(3.238.173.209) 您好!臺灣時間:2021/05/09 17:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳雅玲
研究生(外文):Ya-Ling Chen
論文名稱:以葉綠素螢光法偵測藍綠細菌之光合效率:測量之設定與在不同生理狀態下之反應
論文名稱(外文):The estimation of cyanobacterial photosynthetic efficiency using chlorophyll fluorescence parameters:measurement settings and responses at various physiological states
指導教授:張正張正引用關係
指導教授(外文):Jeng Chang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:海洋生物研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:44
中文關鍵詞:聚球藻螢光參數
外文關鍵詞:synechococcusfv/fm
相關次數:
  • 被引用被引用:3
  • 點閱點閱:351
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
經由測量葉綠素螢光所計算出來的光合作用之最大量子效率(Fv/Fm)可以用來偵測單細胞藻類是否受到營養鹽限制。因為藍綠細菌與一般真核藻類色素成分不同,所以在應用至海洋研究之前必須先找出最佳的測量設定。首先在設定單次更新的飽和閃光(STF)方面,發現實驗室培養的聚球藻 Synechococcus spp. CH0129 必須使用長度為 150 μs 的 STF 激發光源,才能夠測得準確的 Fv/Fm 值,但在測量海洋樣本時,則將 STF 時間設為 80 μs 就能得到準確的測值。而在儀器偵測極限方面,使用 Synechococcus spp. CH0129 做連續稀釋後分別進行測量,發現實驗室內所培養的聚球藻細胞數至少要維持在 105 cells ml-1 以上,且螢光值平均相對誤差必須控制在 9% 以下,才可以正確的量得聚球藻樣本之 Fv/Fm 數值。但海洋中聚球藻濃度常有降至 105 cells ml-1 以下的機會,因此必須使用濃縮細胞的方式來提高測量的準確性,結果顯示濃縮步驟可以大幅降低平均相對誤差值,但濃縮後測得的 Fv/Fm 值和濃縮前沒有顯著差異,海上實驗的結果亦與實驗室結果相符。另外亦將三株不同的聚球藻培養在缺磷的培養基中,觀察磷酸鹽多寡對 Fv/Fm 的影響,在健康良好的狀態下三者 Fv/Fm皆在0.19 ~ 0.32間,而當磷酸鹽缺乏時,在兩株以藻紅素為主要色素的聚球藻 Synechococcus spp. CH0129 及 Synechococcus sp. WH7803 中,Fv/Fm 會開始下降,同時細胞生長會減緩並且提早進入停滯期,且 APA 活性亦會上升,但另一株以藻藍素為主要色素的 Synechococcus sp. WH5701 則在全營養鹽組和缺磷組之間 Fv/Fm 值沒有差異。根據實驗室結果,設定 Fv/Fm 0.25 ~ 0.35為聚球藻是否缺乏營養鹽的判斷標準。將以上結果應用於 2008 年 4 月 7 日黑潮測站,由 2 m、10 m、25 m、50 m 樣本直接測得的 Fv/Fm 分別為 0.28、0.25、0.30、0.32,平均相對誤差值皆介於 2.25% ~ 5.91% 之間,根據上述標準,四個深度的超微浮游植物皆處於健康良好的狀態。
The influence of nutrient stress on phytoplankton growth can be estimated using the maximum quantum efficiency of photosynthesis, or Fv/Fm. Since the composition of photosynthetic pigments in cyanobacteria is different from that in eukaryotic phytoplankton, suitable settings must be determined before conducting this measurement in the ocean. In laboratory, cultures the duration of single turnover flash, STF, had to be extended to 150 μs to correctly measure Fv/Fm in Synechococcus spp. CH0129, but in oceanic samples, an STF of 80 μs long was enough to obtain an accurate Fv/Fm. To determine the detection limit of Flurorescence Induction and Relaxation (FIRe) system, cells of Synechococcus spp. CH0129 were diluted to various concentrations prior to measurement. The result indicated that the cell concentration must be maintained above 105 cells ml-1 and a relative error maintained below 9% were necessary to obtain correct Fv/Fm values. Since abundances of Synechococcus in the ocean are usually less than 105 cells ml-1, the effect of concentrating cells was evaluated. The result indicated that concentrating cells significantly reduced the relative error and improved accuracy. Results of concentrating field samples agreed with those observed in laboratory. In addition, 3 species of unicellular Synechococcus were incubated in media containing different concentrations of phosphate. The effects of phosphate starvation on Fv/Fm were evaluated in the 3 Synechococcus strains, and Fv/Fm of healthy cultures all fell in the range between 0.19 and 0.32. In the cultures of phycoerythrin-containing Synechococcus strain CH0129 and strain WH7803, Fv/Fm decreased while alkaline phosphatase activity, APA, increased when cells entered stationary phase. However, in the phycocyanin-containing strain WH5701, decreasing Fv/Fm did not vary between the treatments of complete nutrients and of phosphate starvation. Based on experimental results observed in laboratory, 0.25 ~ 0.35 was proposed as the criterion for Synechococcus Fv/Fm in healthy conditions. In ocean applications, ultra-phytoplankton were collected from 2, 10, 25, and 50 m at a station near Kuroshio on April 7, 2007. All values of Fv/Fm ranged from 0.25 ~ 0.32, and relative errors were constantly below 9%. Using the predetermined criterion, ultra-phytoplankton at the study site were likely in a healthy state.
謝辭……………………………………………………………………i
摘要……………………………………………………………………ii
英文摘要………………………………………………………………iv
目錄……………………………………………………………………vi
表目錄…………………………………………………………………vii
圖目錄…………………………………………………………………viii
前言……………………………………………………………………1
材料與方法……………………………………………………………6
結果……………………………………………………………………14
討論……………………………………………………………………20
參考文獻………………………………………………………………26
附表……………………………………………………………………30
附圖……………………………………………………………………35
廖嘉文 (2003). 台灣附近海域聚球藻(Synechococcus)生長率受到營養鹽種類限制之研究。碩士論文,海洋生物研究所,國立台灣海洋大學,50頁。

時繼宇 (2004). 利用鹼性磷酸?活性研究東海中微型浮游植物生長受磷限制的程度。碩士論文,海洋生物研究所,國立台灣海洋大學,63頁。

劉虹君 (2004). 利用骨藻 (Skeletonema costatum) 與聚球藻 (Synechococcus spp.) 之混合培養探討海洋中浮游植物體型分佈之調控機制。碩士論文,海洋生物研究所,國立台灣海洋大學,55頁。

黃逸軒 (2007). 利用葉綠素螢光參數評估浮游植物生長與營養鹽限制的關係。碩士論文,海洋生物研究所,國立台灣海洋大學,66頁。

Behrenfeld, M.J. Bale, Z.S. Kolber, J. Aiken and P.G. Folkowski. 1996. Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature 383:508-511.

Boyd, P.W., A.J. Watson, C.S. Law, E.R. Abraham, T. Trull, R. Murdoch, D.C.E. Bakker, A.R. Bowie, K.O. Buesseler, H. Chang, M. Charette, P. Croot, K. Downing, R. Frew, M. Gall, M. Hadfield, J. Hall, M. Harvey, G. Jameson, J. LaRoche, M. Liddicoat, R. Ling, M.T. Maldonado, R.M. McKay, S. Nodder, S. Pickmere, R. Pridmore, S. Rintoul, K. Safi, P. Sutton, R. Strzepek, K. Tanneberger, S. Turner, A. Waite and J. Zeldis. 2000. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407:695-702.

Campbell, D., V. Hurry, A.K. Clarke, P. Gustafsson and G. OQuist. 1998. Chlorophyll fluorescence analysis of cyanobacterial photosythesis and acclimation. Microbial Molecular Biology 62:667-683.

Chen, Y.-L.L. 2000. Comparisons of primary productivity and phytoplankton size structure in the marginal regions of southern East China Sea. Continental Shelf Research 20:437-458.

Chung C.-C., S.-P. L. Hwang, and J. Chang. 2003. Identification of a high-affinity phosphate transporter gene in a prasinophyte alga, Tetraselmis chui, and its expression under nutrient limitation. Applied and Environmental Microbiology 69:754-759.

Gobler, C.J., N.J. Buck, M.E. Sieracki and S.A. Sanudo-Wilhelmy. 2006. Nitrogen and silicon limitation of phytoplankton communities across an urban estuary: The East River-Long Island Sound system. Estuarine, Coastal and Shelf Science 68:127-138.

Gong, G.-C., Y.-L. Chen and K.-K. Liu. 1996. Chemical hydrography and chlorophyll a distribution in the East China Sea in summer: implications of nutrient dynamics. Continental Shelf Research 16:1561-1590.

Goosney, D.L. and A.G. Miller. 1997. High rates of O2 photoreduction by the unicellular cyanobacterium Synechocystis PCC 6803 as determined by the quenching of chlorophyll fluorescence. Canadian Journal of Botany 75:394-401.

Graziano, L.M., R.J. Geider, W.K.W. Li and M. Olaizola. 1996. Nitrogen limitation of North Atlantic phytoplankton: analysis of physiological condition in nutrient enrichment experiments. Aquatic Microbial Ecology 11:53-64.

Harrison, P.J., M. –H. Hu, Y.-P. Yang, and X. Lu. 1990. Phosphate limitation in estuarine and coastal waters of China Sea. Deep-Sea Research Part II 50:1219-1236.

Holmboe, N., H.S. Jensen and F.O. Andersen. 1999. Nutrient addition bioassays as indicators of nutrient limitation of phytoplankton in an eutrophic estuary. Marine Ecology Progress Series 186:95-104.

Howarth, R.W. 1998. Nutrient limitation of net primary production in marine ecosystems. Annual Reviews in Ecology 19:89-110.

Iturriaga, R. and J. Marra. 1988. Temporal and spatial variability of chroococcoid cyanobacteria Synechococcus spp. Specific growth rates and their contribution to primary production in the Sargasso Sea. Marine Ecology Progress Series 44:175-181.

Jochem, F. 1988. On the distribution and importance of picocynanobacteria in a boreal in shore area (Kiel Bight, Western Baltic). Journal of Plankton Research 10:1009-1022.

Kolber, Z. and P.G. Folkowski. 1993. Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnology and Oceanography 38:1646-1665.

Kolber, Z.S., O. Prasil and P.G. Falkowski. 1998. Measurement of variable chlorophyll fluorescence using fast repetition rate techiques: defining methodology and experimental protocols. Biochimica et Biophysica Acta 1367:88-106.

Li, W.K.W., D.V. Subba Rao, W.G. Harrison, J.J. Cullen, B. Irwin and T. Piatt. 1983. Autotrophic picoplankton in the tropical ocean. Science 219:292-295.

Lippemeier, S., D.M. Frampton, S.I. Blackburn, S.C. Geier and A.P. Negri. 2003. Influence of phosphorus limitation on toxicity and photosynthesis of Alexandrium minutum (Dinophyceae) monitored by in-line detection of variable chlorophyll fluorescence. Journal of Phycology 39:320-331.

Olson, R.J., D. Vaulot, and S.W. Chisholm. 1986. Effects of environmental stresses on the cell cycle of two marine phytoplankton species. Plant Physiology 80:918-926.

Parslow, J.S., P.J. Harrison, and P.A. Thompson. 1984. Saturated uptake kinetics: transient response of the marine diatom Thalassiosira pseudonana to ammonium, nitrate, silicate or phosphate starvation. Marine Biology 83:51-59.

Platt, T.D., D.V. Subba Rao and B. Irwin. 1983. Photosynthesis of picoplankton in the oligotrophic ocean. Nature 301:702-704.

Ragueneau, O., E.D.B. Varela, P. Treguer, B. Queguiner, and Y.D. Amo. 1994. Phytoplankton dynamics in relation to the biogeochemical cycle of silicon in a coastal ecosystem of western Europe. Marine Ecology Progress Series 106:157-172.

Redfield, A.C. 1958. The biology control of chemical factors in the environment. American Scientist 46:205-222.

Ryther, J.H. and W.H. Dunstan. 1971. Nitrogen, phosphorus, and eutrophication in the coastal marine environment. Science 171:1008-1013.

Six, C., J.C. Thomas, L. Garczarek, M. Ostrowski, A. Dufresne, N. Blot, D.J. Scanlan and F. Partensky. 2007. Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study. Genome Biology 8:R259.

Thomas, W.H. 1996. Surface nitrogenous nutrients and phytoplankton in the Northeastern Tropical Pacific Ocean. Limnology and Oceanography 11:393-400.

Ting, C.S. and T.G. Owens. 1992. Limitations of the pulse-modulated technique for measuring the fluorescence characteristics of algae. Plant Physiology 100:367-343.

Timmermans, K.R., B.V.D. Wagt., M.J.W. Veldhuis, A. Maatman and H.J.W.D. Baar. 2005. Physiological responses of three species of marine pico-phytoplankton to ammonium, phosphate, iron and light limitation. Journal of Sea Research 53:109-120.

Wong, G.T.F., G.-C. Gong, K.-K. Liu, and S.-C. Pai. 1998. ‘Excess Nitrate’in the East China Sea. Estuarine, Coastal Shelf Science 46:411-418.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔