|
[1]. [Fis70] P.C.Fishburn. Intransitive indifference with unequal indifference intervals. J.Math.Psych., 7:144–149, 1970. [2]. [Fis85] P.C. Fishburn. Interval orders and interval graphs: A study of partially ordered sets. John Wiley & Sons, New York, 1985. [3]. [Wei14] N. Weiner. A contribution to the theory of relative position.Proc. Cambridge Philosophical Society, 17:441–449, 1914. [4]. [FM92] P.C. Fishburn and B. Monjardet. Norbert weiner on the theory of measurement (1914, 1915, 1921). J. Math. Psych., 36:165–184,1992. [5]. [BT94] K.P. Bogart and A.N. Trenk. Bipartite tolerance orders. Discrete Mathematics, 132:11–22, 1994. Corrigendum to “Bipartite Tolerance Orders” Discrete Math. 145 (1995) 347. [6]. [Lan93] L. Langley. Interval tolerance orders and dimension. PhDthesis, Dartmouth College, June 1993. [7]. [BI98] K.P. Bogart and G. Isaak. Proper and unit bitolerance orders and graphs. Discrete Math., 181:37–51, 1998. [8]. [FT99] P.C. Fishburn and W.T. Trotter. Split semiorders. Discrete Math., 195:111–126, 1999. [9]. [INT01]. G. Isaak, K.L. Nyman, and A.N. Trenk. A hierarchy of classes of bounded bitolerance orders. To appear in ARS Combinatoria, 2001. [10].[DGP88] I. Dagan, M.C. Golumbic, and R.Y. Pinter. Trapezoid graphs and their coloring. Disrete Applied Math., 21:35–46, 1988. [11].[CK87] D.G. Corneil and P.A. Kamula. Extensions of permutation and interval graphs. Congressus Numerantium, 58:267–275, 1987. [12].Martin Charles Golumbic Ann N.Trenk December 6,2002 [13].[Fel98] S. Felsner. Tolerance graphs and orders. J. of Graph Theory, 28:129–140, 1998.
[14].[BFIL95] K. Bogart, P. Fishburn, G. Isaak, and L. Langley. Proper and unit tolerance graphs. Discrete Applied Math., 60:37–51, 1995.
|