(3.238.96.184) 您好!臺灣時間:2021/05/18 15:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:劉嘉洪
研究生(外文):Chia-Hung Liu
論文名稱:面型微加工電容式超音波換能器
論文名稱(外文):Surface Micromachining Capacitive Ultrasonic Transducers
指導教授:陳柏台
指導教授(外文):Pei-Tai Chen
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:系統工程暨造船學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:122
中文關鍵詞:電容式超音波換能器面型微加工技術輻射聲場輻射聚焦特性
外文關鍵詞:cMUTSurface micromachining techniquesRadiation patternBeamforming characteristics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:471
  • 評分評分:
  • 下載下載:105
  • 收藏至我的研究室書目清單書目收藏:0
本文針對電容式超音波換能器的基礎設計、製作及量測提出整套有系統的研究。首先就電容式超音波換能器的薄膜振動模式、直流偏壓及上電極的附加質量效應予以討論,再研究直流偏壓及上電極附加質量效應,對電容式超音波換能器薄膜共振頻率產生下降的影響。文中採用符合實際的邊界條件求解換能器薄膜的機械阻抗,結合聲學輻射阻抗推導出準確的超音波換能器等效電路,作為電容式超音波換能器的設計依據,並利用薄膜共振頻率及換能器輻射聲場的數值實例計算,建立出電容式超音波陣列的設計準則。
有關製作部分,使用與積體電路製程技術相容的微機電面型微加工技術,製作電容式超音波換能器。這些技術包含低壓化學氣相沉積技術、黃光微影技術、活性離子蝕刻技術、犧牲層濕蝕刻技術、熱阻絲蒸鍍技術及電漿輔助化學氣相沉積技術。製程中影響換能器性能的重要考量,諸如下電極的離子佈植、隔絕層的材料與厚度、犧牲層的厚度與蝕刻比的影響、側向蝕刻孔的尺寸與真空密封、蝕刻道的路徑與形式、振動薄膜的直徑、厚度與材料及上電極的厚度與尺寸等,在文中皆予以討論。
最後將切割完成的電容式超音波換能器黏著於印刷電路板,用以進行特性量測,包括總輸入阻抗量測,其量測值與理論預測值相當吻合;發射與接收特性量測顯示,電容式超音波換能器的接受信號有超過35dB的訊雜比,顯現出其可使用性;超音波陣列輻射聚焦特性量測顯示,超音波陣列具有良好的聚焦性能,證明電容式超音波換能器的製作及應用為可行。
This thesis presents the primary design, fabrication and measurement of the Capacitive Micromachined Ultrasonic Transducer (cMUT). Previous studies have investigated the bias effect, vibration behavior of the cMUT and optimum size of the top electrode; however, these studies did not analyze combining the resonant frequency drop of the cMUT with the effects of bias and added mass. In this thesis, reasonable boundary conditions for solving the modified Mason model, acoustic radiation impedance of medium, bias effect and added mass effect of the top electrode are all utilized to derive an accurate equivalent circuit for cMUT design. Computer simulations of the cMUT are performed and several numerical examples are computed. The modified cMUT model predicts behaviors of the cMUT’s membrane with increased accuracy, especially on the resonant frequency.
The cMUT fabrication uses the full surface micromachining techniques of the Micro Electro Mechanical System (MEMS), which are compatible with integrated circuit fabrication processes, have been further developed over the recent decade. These techniques include Low Pressure Chemical Vapor Deposition (LPCVD), photolithography, Reactive Ion Etching System (RIE) dry etching, sacrificial layer wet etching, metal thermal evaporation coating and Plasma-Enhanced Chemical Vapor Deposition (PECVD). Several important issues regarding fabrication process that the bottom electrode, insulating layer, sacrificial layer, etching hole, etching channel, membrane particular, and metal electrode are discussed for optimizing the performance of the cMUT.
Finally, the input impedance of the cMUT is measured and the measured result agrees with the theoretical prediction having simply supported membrane boundary conditions. The received signal has a 35 dB signal-to-noise ratio indicating that practical applications of the immersion cMUT are feasible and that the radiation pattern measurement of the cMUT array has good beamforming characteristics for underwater imaging.
Contents
Contents Ⅳ
List of Figures Ⅶ
List of Tables Ⅹ?
References and Appendixes ⅩII
Chapter 1 INTRODUCTION
1.1 Introduction 1
1.2 Research motivation 1
1.3 Literature review 5
1.3.1 Review of ultrasonic technology 5
1.3.2 Review of ultrasonic transducer development 7
1.4 Research method and thesis structure 9
1.4.1 Research method 9
1.4.2 Thesis structure 9
Chapter 2 THEORIES
2.1 Equivalent circuit of the cMUT 13
2.2 Membrane properties 17
2.2.1 Variational equation of motion for a stretched
thin plate 17
2.2.2 Mechanical impedance of the cMUT membrane 19
2.3 Acoustic radiation impedance 22
2.4 Characteristic analysis of the cMUT 23
Chapter 3 RADIATING SIMULATION OF THE cMUT
3.1 Circular piston radiation equation 35
3.2 Design of the ultrasonic transmitter array 36
3.2.1 Rectangular transmitter of equivalent sound source 37
3.2.2 Design of two-dimensional ultrasonic transmitter array 39
3.3 Numerical example of radiation pattern of ultrasonic transmitter 41
3.4 Design criteria of ultrasonic transmitter array 42
3.5 Theory of focusing acoustic transducer 42
3.6 Numerical example 45
Chapter 4 FABRICATION OF THE cMUT
4.1 Fabrication processes 61
4.2 Discussion 63
4.2.1 Bottom electrode 63
4.2.2 Insulating layer 63
4.2.3 Sacrificial layer 63
4.2.4 Etching hole 64
4.2.5 Etching channel 64
4.2.6 Membrane particular 65
4.2.7 Metal electrode 65
Chapter 5 MEASUREMENT OF THE cMUT
5.1 Measurement equipment 76
5.1.1 Impedance analyzer 76
5.1.2 Function generator 77
5.1.3 Commercial transducer 77
5.1.4 Wideband preamplifiers 78
5.1.5 Power supplier 78
5.1.6 Oscilloscope 78
5.2 Measurement of the cMUT 79
5.2.1 Input impedance measurement 79
5.2.2 Transmission and receiving experiments 79
5.2.3 Radiation pattern measurement 81
5.2.4 Focusing device measurement 81
Chapter 6 CONCLUSIONS
6.1 Design criteria of ultrasonic transmitter array 93
6.2 Achievement of research 94
References
[01].Hsu, T. R., 2002, MEMS & Microsystems Design and Manufacture, Boston: McGraw- Hill.
[02].Lyshevski, and Edward, S., 2002, MEMS and NEMS: Systems, Devices, and Structures, Fla.: CRC Press.
[03].Fukuda, T., and Menz, W., editors. 1998, Micro Mechanical Systems: Principles and Technology, New York: Elsevier.
[04].Varadan, V. K., Jiang, X., and Varadan, V. V., 2001, Microstereolithography and Other Fabrication Techniques for 3D MEMS, New York: Wiley.
[05].Rai-Choudhury, P., editor. 2000, MEMS and MOEMS Technology and Applications, Wash.: SPIE Press.
[06].Gottert, J., 2000, LIGA–A Fabrication Technology for High-aspect Ratio Micro- structures, LIGA Process, CAMD Summer School.
[07].Daniel, H. T., and Foster, F. S., 1992, “Fabrication and Characterization of Transducer Elements in Two-Dimensional Arrays for Medical Ultrasound Imaging,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 39, No. 4, pp. 464- 475.
[08].Bureau, J. M., Steichen, W., and Lebail, G., 1998, “A Two-Dimensional Transducer Array for Real-Time 3D Medical Ultrasound Imaging,” IEEE Ultrasonics Symposium, pp. 1065- 1068.
[09].Jonathan, M. C., Timothy, A. R., Chen, W. H., and Silverman, R. H., 2003, “Design of Efficient, Broadband Single-Element (20-80 MHz) Ultrasonic Transducers for Medical Imaging Applications,” IEEE Transactions on Ultra- sonics, Ferroelectrics, and Frequency Control, Vol. 50, No. 11, pp. 1548- 1557.
[10].Ahmed, S. R., and Saka, M., 2002, “Influence of Wall Thickness on the Ultrasonic Evaluation of Small Closed Surface Cracks and Quantitative NDE,” Journal of Nondestructive Evaluation, Vol. 21, pp. 9- 22.
[11].Lanceleur, P., Betheval, J. F., and Mercier, N., 1992, “Modeling of Transient Deformation of Piezoelectric Ceramics,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 39, No. 2, pp. 293- 301.
[12].Abramov, O. V., 1994, Ultrasound in Liquid and Solid Metals, Fla.: CRC Press.
[13].Sherar, M. D., Noss, M. B., and Foster, F. S., 1987, “Ultrasound Backscatter Microscopy Images the Internal Structure of Living Tumor Spheroids,” Nature, Vol. 26, No. 3, pp. 493- 497.
[14].Passmann, C., Ermert, H., Auer, T., Kaspar, K., el-Gammal, S., and Altmeyer, P., 1993, “In Vivo Ultrasound Biomicroscopy,” IEEE Ultrasonics Symposium, Vol. 2, pp. 1015- 1018.
[15].Jiles, D. C., and Atherton, D. L., 1984, “Theory of Ferromagnetic Hysteresis,” Journal of Applied Physics, Vol, 55, pp. 2115- 2120.
[16].Eccardt, P., Niederer, K., Scheiter, T., and Hierold, C., 1996, “Surface Micromachined Ultrasound Transducers in CMOS Technology,” IEEE Ultrasonics Symposium, San Antonio, USA, pp. 959- 962.
[17].Kaltenbacher, M., Landes, H., Niederer, K., and Lerch R., 1999, “3D Simulation of Controlled Micromachined Capacitive Ultrasound Transducers,” IEEE Ultrasonics Symposium, pp. 1155-1158.
[18].Buhrdorf, A., Tebje, L., Ahrens, O., and Binder, J., 2000, “Capacitive Micromachined Ultrasonic Transducer (cMUT) Array for the Frequency Range below 500 kHz,” IEEE Ultrasonics Symposium, Puerto Rico, pp. 915- 918.
[19].Robertson, T. J., Hutchins, D. A., and Billson, D. R., 2000, “An Air-Coupled Line-Focused Capacitive Ultrasonic Transducer,” IEEE Ultrasonics Symposium, Puerto Rico, pp. 1061- 1064.
[20].Caliano, G., Galanello, F., Caronti, A., and Carotenuto, R., 2000, “Microma- chined Ultrasonic Transducers Using Silicon Nitride Membrane Fabrication in PECVD Technology,” IEEE Ultrasonics Symposium, Puerto Rico, pp. 963- 967.
[21].McIntosh, J. S., Hutchins, D. A., Billson, D. R., Noble, R. A., Davies, R. R., and Koker, L., 2002, “Saft Imaging Using Immersed Capacitive Micromachined Ultrasonic Transducers,” IEEE Ultrasonics Symposium, pp. 1019- 1022.
[22].Oppenheim, I. J., Jain A., and David, W. G., 2003, “MEMS Ultrasonic Transducers for the Testing of Solids,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 50, No. 3, pp. 305- 311.
[23].Cianci, E., Minotti, A., Foglietti, V., Calianob, G., and Pappalardo, M., 2004, “One-dimensional capacitive micromachined ultrasonic transducer arrays for echographic probes,” Microelectronic Engineering 73–74, pp. 502– 507.
[24].Belgacem, B., Dlquier, D., Muralt, P., Baborowski, J., Lucas, S., and Jerisian, R., 2004, “Optimization of the fabrication of sealed capacitive transducers using surface micromachining,” Journal of Micromechanics and Microengineering, Vol. 14, pp. 299- 304.
[25].Liu, C. H., Wang, C. J., and Chen, P. T., 2005, “The design and radiation pattern simulation of capacitive micromachined ultrasonic transducers for underwater detecting,” Journal of the Society of Naval Architecture and Marine Engineers, Vol. 24, No. 1, pp. 9- 18. (in Chinese)
[26].Liu, C. H., and Chen, P. T., 2007, “Surface micromachined capacitive ultrasonic transducer for underwater imagine,” Journal of the Chinese Institute of Engineers, Vol. 30, No. 3, pp. 447- 458.
[27].Royer, M., Holmen, J. O., Wurm, M. A., Aadland, O. S., and Glenn, M., 1983, “ZnO on Si integrated acoustic sensor,” Sensors and Actuators, Vol. 4, pp. 357- 362.
[28].Holm, D., and Gerhard-Multhaupt, R., 1984, “Silicon-dioxide electric Trans- ducer,” Journal Acoustical Society of America, Vol. 75, pp. 1297- 1298.
[29].Schellin, R., and Hess, G., 1992, “A silicon subminiature microphone based on piezoresistive polysilicon strain gauges,” Sensors and Actuators, Vol. 32, pp. 555- 559.
[30].Scheeper, P. R., van der Donk, A. G. H., Olthuis, W., and Bergveld, P., 1992, “Fabrication of silicon condenser microphone using single wafer technology,” Journal of Microelectromechanical System, Vol. 1, No. 3, pp. 145- 154.
[31].Ladabaum, I., Khuri-Yakub, B. T., and Spoliansky, D., 1996, “Micromachined ultrasonic transducers: 11.4 MHz transmission in air and more,” Applied Physics Letters, Vol. 68, No. 1, pp. 7- 9.
[32].Soh, H. T., Ladabaum, I., Atalar, A., Quate, C. F., and Khuri-Yakub, B. T., 1996, “Silicon micromachined ultrasonic immersion transducers,” Applied Physics Letters, Vol. 69, No. 24, pp. 3674- 3676.
[33].Jin, X. C., Ladabaum, I., and Khuri-Yakub, B. T., 1997, “The microfabrication of capacitive ultrasonic transducers,” International Conference on Solid-State Sensors and Actuators, Vol. 1, pp. 437- 440.
[34].Ladabaum, I., Jin, X. C., and Khuri-Yakub, B. T., 1998, “Miniature drumheads: microfabricated ultrasonic transducers,” Ultrasonics, Vol. 36, pp. 25- 29.
[35].Jin, X. C., Ladabaum, I., and Khuri-Yakub, B. T., 1998, “The microfabrication of capacitive ultrasonic transducers,” Journal of Microelectromechanical Systems, Vol. 7, No. 3, pp. 295- 302.
[36].Ladabaum, I., Jin, X. C., Soh, H. T., Atalar, A., and Khuri-Yakub, B. T., 1998, “Surface micromachined capacitive ultrasonic transducers,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 45, pp. 678- 690.
[37].Jin, X. C., Oralkan, O., Degertekin, F. L., and Khuri-Yakub, B. T., 2001, “Characterization of one-dimensional capacitive micromachined ultrasonic immersion transducer arrays,” IEEE Transactions on Ultrasonic, Ferroelectrics, and Frequency Control, Vol. 48, No. 3, pp. 750- 760.
[38].Roh, Y. G., and Khuri-Yakub, B. T., 2002, “Finite element analysis of under- water capacitor micromachined ultrasonic transducers,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 49, No. 3, pp. 293- 298.
[39].Mason, W. P., 1948, Electromechanical Transducers and Wave Filters, 2nd ed., New York: D. Van Nostrand Company.
[40].Buhrdorf, A., Ahrens, O., and Binder, J., 2001, “Capacitive micromachined ultrasonic transducers and their application,” IEEE Ultrasonics Symposium, Atlanta, USA, pp. 933- 940.
[41].Atalar, A., 1988, “A fast method for calculating diffraction loss between two facing transducers,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 35, pp. 612- 617.
[42].Kinsler, L. E., Frey, A. R., Coppens, A. B., and Sanders, J. V., 1982, Funda- mentals of Acoustics, 3rd ed., New York: Wiley.
[43].Bozkurt, A., Ladabaum, I., Atalar, A., and Khuri-Yakub, B. T., 1999, “Theory and analysis of electrode size optimization for capacitive microfabricated ultrasonic transducers,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 46, No. 6, pp. 1364- 1374.
[44].Junger, M. C., and Feit, D., 1985, Sound, Structures, and Their Interaction, Acoustical Society of America.
[45].Hunt, J. W., Arditi, M., and Foster, F. S., 1983, “Ultrasound Transducers for Pulse-Echo Medical Imaging,” Biomedical Engineering, IEEE Transactions on, Vol. BME- 30, pp. 453- 481.
[46].Eccardt, P. C., Niederer, K., and Fischer, B., 1997, “Micromachined transducers for Ultrasound Applications,” IEEE Ultrasonic Symposium Proceedings, Ontario, Canada, pp. 1619- 1623.
[47].Mendelsohn, Y., and Avnear, E. W., 2002, “Simulations of circular 2D phase- array ultrasonic imaging transducers,” Ultrasonics, Vol. 39, pp. 657– 666.
[48].Hristov, H. D., 2000, Fresnel zones in wireless links, zone plate lenses and antennas, Boston: Artech House.
[49].MEMS Pro, L-Edit User Guide, Version 3.1.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top