(18.210.12.229) 您好!臺灣時間:2021/03/05 12:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林明和
研究生(外文):Ming-Ho Lin
論文名稱:介於雙容錯大小階層裡的一些大小
論文名稱(外文):Some orders in between the hierarchy of bitolerance orders
指導教授:林英仁
指導教授(外文):I.J. LIN
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:英文
論文頁數:37
中文關鍵詞:雙容錯大小
外文關鍵詞:orderbitolerance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:81
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
在有界雙容錯大小(Bounded bitolerance order)中,我們利用不同的限制條件可以得到一些不同的有界雙容錯大小族群。
在論文中,整個有界雙容錯大小階層,我們界定了其中某部份族群的差別,並找出一些不同大小來區別其它的族群。
An ordered set P = (V,≺) is a bounded bitolerance order if it has a representation as follows. Each v ∈ V is assigned a real interval Iv = [L(v),R(v)] and two additional tolerant points p(v), q(v) ∈ Iv satisfying p(v) L(v) and q(v) R(v) so that x ≺ y ⇐⇒ R(x) < p(y) and q(x) < L(y). The collection where I ={ Iv | v ∈ V }, p = {p(v) | v ∈ V } and q = {q(v) | v ∈ V } is called a bounded bitolerance representation of P.
There are some classes of bounded bitolerance orders with different restriction.
We find some orders of difference between each of different classes.
Chapter 1 Introduction……………..……………………………...1
1.1 Ordered Sets…………………..……………………………. 1
1.1.1 Interval Orders……………..………………………………..2
1.2 Bounded Bitolerance Orders….………………………….….2
1.2.1 Three Types of Restrictions………………………….......….4
1.3 Trapezoid orders………………………………..……...…….6
Chapter 2……………………………………………………………..12
2.1 unit tolerance order and unit tot. bnd bitolerance order……..12
2.2 unit interval , unit tot.bnd.tolerance , uint pt-core bitolerance oredr…………………………………………………………15
Chapter 3………………………………………………………………18
3.1 N1 , N2 , N3 order……………………………………………19
3.2 A1 , A2 , A3 , H order…………………………………………..22
Chapter 4 Conclusion and Future Work………………………….30
Appendix……………………………………………………………….31
Referencd……………………………………………………………...35
[1]. [Fis70] P.C.Fishburn. Intransitive indifference with unequal indifference intervals. J.Math.Psych., 7:144–149, 1970.
[2]. [Fis85] P.C. Fishburn. Interval orders and interval graphs: A study of partially ordered sets. John Wiley & Sons, New York, 1985.
[3]. [Wei14] N. Weiner. A contribution to the theory of relative position.Proc. Cambridge Philosophical Society, 17:441–449, 1914.
[4]. [FM92] P.C. Fishburn and B. Monjardet. Norbert weiner on the theory of measurement (1914, 1915, 1921). J. Math. Psych., 36:165–184,1992.
[5]. [BT94] K.P. Bogart and A.N. Trenk. Bipartite tolerance orders. Discrete Mathematics, 132:11–22, 1994. Corrigendum to “Bipartite Tolerance Orders” Discrete Math. 145 (1995) 347.
[6]. [Lan93] L. Langley. Interval tolerance orders and dimension. PhDthesis, Dartmouth College, June 1993.
[7]. [BI98] K.P. Bogart and G. Isaak. Proper and unit bitolerance orders and graphs. Discrete Math., 181:37–51, 1998.
[8]. [FT99] P.C. Fishburn and W.T. Trotter. Split semiorders. Discrete Math., 195:111–126, 1999.
[9]. [INT01]. G. Isaak, K.L. Nyman, and A.N. Trenk. A hierarchy of classes of bounded bitolerance orders. To appear in ARS Combinatoria, 2001.
[10].[DGP88] I. Dagan, M.C. Golumbic, and R.Y. Pinter. Trapezoid graphs and their coloring. Disrete Applied Math., 21:35–46, 1988.
[11].[CK87] D.G. Corneil and P.A. Kamula. Extensions of permutation and interval graphs. Congressus Numerantium, 58:267–275, 1987.
[12].Martin Charles Golumbic Ann N.Trenk December 6,2002
[13].[Fel98] S. Felsner. Tolerance graphs and orders. J. of Graph Theory, 28:129–140, 1998.

[14].[BFIL95] K. Bogart, P. Fishburn, G. Isaak, and L. Langley. Proper and unit tolerance graphs. Discrete Applied Math., 60:37–51, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔