(3.238.130.97) 您好!臺灣時間:2021/05/18 18:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:陳翰生
研究生(外文):Han-Sheng Chen
論文名稱:智慧型自走車之路徑規劃與停車控制
論文名稱(外文):Intelligent Path Planning and Parking Control of a Wheeled Mobile Robot
指導教授:莊季高
指導教授(外文):Jih-Gau Juang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:通訊與導航工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:79
中文關鍵詞:輪式移動型機器人模糊邏輯基因演算法
外文關鍵詞:Wheeled mobile robotfuzzy logicgenetic algorithm
相關次數:
  • 被引用被引用:2
  • 點閱點閱:516
  • 評分評分:
  • 下載下載:150
  • 收藏至我的研究室書目清單書目收藏:0
本論文是利用一個全自動的智慧型移動自走車(WMR)來完成路邊平行停車(Parallel Parking)以及車庫停車(Garage Parking),在停車控制中又分為:順向停車(Forward Parking )以及反向停車(Backward Parking)。利用智慧型移動自走車本身的感測器並搭配智慧型演算法來進行路徑規劃以及追跡控制,以期WMR能夠快速且準確的追尋到期望軌跡。本研究使用的智慧型演算法為模糊邏輯系統,利用模糊系統中語意描述的方式,並配合智慧型移動自走車本身的感測器回傳訊號來達到路徑規劃以及追跡控制。先規劃出適當的路徑及軌跡,再將感測器的回傳信號當作輸入,透過本文設計的模糊邏輯控制器,藉由WMR上的增量型編碼器(PWM)來控制智慧型自走車的轉速。另外分別改變模糊邏輯規則中的歸屬函數型式,並利用基因演算法,來達到最佳路徑以及最小能源之規劃。
進行硬體實驗前先經由套裝軟體Matlab模擬,而在WMR實體測試中,則使用Visual Basic 2005來撰寫人機介面,利用回傳信號傳送至電腦並運算產生輸出轉速,藉由WiFi (802.11b)無線網路將運算數值與車體回授做為WMR與電腦間數值的傳遞。硬體實驗結果顯示在車庫停車的路徑軌跡模擬也非常符合實體測試的真實軌跡,證明此智慧型控制器的可行性及可靠性。
In this thesis, we proposed an autonomous wheeled mobile robot (WMR) to perform automatic parallel parking and garage parking. There are two kinds of parking: one is forward parking and the other is backward parking. By applying sensors and intelligent method to path planning and path tracking control, the WMR can figure out the optimal
paths quickly and accurately.
In this study, the intelligent method which we used is the fuzzy
logic system. Having fuzzy language expression and senor information
of the WMR, we can accomplish path planning and tracking control. In
addition, by changing the membership function of fuzzy rule and using genetic algorithm, we could plan the optimal paths and acquire minimum energy control. To obtain this goal, suitable path is needed to plan first. The sensor feedback signals are applied as input signals. The proposed fuzzy controller can generate suitable PWM signals to control the speed
of the WMR.
At the WMR entity tests, we use the Visual Basic 2005 to encode the
interface between human and machine and utilize a personal computer to
compute the expected trajectory. Command signals are transferred
through WiFi (802.11b) wireless to communicate data between the WMR and computer. Recursive computations are used in WMR to achieve trajectory tracking control. Simulations show that the proposed control scheme can guide the WMR on parallel parking and garage parking
successfully.
Contents

Abstract(Chinese) I
Abstract(English) II
Acknowledgement (Chinese) III
Contents IV
List of Figures VII
List of Table X
1 Introduction 1
1.1 Research Motivation and Goal 1
1.2 Literature Reviews 1
1.3 Thesis Contribution 3
1.4 Thesis Scheme 4
2 WMR System Construction and Experimental Hardware 5
2.1 System Description 5
2.2 WMR Body Apparatus 7
2.2.1 PMS5005 sensor and motion control card 7
2.2.2 DC motor 8
2.2.3 MDM5253 DC motor driving module 9
2.2.4 Quadrature encoder 10
2.3 Dynamic Equations 12
3 Fuzzy Theory and Genetic Algorithm 16
3.1 Fuzzy Theory 16
3.1.1 Preprocessing 17
3.1.2 Fuzzification 18
3.1.3 Fuzzy rule base 21
3.1.4 Inference engine 21
3.1.5 Defuzzification 25
3.2 Genetic Algorithm (GA) 26
3.2.1 Initial population 27
3.2.2 Fitness function 28
3.2.3 Reproduction 28
3.2.4 Crossover 29
3.2.5 Mutation 31
3.2.6 Encode types 31
3.3 Real-valued Genetic Algorithm 32
3.3.1 Crossover in the RGA 32
3.3.2 Mutation in the RGA 33
3.3.3 Applications 33
4 Parking Control 34
4.1 Introduction 34
4.2 Parking Control 34
4.2.1 Wall-following 34
4.2.2 Parallel-parking 43
4.2.3 Garage parking 47
4.3 The Change of the Membership Function 52
4.3.1 Types of the membership function 52
4.3.2 Simulation results 53
4.4 The Change of the Fuzzy Rules 57
4.5 Conclusion 61
5 Hardware Experiments 62
5.1 Human-machine Interface 62
5.2 Control Procedure 65
5.3 Visual Basic Operating Interface 66
5.3.1 Pulse width modulation (PWM) 67
5.4 Real-time Parking Control 68
5.4.1 Wall-following 68
5.4.2 Parallel-parking 69
5.4.3 Garage-parking 71
6 Conclusions 74
6.1 Discussions 74
6.2 Future Investigation and Suggestion 75
6.2.1 Theory 75
6.2.2 Hardware 75
References 76
References

[1] Y.Ando and S.Yuta, “Following a wall by an Autonomous Mobile Robot with a Sonar-Ring,” Proc. IEEE International Conference on Roboticsand Automation, vol.
4, pp. 2599-2606, 1995.

[2] Yi Xiang Chen, “Design and Implementation of Car-Like Mobile Robot with Intelligent Parking Capability”, Department of Electrical Engineering , NCKU , ROC , 2002.

[3] A. Curran and K. J. Kyriakopoulos, “Sensor-based Self-localization for Wheeled Mobile Robots”, Proc. IEEE Mediterranean Symp. New Direction Contr. Automat.,
1993.

[4] 白仲凱, 應用模糊邏輯與基因演算法於輪式移動型機器人之追跡控制, 碩士
論文, 國立台灣海洋大學通訊與導航工程研究所, 2007.

[5] J. H. Holland,“Outline for a Logical Theory of Adaptive Systems,” Journal of the
Association for Computing Machinery, vol. 3, pp. 297-314, 1962.

[6] L A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, pp. 338–353, 1965.

[7] Y. Zhao and S. L. BeMent, “Kinematics, Dynamics and Control of Wheeled Mobile Robots,” Proceedings of the 1992 IEEE International Conference on Robotics & Automation, pp. 91-96, 1992.

[8] Y.P. Leow, K.H. Low, and W.K. Loh, “Kinematic Modelling and Analysis of Mobile Robots with Omni-Directional Wheels,” Seventh International Conference on Control, Automation, Robotics And Vision (ICARCV '02), pp. 820-825, 2002.

[9] De Luca and M. Vendittelli, “WMR Control via Dynamic Feedback Linearization_Design Implementation and Experimental Validation,” IEEE Transactions on Control Systems Technology, vol. 10, no. 6, pp. 835-852, 2002.


[10] M.C. Laiou and A. Astolfi, “Local Transformations to Generalized Chained Forms,” Process Systems Engineering RWTH Aachen University Templergraben 55, D-52056 Aachen, Germany, pp. 1-14, 2004.

[11] B. dAndrea, G. Bastin, and G. Campion, “Dynamic Feedback Linearization of Nonholonomic Wheeled Mobile Robots,” Proceedings of the 1992 IEEE International Conference on Robotics & Automation, pp. 820-825, 1992.

[12] Y. Chung and C. Park, and Fumio Harashima, “A Position Control Differential Drive Wheeled Mobile Robot,” IEEE Transactions on Industrial Electronics, vol. 48, no. 4, pp. 853-863, 2001.

[13] T.H. Lee, H.K. Lam, F.H.F. Leung, and P.K.S. Tam, “A Practical Fuzzy Logic Controller for The Path Tracking of Wheeled Mobile Robots,” Application Note IEEE Control Systems Magazine, pp. 60-65, 2003.

[14] T.H. Lee, H.K. Lam, F.H.F. Leung, and P.K.S. Tam, “A Fast Path Planning -and-tracking Control for Wheeled Mobile Robots,” Proceedings of the 2001 IEEE International Conference on Robotics & Automation Seoul, Korea. pp. 1736-1741,
2001.

[15] T.H. Lee, H.K. Lam, F.H.F. Leung, and P.K.S. Tam, “Fuzzy Model Reference Control of Wheeled Mobile Robots,” Proceedings of The 27th Annual Conference of the IEEE industrial Electronics Society, pp. 570-573, 2001.

[16] E.X. Shi, W.M. Huang, and Y.Z. Ling, “Fuzzy Predictive Control of Wheeled Mobile Robot Based on Multi-Sensors,” Proceedings of the Third International Conference on Machine Learning and Cybernetics, pp. 439-443, 2004.

[17] S.B. Tang, Y. Zhuang, L. Liu, and W. Wang, “Discrete Trajectory Tracking Control of Wheeled Mobile Robots,” Proceedings of the 2004 IEEE International Conference on Robotics and Biomimetics, pp. 344-349, 2004.

[18] 魏光群, 無線導引微晶片控制巡蹤自走車之研製, 碩士論文, 國立成功大學
航空太空工程研究所, 2003.

[19] 簡卓建, 應用模糊控制於自走車路徑導引避障之整合設計, 碩士論文, 國立
成功大學航空太空工程研究所, 2003.

[20] 王建清, 無線遙控智慧型自走車之設計制作應用於平行泊車實驗, 碩士論
文, 國立成功大學航空太空工程研究所, 2005.

[21] 陳永祥, 自走車軌跡控制, 碩士論文, 私立中華大學電機工程學系碩士班,
2001

[22] 陳巧茵, 小型自走車以超音波避障之研究, 碩士論文, 國立成功大學工程科
學研究所, 2001.

[23] 林于婉, 以超音波感測器建立自走車環境地圖之研究, 碩士論文, 碩士論
文, 國立成功大學工程科學研究所, 2005.

[24] 顧高至, 多功能智慧型自走車之研發, 碩士論文, 國立成功大學工程科學研
究所, 2001.

[25] 汪在祥, 自走車在智慧型空間下之動態目標追蹤, 碩士論文, 私立大同大學
機械工程研究所, 2005.

[26] 楊雅兆, 使用超音波感測之自走車避障實務設計, 碩士論文, 私立中原大學
機械工程學系, 2004.

[27] 陳泳萱, 自走車循跡導航系統之模擬研究, 碩士論文, 國立中興大學生物產
業機電工程研究所, 2004.

[28] 蕭勝議, 無人自走車系統設計與行為反應控制, 碩士論文, 私立逢甲大學機
械工程研究所, 2003.

[29] 許哲源, 自走車之驅動控制與避障規劃, 碩士論文, 國立成功大學工程科學
研究所, 2003.

[30] Phokharatkul. P and Phaiboon. S “Mobile Robot Control Using Type-2 Fuzzy Logic System, ” IEEE Conference on Robotics, Automation and Mechatronics , vol. 1, pp. 296-299, 2004.

[31] Hou Kai Chiou, “Analysis and Comparison of Aircraft Landing Control Using Evolutionary Computations and Recurrent Neural Networks Approaches and Its Realization by DSP,” Master of Science in Communication and Guidance Engineering, NTOU, 2006.
[32] Wen Pin Lin, “Applications of Fuzzy Logic and CMAC to Automatic Landing Control and Hardware Realization by DSP,” Master of Science in Communication and Guidance Engineering, NTOU, 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊