(34.237.52.11) 您好!臺灣時間:2021/05/18 14:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:蔣育宗
研究生(外文):Yu-Zong Jiang
論文名稱:風場計算與內插
論文名稱(外文):Wind Field Estimation and Interpolation
指導教授:翁世光
指導教授(外文):Shih-Guang Wong
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:38
中文關鍵詞:風場計算都卜勒雷達資料風場內插向量場視覺化
外文關鍵詞:wind field estimationDoppler radar datawind field interpolationvector field visualization
相關次數:
  • 被引用被引用:1
  • 點閱點閱:195
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
都卜勒雷達是輔助氣象預測的利器,藉由分析都卜勒雷達的回波強度資料可以瞭解水氣的分佈狀況與其結構,並可推算出風場以預測未來的天氣狀況。將水氣和風場資料視覺化將有助於天氣分析與預報。
本論文提出一個氣象雷達資料的視算系統,此系統著重於分析與顯示風場資料。在我們的方法中,我們首先利用地表高度資料過濾雜波,接著利用光流法從氣象雷達資料估算出風場。另外為了同步協調多個雷達站的資料,解決不同雷達站之間彼此掃描速度不同步的問題,我們使用一個和流場特性有關的內插法,計算出不同雷達站在相同時間點的風場資料,並合併它們以建立廣範圍的氣象資料。在完成資料的合併後,我們使用箭頭與流線的方法將風場繪製出來。
Doppler radars are useful facilities for gathering meteorological data. By analyzing radar data, meteorologists can understand the information about the state of weather, and predict the weather in the future. Therefore, a visualization system dedicated to the post-processing of Doppler radar data is important for weather forecasting and analysis.
In this thesis, we propose a visualization system to visualize the wind field gathered by Doppler radars. We use terrain information to filter out noises. Then, a hierarchical optical flow method is adopted to compute the horizontal wind field. To synchronize the meteorological data scanned by different radar stations with different scanning speeds, we interpolate the wind field by using special Navier Stokes equations. Therefore, we can calculate the vector field data at any time point for each radar. Once the vector field at all time points are available, streamline and glyph images are used to reveal the wind fields.
1. 緒論 1
1.1. 前言 1
1.2. 相關研究 1
1.3. 研究方法簡介與論文結構 3
2. 背景知識介紹 5
2.1. 氣象雷達資料 5
2.2. 光流法 6
2.3. 流線 7
3. 雷達資料重新取樣和濾波 8
3.1. 雜訊濾波器 8
3.2. 建構規則化網格資料 10
4. 估算水平風場 12
4.1. LK METHOD 12
4.2. 使用多層次解析度結構 15
5. 內插風場資料 17
5.1. 風場內插流程 17
5.2. 解NAVIER-STOKES EQUATION 19
5.2.1. 外力與對流 20
5.2.2. 壓力場梯度 21
5.3. 風場內插實作方法 22
5.3.1. 內插範例 23
5.4. 合併多個雷達站的雷達資料 25
6. 實作結果與分析 26
6.1. 風場內插結果與分析 26
6.2. 同步多個雷達站之結果 30
7. 結論與展望 32
7.1. 結論 32
7.2. 展望 32
參考文獻 33
[1] T. V. Papathomas, J. A. Schiavone, and B. Julesz. Applications of Computer Graphics to the Visualization of Meteorological Data. Computer Graphics (In Proceedings of SIGGRAPH’88), 22(4): 327-334, 1988.
[2] Paula T. McCaslin, Philip A. McDonald, and Edward J. Szoke. 3D Visualization Development at NOAA Forecast Systems Laboratory. ACM SIGGRAPH Computer Graphics, 34(1): 41-44, 2000.
[3] Suzana Djurcilov and Alex Pang. Visualizing Gridded Datasets with Large Number of Missing Values. In Proceedings of IEEE Visualization’99, pages 405-408, 1999.
[4] Thomas Gerstner, Dirk Meetschen, Susanne Crewell, Michael Griebel, and Clemens Simmer. A Case Study on Multiresolution Visualization of Local Rainfall from Weather Radar Measurements. In Proceedings of IEEE Visualization’02, pages 533-536, 2002.
[5] William L. Hibbard. 4-D Display of Meteorological Data. In Proceedings of the 1986 Workshop on Interactive 3D Graphics, pages 23-36, 1986.
[6] William Hibbard, Large Operational User of Visualization. ACM SIGGRAPH Computer Graphics, 37: 5-9, 2003.
[7] Curtis N. James, Stacy R. Brodzik, Harry Edmon, Robert A. Houze, Jr. and Sandra E. Yuter. Radar Data Processing and Visualization over Complex Terrain. AMS Weather and Forecasting, 15(3): 327-338, 2000.
[8] Thomas Gerstner, Dirk Meetschen, Susanne Crewell, Michael Griebel, and Clemens Simmer. A Case Study on Multiresolution Visualization of Local Rainfall from Weather Radar Measurements. In Proceedings of IEEE Visualization’02, pages 533-536, 2002.
[9] D. Dovey. Vector Plots for Irregular Grids. in IEEE Visualization 1995, pages 233-239, 1995.
[10] B. Cabral and L. Leedom. Image Vector Fields Using Line Convolution. in ACM SIGGRAPH 1993, pages 263-272, 1993.
[11] D. Stalling and H. C. Hege. Fast and Resolution Independent Line Integral Convolution. in ACM SIGGRAPH 1995, pages 249-258, 1995.
[12] L. Li and W. Schmid. Nowcasting of Motion and Growth of Precipitation with Radar over a Complex Orography. AMS Journal of Applied Meteorology, 34(6): 1286-1300, 1995.
[13] Neill Bowler and Clive Pierce. Numerical Weather Prediction. Forecasting Research Technical Report No. 390, 2002
[14] C. E. Pierce, E. Ebert, A. W. Seed, M. Sleigh, C. G. Collier, N. I. Fox, N. Donaldson, J. W. Wilson, R. Roberts, and C. K. Mueller. The Nowcasting of Precipitation during Sydney 2000: An Appraisal of the QPF Algorithms. AMS Weather and Forecasting, 19(1): 7-21, 2004
[15] Bruce D. Lucas and Takeo Kanade. An Iterative Image Registration Technique with an Application to Stereo Vision. Proceeding of Image Understanding Workshop, pages 121-130, 1981.
[16] J. L. Barron and M. Khurana. Determining Optical Flow for Large Motions Using Parametric Models in a Hierarchical Framework. Department of Computer Science, The University of Western Ontario, London Ontario, N6A 5B7.
[17] James R. Bergen, P. Anandan, Keith J. Hanna and Rajesh Hingorani. Hierarchical model-based motion estimation. European Conference on Computer Vision 1992, pages 237-252, 1992.
[18] J. L. Barron, D. J. Fleet, S. S. Beauchemin, and T. A. Burkitt. Performance of Optical Flow Techniques. Computer Vision and Pattern Recognition, pages 236-242, 1992.
[19] Berthold K. P. Horn and Brian G. Schunck. Determining optical flow, Artificial Intelligence vol. 17. pages 185-203, 1981.
[20] S.S. Beauchemin and J.L. Barron. The Computation of Optical Flow. ACM Computing Surveys vol. 27, No. 3, 1995.
[21] H. Theisel, T. Weinkauf, H. C. Hege, and H. P. Seidel. Stream Line and Path Line Oriented Topology for 2D Time-Dependent Vector Fields. Proceedings of the IEEE Visualization 2004, pages 321-328, 2004.
[22] S. K. Ueng and S. C. Wang. Interpolation And Visualization For Advected Scalar Fields. Proceedings of the IEEE Visualization 2005, pages 615-622, 2005.
[23] J. Zavala-Hidalgo, M. A. Bourassa, S. L. Morey, J. J. O'Brien, and P. Yu. A New Temporal Interpolation Method for High-Frequency Vector Wind Fields. Proceedings OCEAN 2003, pages 1050-1053, 2003.

[24] B. Jobard, G. Erlebacher, and M. Y. Hussaini. Lagrangian-Eulerian Advection of Noise and Dye Textures for Unsteady Flow Visualization. IEEE Transactions on Visualization and Computer Graphics, 8(3): 211-222, 2002.
[25] D. Weiskopf, G. Erlebacher, M. Hopf, and T. Ertl. Hardware-Accelerated Lagrangian-Eulerian Texture Advection for 2D Flow Visualization. Proceedings of Workshop on Vision, Modeling, and Visualization VMV'02, 2002.
[26] W. J. Emery and R. E. Thomson. Data Analysis Methods in Physical Oceanography. Pergamon, 1998.
[27] D. M. Legler. Empirical Orthogonal Function Analysis of Wind Vectors Over the Tropical Pacific Region. Bulletin of American Meteorological Society, 64(3):234-241, 1983.
[28] N. Foster and D. Metaxas. Modeling the Motion of a Hot, Turbulent Gas. Proceeding SIGGRAPH '97, pages 181-188, 1997.
[29] R. Fedkiw, J. Stam, and H. W. Jensen. Visual simulation of smoke. Proceeding SIGGRAPH '01, pages 15-22, 2001.
[30] Alexis Angelidis, Fabrice Neyret, Karan Singh, Derek Nowrouzezahrai. A Controllable, Fast and Stable Basis for Vortex-Based Smoke Simulation. ACM SIGGRAPH Symposium on Computer Animation 2006, pages 25-32, 2006.
[31] Yootai Kim, Raghu Machiraju and David Thompson. Path-based Control of Smoke Simulations. ACM SIGGRAPH Symposium on Computer Animation 2006, pages 33-42, 2006.
[32] Raanan Fattal and Dani Lischinski. Target-Driven Smoke Animation. The Hebrew University of Jerusalem.
[33] G. A. Clift. Use of Radar In Meteorology. Secretariat of the World meteorological Organization, 1985.
[34] National Weather Service, NOAA. National Weather Service Radar Image, Dennis R. Cain and Paul Kirkwood, editor, October, 2004. http://weather.noaa.gov/radar/radinfo/radinfo.html.
[35] R. E. Rinehart. A Pattern Recognition Technique for Use with Conventional Weather Radar to Determine Internal Storm Motions. Recent Progress in Radar Meteorology, pages 119-134, 1998.
[36] John Tuttle and Robert Gall. A Single-Radar Technique for Estimating the Winds in Tropical Cyclones. Bulletin of the American Meteorological Society, 80, pages 653-668, 1999.
[37] Fleet D.J and Jepson A.D.. Computation of component image velocity from local phase information. Int. J. Comp. Vision 5, pages 77-104, 1990.
[38] Alex Rav-Acha and Shmuel Peleg. Lucas-Kanade Without Iterative Warping. IEEE Image Processing 2006, pages 1097-1100, 2006.
[39] Z. Liu, R. J. Moorhead, and J. Groner. An Advanced Evenly-Spaced Streamline Placement Algorithm. IEEE Transaction on Visualization and Computer Graphics, 12, pages 965-971, 2006.
[40] Kuangyu Shi, Holger Theisel, Tino Weinkauf, hans-Christian Hege and Hans-Peter Seidel. Finite-Time Transport Structures of Flow Fields. IEEE Pacific Visualization Symposium 2008, pages 63-70, 2008.
[41] Mebarki A., Alliez P and Devillers O.. Farthest point seeding for efficient placement of streamlines. IEEE Visualization 2005, pages 479-486, 2005.
[42] Sheng Chuan Wang. Visualization System for Weather Radar Data. 2005.
[43] Wei Yang Sun. Multiple-Resolution Vector-Field Visualization. 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top