devereux, R., Kane, M.D., winfrey, J., Stahl, D.A., 1992. Genus- and group-specific hybridization probes for determinative and environmental studies of sulfate-reducing bacteria. Syst. Appl. Microbiol. 15, 601-609.
Drzyzga, O., Gerritse, J., Dijk, J.A., Elissen, H., Gottschal, J.C., 2001. Coexistence of a sulphate-reducing Desulfovibrio species and the dehalorespiring Desulfitobacterium frappieri TCE1 in defined chemostat cultures grown with various combinations of sulphate and tetrachloroethene. Environ. Microbiol. 3, 92-99.
Drzyzga, O., Gottschal, J.C., 2002. Tetrachloroethene dehalorespiration and growth of Desulfitobacterium frappieri TCE1 in strict dependence on the activity of Desulfovibrio fructosivorans. Appl. Environ. Microbiol. 68, 642-649.
El Fantroussi, S., Naveau, H., Agathos, S. N., 1998. Anaerobic dechlorinating bacteria. Biotechnol. Prog. 14, 67-188.
Fennell, D.E., Rhee, S.K., Ahn, Y.B., Haggblom, M.M., Kerkhof, L.J., 2004. Detection and characterization of a dehalogenating microorganism by terminal restriction fragment length polymorphism fingerprinting of 16S rRNA in a sulfidogenic, 2-bromophenol-utilizing enrichment. Appl. Environ. Microbiol. 70, 1169-1175.
Gerritse, J., Renard, V., Gome, T.M.P., Lawson, P.A., Collins, M.D., Gottschal, J.C., 1996. Desulfitobacterium sp. strain PCE1, an anaerobic Bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Arch. Microbiol. 165, 132-140.
Goeriltz, D.F., Troutman, D.E., Godsy, E.M., Franks, B.J., 1985. Migration
of wood-preserving chemicals in contaminated groundwater in a sand
aquifer at Pensacola. Florida. Environ. Sci. 19, 955-961.
Haggblom, M.M., Rivera, M.D., Young, L.Y., 1993. Effects of auxiliary carbon sources acceptors on methanogenic degradation of chlorinated phenols. Environ. Toxicol. Chem. 12, 1395-1403.
Haggblom, M.M., Young, L.Y., 1995. Anaerobic degradation of halogenated phenols by sulfate-reducing consortia. Appl. Environ. Microbiol. 61, 1546-1550.
Jorgensen, B.B., 1982. Mineralization of organic matter in the sea-bed - The role of sulphate reduction. Nature. 296, 643-645.
Kohring, G..W., Zhang, X., Wiegel, J., 1989. Anaerobic dechlorination of 2,4-dichlorophenol in freshwater sediment in the presence of sulfate. Appl. Environ. Microbiol. 55, 2735-2737.
Kengen, S.W.M., Breidenbach, C.G., Felske, A., Stams, A.J.M., Schraa, G., de Vos, W.M., 1999. Reductive dechlorination of tetrachloroethene to cis-1,2-dichloroethene by a thermophilic anaerobic enrichment culture. Appl. Environ. Microbiol. 65, 2312-2316.
Krumholz, L.R., 1997. Desulfuromonas chloroethenica sp. nov. uses tetrachloroethylene and trichloroethylene as electron acceptors. Int. J. Syst. Bacteriol. 47, 1262-1263.
Loffler, F.E., Sun, Q., Tiedje, J.M., 2000. 16S rRNA gene-base detection of
Tetrachloroethene-dechlorinating Desulfuronomas and Dehalococcoides species. Appl. Environ. Microbiol. 66, 1369-1374.
Liu, S.M., Kuo, C.E., Hsu, T.B., 1996. Reductive dechlorination of chlorophenols and pentachlorophenol in anoxic estuarine sediments. Chemosphere 32, 1287-1300.
Mackiewicz, M., Wiegel, J., 1998. Comparison of energy and growth yields for Desulfitobacterium dehalogenans during utilization of chlorophenol and various traditional electron acceptors. Appl. Environ. Microbiol. 64, 352-355.
Maymo-Gatell, X., Anguish, T., Zinder, S.H., 1999. Reductive dechlorination of chlorinated ethenes and 1,2-dichloroethane by “Dehalococcoides ethenogenes” 195. Appl. Environ. Microbiol. 65, 3108-3113.
Nilsen, R.K., Beeder, J., Thorstenson, T., Torsvik, T., 1996. Distribution of thermophilic marine sulfate reducers in north sea oil reservoirs. Appl. Environ. Micribiol. 62, 1793-1798.
Patel, G.B., Agnew, B.J., Dicaire, C.J.,1991. Inhibition of pure cultures of methanogens by benzene ring compounds. Appl. Environ. Microbiol. 57, 2969-2974.
Postgate, J.R., 1984. The sulphate-reducing bacteria. 2nd ed. Cambridge, Unviversity press.
Purdy, K.J., Nedwell, D.B., Embley, T.M., Takii, S., 2001. Using 16S rRNA-targeted oligonucleotide probes to investigate the distribution of sulfate-reducing bacteria in a Japanese estuary. FEMS Microbiol. Ecol. 36, 165-168.
Rooney-Varga, J.N., Genthner, B.R.G., Devereux, R., Willis, S.G., Friedman, S.D., Hine, M.E., 1998. Phylogenetic and physiological diversity sulfate-reducing bacteria isolated from a salt marsh sediment. Syst. Appl. Microbiol. 21,557-568.
Ruckdeschel, G., Renner, G., 1987. Effects of pentachlorophenol and some of its know and possible metablites on different species of bacteria. Appl. Environ. Microbiol. 53, 2689-2692.
Ruzgas, T., Emneus, J., Gorton, L., Marko, V.G., 1995. The development of a peroxidase biosensor for monitoring phenol and related aromatic compounds. Anal. Chem. Acta. 31, 245–253.
Sanford, R.A., Cole, J.R., Loffler, F.E., Tiedje, J.M., 1996. Character-azation of Desulfitobacterium chlororespirans sp nov.,which grows by coupling the oxidation of lactate to the reductive dechlorination of 3-chloro-4-hydroxybenzoate. Appl. Envrion. Microbiol. 62, 3800-3808.
Schnell, S., Bak, F., Pfenning, N., 1989. Anaerobic degradation of aniline and dihydroxybenzenes by newly isolated sulfate-reducing bacteria and description of Desulfobacterium aniline. Arc. Microbiol. 152, 556-563.
Shelton, D.R., Tiedje, J.M., 1984. Isolation and partial characterization
of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic
acid. Appl. Environ. Micribiol. 48, 840-848.
Skyring, G.W., 1987. Sulfate reduction in coastal ecosytems. Geomicrobiol. J. 5, 295-374.
Singleton, R.J., 1993. The sulfate-reducing bacteria: an overview. In: Odom, J.M., Singleton, R. (Eds.). The sulfate-reducing bacteria: contemporary perspectives. Jr. Springer-Verlag, Inc. New York, USA, pp. 1-20.
Sunito, L.R., shiu, W.Y., Mackay, D., 1988. A review of the nature and Properties of chemicals present in pulp mill effluents. Chemosphere 17, 1249-1290.
Takii, S., Fukui, M., 1991. Relative importance of methanogenesis, sulfate reduction and denitrification in sediments of the lower Tama river. Bull. Jap. Soc. Micribiol. Ecol. 6, 1-8.
Tam, T.Y., Trevor, J.T., 1981. Toxicity of pentachlorophenol to Azotobacter vinelandii. Bill. Environ. Contamin. Toxicol. 27, 230-234.
Tartakovsky, B., Manuel, M.F., Beaumier, D., Greer, C.W., Guiot, S.R., 2001. Enhanced selection of an anaerobic pentachlorophenol-degrading consortium. Biotech. Bioeng. 73, 476–483.
Vallecillo, A., Garcia-Encina, P.A., P?na, M., 1999. Anaerobic biodegradability and toxicity of chlorophenols. Wat. Sci. Tech. 40, 161–168.
Widdle, F., 1988. Microbiology and ecology of sulfate- and sulfur-reducing bacteria. In: Zehnder, A.J.B. (Ed.). Biology of anaerobic microorganisms. John Wiley & Sons, Inc. New York,USA, pp. 469-585.
Xie, T.M., Abrahamsson, K., Fogelqvist, E., Josefsson, B., 1986. Distribution of chlorophenolic in a marine environment. Environ. Sci. Technol. 20, 457-463.
Ye, F.X., Shen, D.S., 2004. Acclimation of anaerobic sludge degrading chlorophenols and the biodegradation kinetics during acclimation period. Chemosphere 54, 1573-1580.
Yokoyama, M.T., Johnson, K.A., Gierzak, J., 1988. Sensitivity of ruminal microorganisms to pentachlorophenol. Appl. Environ. Micribiol. 54, 2619-2624.
Zhang, X., Wiegel, J., 1990. Sequential anaerobic degradation of 2,4-dichlorophenol
in freshwater sediment. Appl. Environ. Microbiol. 56, 1119-1127.
第二章 參考文獻
陳致戎。1993。軟鋼在厭氧海水中生物腐蝕之研究。碩士論文。中華民國,台灣,海洋大學海洋生物研究所。1-52頁。Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J., 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acid Res. 25, 3389–3402.
Beloglazov, S.M., Dzhafarov, Z.I., Polyakov, V.N., Demushin, N.N., 1991. Quaternary ammonium salts as corrosion inhibitors of steel in the presence of sulfate-reducing bacteria. Prot Met (USSR) 27, 810-813.
Borenstein, S.W., 1994. Microbiologically influenced corrosion handbook. Woodhead, Cambridge, England.
Brettar, L., Christen, R., Hofle, M.G., 2002. Shewanella denitrificans sp. nov., a vigorously denitrifying bacterium isolated from the oxic-anoxic interface of the Gotland Deep in the central Baltic Sea. Int. J. Syst. Evol. Microbiol. 52, 2211-2217.
Caccavo, F., Schamberger, P.C., Keidong, K., Nielsen, P.H., 1997. Role of hydrophobicity in adhesion of the dissimilatory Fe(III)-reducing bacterium Shewanella alga to amorphous Fe(III) oxide. Appl. Environ. Microbiol. 63, 3837-3843.
Carpentier, W., Sandra, K., De Smet, I., Brige, A., De Smet, L., Van Beeumen, J., 2003. Microbial reduction and precipitation of vanadium by Shewanella oneidensis. Appl. Environ. Microbiol. 69, 3636-3639.
Cervantes, F.J., van der Velde, S., Lettinga, G., Field, J.A., 2000. Competition between methanogenesis and quinone respiration for ecologically important substrates in anaerobic consortia. FEMS Microbiol. Ecol. 34, 161-171.
DiChristina, T.J., Delong, E.F., 1993. Design and application of rRNA-targeted oligonucleotide probes for the dissimilatory iron- and manganese-reducing bacterium Shewanella putrefaciens. Appl. Environ. Microbiol. 49, 711-745.
Dubiel, M., Hsu, C.H., Chien, C.C., Mansfeld, F., Newman, D.K., 2002. Microbial iron respiration can protect steel corrosion. Appl. Environ. Microbiol. 68, 1440-1445.
Eden, P.E., Schmidt, T.M., Blakemore, R.P., Pace, N.R., 1991. Phylogenetic analysis of Aquaspirillum magnetotacticum using polymerase reaction-amplified 16S rRNA-specific DNA. Int. J. Syst. Bacteriol. 41, 324-325.
Ezaki, T., Hashimoto, Y., Yabuuchi, E., 1989. Fluorometric deoxyribonucleic acid-
deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol. 39, 224-229.
Feio, M.J., Rainha, V., Reis, M.A., Lino, A.R., 2000. The Influence of the Desulfovibrio desulfuricans ATCC 27774 on the Corrosion of Mild Stell. FITE Mater. Corros. 51, 691-697.
Gherna, R., Pienta, P., Cote, R., 1992. American type culture collection catalogue of bacteria and phages. 18th edn. American type culture collection, Rockville, Md.
Hamilton,W.A., 1998. Bioenergetics of sulphate-reducing bacteria in relation to their environmental impact. Biodegradation 9, 201-212.
Hamilton,W.A., 2003. Microbially infiuenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis. Biofouling 19, 65-76.
Hernandez, M.E., Kappler, A., Newman, K., 2004. Phenazines and other redox-active antibiotics promote microbial mineral reduction. Appl. Environ. Microbiol. 70, 921-928.
Hoppert, M., Holzenburg, A., 1998. Electron microscopy in microbiology. BIOS scientific publisher, UK.
Jeanmougin, F., Thompson, J.D., Gouy, M., Higgins, D.G., Gibson, T.J., 1998. Multiple sequence alignment with Clustal X. Trends. Biochem. Sci. 23, 403–
405.
Kato, C., Li, L., Nogi, Y., Nakamura, Y., Tamaoka, J., Horikoshi, K., 1998. Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl. Environ. Microbiol. 64, 1510–1513.
Kato, C., Nogi, Y., 2001. Correlation between phylogenetic structure and function: examples from deep-sea Schewanella. FEMS Microbiol. Ecol. 35, 223-230.
Lee, W., Andowski, Z.L., Nielsen, P.H., Hamilton, W.A., 1995. Role of sulphate-reducing bacteria in corrosion of mild steel: A review. Biofouling 8, 165-194.
Lee, A.K., Buehler, M.G., Newman, D.K., 2006a. Influence of a dual-species biofilm on the corrosion of mild steel. Corrosion Science 46, 165-178.
Lee, Y.H., Matthews, R.D., Pavlostathis, S.G., 2006b. Biological decolorization of reactive anthraquinone and phthalocyanine dyes under various oxidation-reduction conditions. Water Environ. Res. 78, 156-169.
Li, L., Kato, C., Horikoshi, K., 1999. Microbial diversity in sediments collected from the deepest cold-seep area, the Japan Trench at a depth of 6400 m. Mar. Biotechnol. 1, 391-400.
Licina, G.J., 1988. Sourcebook for microbiologically influenced corrosion in nuclear power plants RP 2812-2. Electric Power Research Institute, Palo Alto, Calif.
Liu,H., Xu, L., Zeng, J., 2000. Role of corrosion products in biofilms in microbiologically induced corrosion of carbon steel. Brit. Corros. J. 35 (2), 131-135.
Lovley, D.R., Phillips, E.J.P., 1988. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54, 1472-1480.
Lovley, D.R., Phillips, E.J.P., Gorby, Y.A., Landa, E.R., 1991. Microbial reduction of uranium. Nature 350, 413-416.
Lloyd, J.R., Macaskie, L.E., 1996. A novel phosphoimager-based technique for monitoring the microbial reduction of technetium. Appl. Environ. Microbiol. 62, 578-582.
Lovley, D.R., Holmes, D.E., Nevin, K.P., 2004. Dissimilatory Fe(III) and Mn(IV) reduction. Adv. Microb. Physiol. 49, 219-286.
Maiers, D.T., Wichlacz, P.L., Thompson, D.L., Bruhn, D.F., 1988. Selenate reduction by bacteria from a selenium-rich environment. Appl. Environ. Microbiol. 54, 2591-2593.
Miller, J.D.A., 1981. Metals. In: Rose, A.H. (Ed.). Microbial biodeterioration. Academic Press, New York, USA, pp. 149-202.
Moser, D.P., Nealson, K.H., 1996. Growth of the facultative anaerobe Shewanella putrefaciens by elemental sulfur reduction. Appl. Environ. Microbiol. 62, 2100-2105.
Murray, W.A., Wood, Keieg, N.R. (Eds.). Methods of General Molecule & Bacteriology. American society for Microbiology. Washington, D.C.
Myers, J.M., Antholine, W.E., Myers, C.R., 2004. Vanadium (V) reduction by Shewanella oneidensis MR-1 requires menaquinone and cytochromes from the cytoplasmic and outer membranes. Appl. Environ. Microbiol. 70, 1405-1412.
Myers, C.R., Carstens, B.P., Antholine, W.E., Myers, J.M., 2000. Chromium (VI) reductase activity is associated with the cytoplasmic membrane of anaerobically grown Shewanella putrefaciens MR-1. J. Appl. Microbiol. 88, 98-106.
Nakasone, K., Ikegami, A., Kato, C., Usami, R., Horikoshi, K., 1999. Analysis of cis-elements upstream of the pressure-regulated operon in the deep sea barophilic bacterium Shewanella violacea strain DSS12. FEMS Microbiol. Lett. 176, 351–356.
Nogi, Y., Kato, C., Horikoshi, K., 1998. Taxonomic studies of deep-sea barophilic Shewanella species, and Shewanella violacea sp. nov., a new barophilic bacterial species. Arch. Microbiol. 170, 331–338.
Oremland, R.S., Blum, J.S., Culbertson, C.W., Visscher, P.T., Miller, L.G., Dowdle, P.R., Strohmaier, F.E., 1994. Isolation, growth, and metabolism of an obligately anaerobic, selenate-respiring bacterium, strain SES-3. Appl. Environ. Microbiol. 60, 3011–3019.
Popa, R., Kinkle, B.K., 2000. Discrimination among iron sulfide species formed in microbial cultures. J. Microbiol. Meth. 42, 167-174.
Saffarini, D.A., Blumerman, S.L., Mansoorabadi, K.J., 2002. Role of menaquinones in Fe (Ⅲ) reduction by membrane fractions of Shewanella putrefaciens. J. Bacterio. 184, 846 - 848.
Saito, N., Nei, M., 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406-452.
Saltikov, C.W., Cifuentes, A., Venkateswaran, K., Newman, D.K., 2003. The ars detoxification system is advantageous but not required for As(V) respiration by the genetically trac表 Shewanella species strain ANA-3. Appl. Environ. Microbiol. 69, 2800-2809.
Sambrook, J., Fritsch, E.F., Maniatis, T., 1989. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor, New York, USA.
Stackebrandt, E., Goebel, B.M., 1994. A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44, 846-849.
Tamegai, H., Kato, C., Horikoshi, K., 1998. Pressure-regulated respiratory system in barotolerant bacterium, Shewanella sp. Strain DSS12. J. Biochem. Mol. Biol. Biophys. 1, 213–220.
Venkateswaran, K., Moser, D.P., Dollhopf, M.E., Lies, D.P., Saffarini, D.A., MacGregor, B.J., Ringelberg, D.B., White, D.C., Nishijima, M., Sano, H., Burgkardt, J., Stackebrandt, E., Nealson, K.H., 1999. Polyphasic taxonomy of the genus Schewanella and description of Shewanella oneidensis sp. nov.. Int. J. Syst. Bacteriol. 49, 705-724.
Wang, C.C., Chang, C.W., Chu, C.P., Lee, D.J., Chang, B.-V., Liao, C.S., 2003. Producing hydrogen from wastewater sludge by Clostridium bifermentans. J. Biotechnol. 102, 83-92.
Wayne, L.G., Brenner, D.J., Colwell, R.R., Grimont, P.A.D., Kandler, O., Krichevsky, M.I., Moore, L.H., Moore, W.E.C., Murray, R.G.E., Stackebrandt, E., Starr, M.P., Truper, H.G., 1987. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37, 463–464.
Weimer, P.J., van Kavelaar, M.J., Michel, C.B., Ng, T.K., 1988. Effect of Phosphate on the Corrosion of Carbon Steel and on the Composition of Corrosion Products in Two-Stage Continuous Cultures of Desulfovibrio desulfuricans. Appl. Environ. Microbiol. 54, 386-396.
Xu, M., Guo, J., Cen, Y., Zhong, X., Cao, W., Sun, G., 2005. Shewanella decolorationis sp. nov., a dye-decolorizing bacterium isolated from activated sludge of a waste-water treatment plant. Int. J. Syst. Bacteriol. 55, 363-368.
Xu, M., Guo, J., Zeng, G., Zhong, X., 2006. Decolorization of anthraquinone dye by Shewanella decolorationis S12. Appl. Microbiol. Biotechnol. 71, 246-251.
Zhang, H., Bruns, M.A., Logan, B.E., 2006. Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor. Water Res. 40, 728-734.
Ziemke, F., Hofle, M.G., Lalucat, J., Rosello-Mora, R., 1998. Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov.. Int. J. Syst. Bacteriol. 48, 179-186.
第三章 參考文獻
林家寧。2007。利用奈米級氧化鎂破壞性吸附染料廢水之反應機制。碩士論文。中華民國,台灣,國立中山大學環境工程研究所。周怡君。2004。在連續之厭氧好氧二階段生物處理系統內利用固定化菌體顆粒同時除去染整廢水色度及COD之研究。碩士論文。中華民國,台灣,私立中華大學土木工程學系陳致戎。1993。軟鋼在厭氧海水中生物腐蝕之研究。碩士論文。中華民國,台灣,海洋大學海洋生物研究所。1-52頁。Adreleanu, I., Margineanu, D.G., Vais, H., 1983. Electrochemical conversion in biofuel cells using Clostridium butyricum or Staphylococcus aureus oxford. J Bioelectrochem. Bioenerg.11, 273-277.
Allen, J.L., Hunn, J.B., 1986. Fate and distribution of some drugs used in aquaculture. Vet. Hum. Toxicol. 28, 21-24.
An, S.Y., Min, S.K., Cha, I.H., Choi, Y.L., Cho, Y.S., Kim, C.H., Lee, Y.C., 2002. Decolorization of triphenylmethane and azo dyes by Citrobacter sp. Biotechnol. Lett. 24, 1037-1040.
Arnold, R.G., Hoffmann, M.R., DiChristina, T.J., Picardal, F.W., 1990. Regulation of dissimilatory Fe(III) reduction activity in Shewanella putrefaciens. Appl. Environ. Microbiol. 56, 2811-2817
Aspland, J.R.,1997. Textile Dyeing and Coloration. Research Triangle Park, American Association of Textile Chemists and Colorists, North Carolina, USA.
Azmi, W., Sani, R.K, Banerjee, U.C., 1998. Biodegradation of triphenylmethane dyes. Enzyme Microb. Technol. 22, 185-191.
Banat, I.M., Nigam, P., Singh, D., Marchant, R., 1996. Microbial decolorization of textile-dye-containing effluents: a review. Biores. Technol. 58, 217-227.
Baughman, G.L., Weber, E.J., 1994. Transformation of dyes and related compounds in anoxic sediment-kinetics and products. Environ. Sci. Technol. 28, 267-276.
Beliaev, A.S., Saffarini, D.A., 1998. Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(III) and Mn(IV) reduction. J. Bacteriol. 23, 6292-6297
Bennetto, H.P., 1984. Microbial fuel cells. In: Life chemistry reports. London. Harwood Academic., p. 363–453.
Beydilli, I.M., Pavlostathis, S.G., Tincher, W.C., 1998. Decolorization and toxicity screening of selected reactive azo dyes under methanogenic conditions. Water Sci. Technol. 38, 225-232.
Beydilli, I.M., Pavlostathis, S.G., Tincher, W.C., 2000. Biological decolorization of the azo dye Reactive red 2 under various oxidation-reduction conditions. Water Environ. Res. 72, 698-705.
Bond, D.R., Lovley, D.R., 2003. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69, 1548-1555.
Bond, D.R., Lovley, D.R., 2005. Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl. Environ. Microbiol. 71, 2186-2189
Bond, D.R., Holmes, D.E., Tender, L.M., Lovley, D.R., 2002. Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295, 483-485
Brown, D., Laboureur, P., 1983. The aerobic biodegradability of primary aromatic amines. Chemophere 12, 405-414.
Brown, D., Hamburger, B., 1987. The degradation of dyestuffs part III-investigation of their ultimate degradability. Chemosphere 16, 1539-1553.
Bumpus, J.A., Brock, B.J., 1988. Biodegradation of crystal violet by the white rot fungus Phanerochaete chrysosporium. Appl. Environ. Microbiol. 54, 1143-1150.
Caccavo, F., Debra, J.R., Lonergan, J., Lovley, D.R., Davis , M., Stolz, J.F., 1994. Geobacter sulfurreducens sp. nov., a hydrogen- and acetateoxidising dissimilatory metal-reducing microorganism. Appl. Environ. Microbiol. 60, 3752-3759.
Caccavo, J.F., Coates, J.D., Rossello-Mora, R.A., Ludwig, W., Schleifer, K.H., Lovley, D.R., Mcinerney, M.J., 1996. Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe(III)-reducing bacterium. Arch. Microbiol.165, 370-376.
Cervantes F.J., Duong-Dac T., Ivanova A.E., Roest K., Akkermans A.D.L., Lettinga G., 2003. Selective enrichment of Geobacter sulfurreducens from anaerobic granular sludge with quinones as terminal electron acceptors. Biotechnol. Lett. 25, 39-45.
Chaudhuri, S.K., Lovley, D.R., 2003. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnol. 21, 1229-1232
Cha, C.J., Doerge, D.R., Cerniglia, C.E., 2001. Biotransformation of Malachite green by the fungus Cunninghamella elegans. Appl. Environ. Microbiol. 67, 4358-4360.
Chang, J.S., Kuo, T.S., Chao, Y.P., Ho, J.Y., Lin, P.J., 2000. Azo dye decolorization with amutant Escherichia coli strain. Biotechnol. Lett. 22, 807-812.
Chang J.S., Chou C., Lin Y.C., Lin P.J., Ho J.Y., Hu T.L., 2001. Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola. Water Res. 35, 2841-2850.
Chang, J.S., Lin, C.Y., 2001. Decolorization kinetics of a recombinant Escherichia coli strain harboring azo-dye-decolorizing determinants from Rhodococcus sp.. Biotechnol. Lett. 23, 631-636.
Chen K.C., Huang W.T., Wu J.Y., Houng J.Y., 1999. Microbial decolorization of azo dyes by Proteus mirabilis. J. Ind. Microbiol. Biotech. 23, 686-690.
Chen B.Y., 2002. Understanding decolorization characteristics of reactive azo dyes by Pseudomonas luteola: toxicity and kinetics. Process Biochem. 38, 437-346.
Chen, K.C., Wu, J.Y., Liou, D.J., Hwang, S.C.J., 2003. Decolorization of the textile dyes by newly isolated bacterial strains. J. Biotechnol. 101, 57-68.
Chen, K.C., Wu, J.Y., Huang C.C., Liang Y.M., Hwang S.C.J., 2003. Decolorization of azo dye using PVA-immobilized microorganisms. J. Biotechnol. 101, 241-252.
Chen, C.H., Chang, C.F., Ho, C.H., Chi, W.C., Liu, S.M., 2008. Biodegradation of crystal violet by a Shewanella sp. NTOU1. Chemosphere. (accepted)
Choi, Y., Song, J., Jung, S., Kim, S., 2001. Optimization of the performance of microbial fuel cells containing alkalophilic Bacillus sp. J. Microbiol. Biotechnol. 11, 863-869.
Cooling III, F.B., Maloney, C.L., Nagel, E., Tabinowski, J., Odom, J.M., 1996. Inhibition of sulfate reduction by 1,8-dihydroxyanthraquinone and other anthraquinone derivatives. Appl. Environ. Microbiol. 62, 2999-3004.
Cooney, M. J., Roschi, E., Marison, I.W., Comninellis, Ch., Stockar, U.V., 1996. Physiologic studies with the sulfate-reducing bacterium Desulfovibrio desulfuricans: Evaluation for use in a biofuel cell. Enzyme Microb. Technol. 18, 358-365.
Culp, S.J., Beland, F.A., 1996. Malachite green: a toxicological review. J. Am. Coll. Toxicol. 15, 219-238.
Dos Santos, A.B., Bisschops, J.A.E., Cervantes, F.J., Van Lier, J.B., 2005. The transformation and toxicity of anthraquinone dyes during thermophilic (55oC) and mesophilic (30oC) anaerobic treatments. J. Biotechnol. 115, 345-353.
Dubiel, M., Hsu, C.H., Chien, C.C., Mansfeld, F., Newman, D.K., 2002. Microbial iron respiration can protect steel corrosion. Appl. Environ. Microbiol. 68, 1440-1445.
Duggan, O., Allen, S.J, 1997. Study of the physical and chemical characteristics of a range of chemically treated lignite based carbons. Water. Sci. Technol. 35, 21-27.
Epling, G.A., Lin, C., 2002. Photoassisted bleaching of dyes utilizing TiO2 and visible light. Chemosphere 46, 561-570.
Fessard, V., Godard, T., Huet, S., Mourot, A., Poul, J.M., 1999. Mutagenicity of Malachite green and leucoMalachite green in in vitro tests. J. Appl. Toxicol. 19, 421-430.
Field, J.A., Stams, A.J.M., Kato, M., Schraa, G., 1995. Enhanced biodegradation of aromatic pollutant in coculture of anaerobic and aerobic bacterial consortia. Antonie. Van. Leeuwen. 67, 47-77.
Fontenot, E.J., Beydilli, M.I., Lee, Y.H., Pavlostathis, S.G., 2002 Kinetics and inhibition during the decolorization of reactive anthraquinone dyes under methanogenic conditions. Water Sci. Technol. 45, 105-111.
Forgacs, E., Cserhati, T., Oros, G., 2004. Removal of synthetic dyes from wastewaters: a review. Environ. Int. 30, 953 - 971.
Gregory, P., 1993. Dyes and dyes intermediates. In: Kroschwitz JI (Ed.) Encyclopedia of chemical technology, John Wiley& Sons, New York, USA, pp. 544-545.
Hayase, N., Kounoo, K., Ushio, K., 2000. Isolation and characterization of Aeromonas sp. B-5 capable of decolorizing various dyes. J. Biosci. Bioeng. 90, 570-573.
Heidelberg, J.F., Paulsen, I.T., Nelson, K.E., Gaidos, E.J., Nelson, W.C., Read, T.D., Eisen, J.A., Seshadri, R., Ward, N., Methe, B., Clayton, R.A., Meyer, T., Tsapin, A., Scott, J., Beanan, M., Brinkac, L., Daugherty, S., DeBoy, R.T., Dodson, R.J., Durkin, A.S., Haft, D.H., Kolonay, J.F., Madupu, R., Peterson, J.D., Umayam, L.A., White, O., Wolf, A.M., Vamathevan, J., Weidman, J., Impraim, M., Lee, K., Berry, K., Lee, C., Mueller, J., Khouri, H., Gill, J., Utterback, T.R., McDonald, L.A., Feldblyum, T.V., Smith, H.O., Venter, J.C., Nealson, K.H., Fraser, C.M, 2002. Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat. Biotechnol. 20, 1118-1123.
Heider, J., Fuchs, G., 1997. Anaerobic metabolism of aromatic compounds. Eur. J. Biochem. 243, 577-596.
Henderson, A.L., Schmitt, T.C., Heinze, T. M., Cerniglia, C.E., 1997. Reduction of malachite green to leucoMalachite green by intestinal bacteria. Appl. Environ. Microbiol 63, 4099-4101.
Holmes, D.E., Bond, D.R., Lovley, D.R., 2004. Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl. Environ. Microbiol. 70, 1234-1237.
Hong, Y., Chen, X., Guo, J., Xu Z., Xu, M., Sun, G., 2007a.Effects of electron donors and acceptors on anaerobic reduction of azo dyes by Shewanella decolorationis S12. Appl. Microbiol. Biotechnol. 74, 230–238
Hong, Y., Xu, M., Guo, J., Xu, Z., Chen, X., Sun, G., 2007b. Respiration and growth of Shewanella decolorationis S12 with an azo compound as the sole electron acceptor. Appl. Environ. Microbiol. 73, 64–72.
Holmes, D.E., Bond, D.R., O’Neil, R.A., Reimers, C.E., Tender, L.R., Lovley, D.R., 2004. Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb. Ecol. 48, 178-190.
Hu T.L., 1998. Degradation of azo dye RP2B by Pseudomonas luteola. Water Sci. Technol. 38, 299-306.
Hu T.L., 2001. Kinetics of azoreductase and assessment of toxicity of metabolic products from azo dyes by Pseudomonas luteola. Water Sci. Technol. 43, 261-269.
Hyun, M.S., Kim, B.H., Chang, I.S., Park, H.S., Kim, H.J., Kim, G.T., Kim, M.A., Park, D.H., 1999. Isolation and identification of an anaerobic dissimilatory Fe(III)-reducing bacterium, Shewanella putrefaciens IR-1. J. Microbiol. 37, 206-212.
Ieropoulos, I.A., Greenman, J., Melhuish, C., Hart, J., 2005. Comparative study of three types of microbial fuel cell. Enzyme Microb. Technol. 37, 238-245.
Ioannis, A., Ieropoulos, I.A., Greenman, J., Melhuish, C., Hart, J., 2005. Comparative study of three types of microbial fuel cell. Enzyme microbial. Technol. 37, 238-245.
ISO 10993, 2002. Biological evaluation of medical devices-part 5 : Test for in vitro cytotoxicity.
Itoh, K., Yatome, C., Ogawa, T., 1993. Biodegradation of anthraquinone dyes by Bacillus subtilus. Bull. Environ. Contam. Toxicol. 50, 522-527.
Itoh, K., Kitade, Y., Yatome, C., 1996. A pathway for biodegradation of anthraquinone dye, C. I. disperse red 15, by a yeast strain Pichia anomala. Bull. Environ. Contam. Toxicol. 56, 413-418.
Jadhav, J.P., Govindwar, S.P., 2006. Biotransformation of malachite green by Saccharomyces cerevisiae MTCC 463. Yeast 23, 315-323.
Jang, M.S., Lee, Y.M., Kim, C.H., Lee, J.H., Kang, D.W., Kim, S.J., Lee, Y.C., 2005. Triphenylmethane reductase from Citrobacter sp. strain KCTC 18061P: purification, characterization, gene cloning, and over expression of a functional protein in Escherichia coli. Appl. Environ. Microbiol. 71, 7955-7960.
Jefferey, G..H., Bassett, J., Mendham, J., Denney, R.C., 1989. Vogel’s Textbook of Quantitative Chemical Analysis, Fifth ed. Longmann Publishers, UK, pp. 300-302.
Kim, B.H., Kim, H.J., Hyun, M.S., Park, D.S., 1999. Direct electrode reaction of Fe(III) reducing bacterium, Shewanella putrefaciens. J. Microb.Biotechnol. 9, 127–131.
Kim, G.T., Hyun, M.S., Chang, I.S., Kim, H.J., Park, H.S., Kim,B.H., Kim, S.D., Wimpenny, J.W.T., Weightman, A.J., 2005. Dissimilatory Fe(III) reduction by an electrochemically active lactic acid bacterium phylogenetically related to Enterococcus gallinarum isolated from submerged soil. J. Appl. Microbiol. 99, 1365-2672
Kim, H.J., Bennetto, H.P., Halablab, M.A., 1995. A novel liposome-based electrochemical biosensor for the detection of haemolytic microorganisms. Biotechnol. Technique 9, 389-94.
Kim, H.J., Park, H.S., Hyun, M.S., Chang, I.S., Kim, M., Kim, B.H.,2002. A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb. Technol. 30, 145-152.
Kim, N., Choi, Y., Jung, S., Kim, S., 2000. Effect of initial carbon sources on the performance of microbial fuel cells containing Proteus vulgaris. Biotechnol. Bioeng. 70, 109-114.
Kim, T.S., Kim, H.Y., Kim, B.H., 1990. Petroleum desulfurization by Desulfovibrio desulfuricans M6 using electrochemically supplied reducing equivalent. Biotechnol. Lett. 12, 757-60.
Kim, T.S. Kim, B.H., 1988. Modulation of Clostridium acetobutylicum fermentation by electrochemically supplied reducing equivalent. Biotechnol. Lett. 10, 123-8.
Koch, A.L., 1993. Growth measurement. In: Gerhadt, p., Murray, R.G..E., Wood, W.A., Krieg, N.R. (Eds.), Methods for General Molecular & Bacteriology. American Society for Microbiology, Washington, DC. pp.248-276.
Kudlich M., Keck, A., Klein, J., Stolz, A., 1997. Localization of the enzyme system involved in anaerobic reduction of azo dyes by Sphingomonas sp. strain BN6 and effect of artificial redox mediators on the rate of azo dye reduction. Appl. Environ. Microbiol. 63, 3691-3694.
Kuhn, E.P., Suflita, J.M., 1989. Anaerobic biodegradation of nitrogen-substituted and sulfonated benzene aquifer contaminants. Hazard. Waste Hazard. Mater. 6, 121-134.
Kwasniewska, K., 1985. Biodegradation of crystal violet (hexamethyl-p-rosaniline chloride) by oxidative red yeast. Bull. Environ. Contam. Toxicol. 34, 323-330.
Lall, R., Mutharasan, R., Shah, Y.T., Dhurjati, P., 2003. Decolorization of the dye, Reactive blue 19, using ozonation, ultrasounds, and utrasounds-enhanced ozonation. Water Environ. Res. 75, 171-170.
Laszlo, J.A., 2000. Regeneration of Azo-Dye-Saturated Cellulosic Anion Exchange Resin by Burkholderia cepacia Anaerobic Dye Reduction. Environ. Sci. Technol. 34, 167-172.
Lee, Y.H., Pavlostathis, S.G., 2004. Decolorization and toxicity of reactive anthraquinone textile dyes under methanogenic conditions. Water Res. 38, 1838-1852.
Lee, Y.H., Matthews, R.D., Pavlostathis, S.G., 2006. Biological decolorization of reactive anthraquinone and phthalocyanine dyes under various oxidation-reduction conditions. Water Environ. Res. 78, 156-169.
Lin, S.H., Chen, M.L., 1997. Treatment of textile wastewater by chemical methods for reuse. Water Res. 31, 868-876.
Liu, H., Ramnarayanan, R., Logan, B.E., 2004. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol. 38, 2281-2285.
Logan, B.E., Murano, C., Scott, K., Gray, N.D., Head, I.M., 2005. Electricity generation from cysteine in a microbial fuel cell. Water Res. 39, 942-952
Lovley, D.R., 1993. Dissimilatory metal reduction. Annu. Rev. Microbiol. 47, 263-299.
Lovley, D.R., Phillips, E.J.P., Lonergan, D.J., 1989 Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens. Appl. Environ. Microbiol. 55, 700-706.
Lovley, D.R., Giovannoni, S.J., White, D.C., Champine, J.E., Phillips, E.J.P., Gorby, Y.A., Goodwin, S., 1993. Geobacter metallireducens gen nov sp nov, a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch. Microbiol. 159, 336-344
Malpei, F., Andreoni, V., Daffonchio, D., Rozzi, A., 1998. Anaerobic digestion of print pastes: a preliminary screening of inhibition by dyes and biodegradability of thickeners. Bioresour. Technol. 63, 49-56.
McDonald, J.J., Cerniglia, C.E., 1984. Biotransformation of gentian violet to leucogentian violet by human, rat, and chicken intestinal microflora. Drug Metab. Dispos. 12, 330-336.
Min, B., Chenga, S., Logan, B.E., 2005. Electricity generation using membrane and salt bridge microbial fuel cells. Water Res. 39, 1675-1686.
Min, B., Logan, B.E., 2004. Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ. Sci. Technol. 38, 5809-5841.
Myers, C.R., Myers, J.M., 1992. Localization of cytochromes to the outer membranes of anaerobically grown Shewanella putrefaciens MR-1. J. Bacteriol. 174, 3429-38.
Myers, C.R., Myers, J.M., 1997. Outer membrane cytochromes of Shewanella putrefaciens MR-1: spectral analysis, and purification of the 83-kDA c-type cytochrome. Biochim. Biophys. Acta. 1326, 307–318.
Myers, J., Myers, C., 2001. Role for outer membrane cytochromes OmcA and OmcB of Schewanella putrefaciens MR-1 in reduction of manganese dioxide. Appl. Environ. Microbiol. 67, 260-269.
Nakanishi, M., Yatome, C., Ishida, N., Kitade, Y., 2001. Putative ACP phosphodiesterase gene (acpD) encodes an azoreductase. J. Biol. Chem. 276, 46394-46399.
Newman, D.K., Kolter, R., 2000. A role for excreted quinones in extracellular electron transfer. Nature, 405, 94-97.
Niessen, J., Schroder, U., Scholz, F., 2004. Exploiting complex carbohydrates for microbial electricity generation - a bacterial fuel cell operating on starch. Electro. Commun. 6, 955-958.
Oblinger, J.L., Koburger, J.A., 1975. Understanding and teaching the most probable number technique. J. Milk Food Technol. 38, 540-545.
Ollikka, P., Alhonmaki, K., Leppanen, V.M., Glumoff, T., Raijola, T., Suominen, I., 1993. Decolorization of azo, triphenyl methane, heterocyclic, and polymeric dyes by lignin peroxidase isoenzymes from Phanerochaete chrysosporium. Appl. Environ. Microbiol. 59, 4010–4016.
O’Neill, C., Lopez, A., Esteves, S., Hawkes, F.R., Hawkes, D.L., Wilcox, S., 2000 Azo-dye degradation in an anaerobic-aerobic treatment system operating on simulated textile effluent. Appl. Microbiol. Biotechnol. 53, 249-254.
Panswad, T., Luangdilok, W., 2000. Decolorization of reactive dyes with different molecular structures under different environmental conditions. Water. Res. 34, 4177-4184.
Park, D.H., Zeikus, J.G., 1999. Utilization of electrically reduced neutral red by actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181, 2403-2410.
Park, D.H., Zeikus, J.G.., 2003. Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng. 81, 348-355.
Park, D.H. Zeikus, J.G., 2000. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol. 66, 1292-1297.
Park, H.S., Kim, B.H., Kim, H.S., Kim, H.J., Kim, G..T., Kim, M., Chang, I.S., Park, Y.K., Chang, H.I., 2001. A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7, 297-306.
Parshetti, G., Kalme, S., Saratale, G., Govindwar, S., 2006. Biodegradation of malachite green by Kocuria rosea MTCC 1532. Acta. Chim. Slov. 53, 492-498.
Pearce, C.I., Lloyd, J.R., Guthrie, J.T., 2003. The removal of color from textile wastewater using whole bacterial cells: a review. Dye. Pig. 58, 179-196.
Pearce, C.I., Christie, R., Boothman, C., von Canstein, H., Guthrie, J.T., and Lloyd, R; 2006. Reactive azo dye reduction by Shewanella strain J18 143. Biotechnol. Bioeng. 95, 692-703.
Pierce, J., 1994. Color in textile effluents-the origins of the problem. J. Soc. Dyers. Color. 110, 131-133.
Rabaey, K., Lissens, G., Siciliano, S.D., Verstraete, W., 2003. A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol. Lett. 25, 1531-1535.
Rafii, F., Franklin, W., Cerniglia, C.E., 1990. Azoreductase activity of anaerobic bacteria isolated from human intestinal microflora. Appl. Environ. Microbiol. 56, 2146-2151.
Rajaguru, P., Kalaiselvi, K., Palanivel, M., Subburam, V., 2000. Biodegradation of azo dyes in a sequential anaerobic-aerobic system. Appl. Microbiol. Biotechnol. 54, 268-273.
Rau, J., Knackmuss, H.J., Stolz, A., 2002. Effects of different quinoid redox mediators on the anaerobic reduction of azo dyes by bacteria. Environ. Sci. Technol. 36, 1497-1504.
Rawson, D.M. Willmer, A.J., 1989. Whole-cell biosensors for environmental monitoring. Biosensors. 4, 299-311.
Razo-Flores, E., Donlon, B.A., Field, J.A., Lettinga, G., 1996. Biodegradability of N-substituted aromatics and alkylphenols under methanogenic conditions using granular sludge. FEMS Microbiol. Rev. 20, 525-538.
Reife, A., 1993. Dyes: environmental chemistry. In: Kroschwitz JI (Ed). Encyclopedia of Chemical Technology. John Wiley& Sons, New York.
Reimers, C.E., Tender, L.M., Ferig, S., Wang, W., 2001. Harvesting energy from the marine sediment–water interface. Environ. Sci. Technol. 35,192–195.
Ren, S., Guo, J., Zeng, G., Sun, G., 2006. Decolorization of triphenylmethane, azo, and anthraquinone dyes by a newly isolated Aeromonas hydrophila strain. Appl. Microbiol. Biotechnol. 72, 1316-1321.
Richardson, N.J., Gardner, S., Rawson, D.M., 1991. A chemically mediated amperometric biosensor for monitoring of eubacterial respiration. J. Appl. Bacteriol. 70, 422-426.
Sani, R.K., Banerjee, U.C., 1999. Decolorization of triphenylmethane dyes and textile dye-stuff effluent by Kurthia sp. Enzyme. Microb. Technol. 24, 433–437.
Sarnaik, S., Kanekar, P., 1999. Biodegradation of methyl violet by Pseudomonas mendocina MCM B-402. Appl. Microbiol. Biotechnol. 52, 251-254.
Seshadri, S., Bishop, P.I., Agha, A.M., 1994. Anaerobic/aerobic treatment of selected azo dyes in wastewater. Waste manage. 15, 127-137.
Sijpesteijn, A.K., 1949. Cellulose-decomposing bacteria from the rumen of cattle. Ant. Van. Leeuwen. 15, 49-52.
Shin, K.S., Kim, C.J., 1998. Decolorization of artificial dyes by peroxidase from the white-rot fungus Pleurotus ostreatus. Biotechnol. Lett. 20, 569-572.
Stolz, A., 2001. Basic and applied aspects in the microbial degradation of azo dyes. Appl. Microbiol. Biotechnol. 56, 69-80.
Subbalakshmi, C., Nagaraj, R., Sitaram, N., 2001. Biological activities of retro and diastereo analogs of a 13-residue peptide with antimicrobial and hemolytic activities. J. Peptide Res. 57, 59-67
Tender, L.M., Reimers, C.E., Stecher III, H.A., Holmes, D.E., Bond, D.R., Lowy, D.A., Pilobello, K., Fertig, S.J., Lovley, D.R., 2002. Harnessing microbially generated power on theseafloor. Nat. Biotechnol. 20, 821–825.
Tayhas, G., Palmore, R., Whitesides, M., 1994. Microbial and enzymatic biofuel cells. In: Himmel ME, Baker JO, Overend RP editors. Enzymatic conversion of biomass for fuels production. American Chemical Society, Washington D.C., USA. pp. 271–290.
Thurston, C.F., Bennetto, H.P., Delaney, G.M., Mason, J.R., Roller, S.D., Stirling, J.L., 1985. Glucose metabolism in a microbial fuel cell. Stoichiometry of product formation in a thionine-mediated Proteus vulgaris fuel cell and its relation to coulombic yields. J. Gen. Microbiol. 131, 1393-1401.
Tsuda, M., Dino, W.A., Kasai, H, 2005. Hydrogenase-based nanomaterials as anode electrode catalyst in polymer electrolyte fuel cells. Solid State Commun. 133, 589-591
Turnipseed, S.B., Poybal, J.E., Rupp, H.S., Hurlbut, J.A., Long, A.R., 1995. Particle beam liquid chromatography-mass spectrometry of triphenylmethane dyes: application to confirmation of Malachite green in incurred catfish tissue. J. Chromatogr. B 670, 55-62.
Vandevivere, P.C., Bianchi, R., Verstraete, W., 1998. Treatment and reuse of wastewater from the textile wet-processing industry; review of emerging technologies. J. Chem. Technol. Biotechnol. 72, 289-302.
van der Zee, F.P., Bouwman, R.H.M., Strik, D.P.B.T., Lettinga, G., Field, J.A., 2001. Application of redox mediators to accelerate the transformation of reactive azo dyes in anaerobic bioreactors. Biotechnol. Bioeng. 75, 691-701.
van der Zee, F.P., 2002. Anaerobic azo dye reduction Ph.D. Thesis Wageningen University, Wageningen, The Netherlands, pp 1-154.
van der Zee, F.P., Bisschops, I.A.E., Lettinga, G., 2003. Activated carbon as an electron acceptor and redox mediator during the anaerobic biotransformation of azo dyes. Environ. Sci. Technol. 37, 402-408.
Vasdev, K., Kuhad, R.C., Saxena, R.K., 1995. Decolorization of triphenylmethane dyes by the birds nest fungus. Cyathus bulleri. Curr. Microbiol. 30, 269–272.
Vega, C.A., Fernandez, I., 1987. Mediating effect of ferric chelate compounds in microbial fuel cells with Lactobacillus plantarum, Streptococcus lactis and Erwinia dissolvens. J. Bioelectrochem. Bioenerg.17, 217–222.
Wong, P.K., Yuen P.Y., 1998. Decolorization and biodegradation of N,N'-dimethly-p-phenylene-diamine by Klebsiella pneumoniae RS-13 and Acetobacter liquefaciens S-1. J. Appl. Microbiol. 85, 79-87.
Xu, M., Guo, J., Cen, Y., Zhong, X., Cao, W., Sun, G., 2005. Shewanella decolorationis sp. nov., a dye-decolorizing bacterium isolated from activated sludge of a waste-water treatment plant. Int. J. Syst. Bacteriol. 55, 363-368.
Xu, M., Guo, J., Zeng, G., Zhong, X., 2005. Decolorization of anthraquinone dyes by Shewanella decolorationis S12. Appl. Microbiol. Biotechnol. 71, 246-251.
Xu, M., Guo, J., Kong, X., Chen, X., Sun, G., 2007. Fe(III)-enhanced azo reduction by Shewanella decolorationis S12. Appl. Microbiol. Biotechnol. 74, 1342–1349.
Yatome, C., Ogawa, T., Koga, D., Idaka, E., 1981. Biodegradability of azo and triphenylmethane dyes by Pseudomonas pseudomallei 13 NA. J. Soc. Dye. Col. 97, 166-169.
Yatome, C., Ogawa, T., Matsui, M., 1991. Degradation of crystal violet by Bacillus subtilus. J. Environ. Sci. Health. A 26, 75-87.
Yatome, C., Yamada, S., Ogawa, T., Matsui, M., 1993. Degradation of crystal violet by Nocardia coralline. Appl. Microbiol. Biotechnol. 38, 565-569.
Yoo E.S., Libra J., Wiesmann U., 2000. Reduction of azo dyes by Desulfovibrio desulfuricans. Water Sci. Technol. 41, 15-22.
Zollinger, H., 1987. Color chemistry, 2nd edn. VCH Publishers, New York, USA.