(18.206.238.77) 您好!臺灣時間:2021/05/17 18:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:吳家豪
研究生(外文):Chia-Hao Wu
論文名稱:結合RFID與GSM頻段應用之天線設計
論文名稱(外文):Antenna Design for RFID and GSM Band Applications
指導教授:程光蛟孫卓勳孫卓勳引用關係
指導教授(外文):Kwong-Kau TiongJwo-Shiun Sun
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:77
中文關鍵詞:威金森功率分配器寬頻圓極化天線類八木天線共平面波導
外文關鍵詞:Wilkinson power dividerBroadband CP AntennaQuasi-yagi AntennaCoplanar Waveguide
相關次數:
  • 被引用被引用:1
  • 點閱點閱:285
  • 評分評分:
  • 下載下載:76
  • 收藏至我的研究室書目清單書目收藏:1
本論文提出可應用於Radio Frequency Identification(RFID)讀取器系統之天線。所提出之天線結構是利用饋入網路與平面天線整合成RFID讀取器天線,藉由加入被動元件所構成饋入網路與平面天線之整合,可以改善平面天線的各項特性(圓極化軸比頻寬、交叉極化位準)。在金屬面上挖槽孔並結合威金森功率分配器的90o相位差,設計軸比操作於800~960 MHz的寬頻圓極化天線,由威金森功率分配器所設計之3 dB軸比頻寬比單饋入圓極化天線來的好,且具有體積較小的特性。

同時本論文也提出利用八木天線的高增益及指向性之特性,在平面PCB上以共平面波導饋入設計類八木天線結構,操作於900 MHz GSM全方向性場型及2.4 GHz RFID端射性場型結合之通訊系統頻段天線。由於操作頻段在900 MHz,相對波長較長,因此天線結構以共平面波導饋入到繞線,2.4 GHz的頻段是由900 MHz倍頻產生。其類八木天線之導向子與導向子的間距和導向子的長度及數目會影響天線輻射場型,天線增益在GSM頻段約為0~1 dBi,RFID頻段約為2~3 dBi。
In this thesis we have proposed a design which can be used as RFID reader system. The design is based on the integration of a network feed line onto a planar antenna. The network was constructed of passive components and when combining with the planer antenna demonstrated improved operational characteristics (CP axial ratio bandwidth of the circularly polarized antenna and cross-polarization) of the planar antenna. By constructing slots on a planar antenna and combining with the 90 degree phase shift character of a Wilkinson power divider, a circularly polarized wide bandwidth antenna in the frequency range of 800-900 MHz has been constructed. Through the use of a Wilkinson power divider in the design, the 3 dB axial ratio bandwidth showed improvement over that of a single feed circularly polarized antenna and at the same time, the new design is more compact.

We have also proposed, by exploiting the high gain and directional character of Yagi antenna, a Yagi-type antenna on a PCB board fed by a coplanar waveguide. The design can be used as communication antenna for the combined omni-directional 900 MHz GSM and 2.4 GHz RFID with end-fire pattern system. Since the operated frequency is at 900 MHz, the antenna structure is implemented by feeding a coplanar waveguide into a meander line. The 2.4 GHz band is generated by frequency multiplication of the 900 MHz band. The radiation pattern of the Yagi-type antenna depends on the separation, length, and the quantity of the radiating elements. The gain of GSM band is about 0~1 dBi and the gain of RFID band is about 2~3 dBi.
目 錄

中文摘要……………………………………………………………………i
英文摘要…………………………………………………………………..iii
誌謝……………………………………………………………………..….v
目錄………………………………………………………………….…….vi
圖目錄……………………………………………………………..……..viii
表目錄………………………………………………………..…………….x
第一章 序論……………………………………………………………….1
1.1 研究背景…………………………………………………….1
1.2 研究動機與目的…………………………………………….3
1.3 內容提要…………………………………………………….5
第二章 應用於RFID讀取器之間隙耦合饋入之圓極化天線…………..6
2.1 概述………………………………………………………….6
2.2 威金森功率分配器………………………………………...10
2.3 天線設計…………………………………………………...12
2.4 實驗分析與結果…………………………………………...22
第三章 結合RFID與GSM通訊系統頻段之天線設計……………….25
3.1 概述………………………………………………………...25
3.2 偶極天線(Dipole)………………………………………….26
3.3 YAGI天線………………………………………………….32
3.4 印刷式類八木天線結構…………………………………...36
3.5 實驗結果與分析…………………………………………...39
3.6 天線結構之參數探討……………………………………...48
3.6.1 探討PBG結構及導向子對天線影響……………..48
3.6.2 調整傳輸線寬度(Wf)………………………………51
3.6.3 調整傳輸線長度(Wh)……………………………...52
3.6.4 調整Meander line寬度(Mw)……………………….54
3.6.5 調整Meander line間距寬度(Mg1)………………...55
3.6.6 調整間距(Dg)………………………………………57
3.6.7 調整導向子長度(Dl)……………………………….58
3.7 類八木天線改良設計……………………………………...60
3.7.1 天線結果……………………………………………63
第四章 結論……………………………………………………………...70
參考文獻………………………………………………………………….72


圖目錄
圖2.1 RFID系統包含的組件………………………………………..7
圖2.2.1 威金森功率分配器結構圖及其相關特性的量測曲線…..11
圖2.2.2 兩埠輸出相位差…………………………………………..12
圖2.3.1 間隙耦合饋入之圓極化天線結構圖及實際照片………..15
圖2.3.2 威金森分配器結構圖……………………………………..16
圖2.3.3 間隙耦合饋入之圓極化天線金屬輻射面………………..17
圖2.3.4 史密斯圖的輸入阻抗圖…………………………………..18
圖2.3.5 間隙耦合饋入之圓極化天線反射係數…………………..19
圖2.3.6 間隙耦合饋入之圓極化天線軸比頻寬…………………..20
圖2.3.7 間隙耦合饋入之圓極化天線場型………………………..21
圖2.3.8 間隙耦合饋入之圓極化天線增益………………………..22
圖2.4.1 有無間隙耦合之天線比較……………………………......23
圖2.4.2 調整輻射金屬面參數Ws之變化………………………...24
圖3.2.1 半波長雙偶極天…………………………………………..27
圖3.2.2 四分之一波長單偶極天線………………………………..27
圖3.2.3 半波長雙偶極天線E plane場形………………………….32
圖3.2.4 半波長雙偶極天線H plane場形………………………….32
圖3.3.1 八木天線示意圖…………………………………………...33
圖2.3.2 四種常被使用的饋入結構………………………………...35
圖3.4.1 天線之結構幾何圖………………………………………...37
圖3.5.1 天線實際量測與模擬之反射損耗比較圖………………...40
圖3.5.2 結合RFID與GSM頻段之天線實際照片………………….41
圖3.5.3 電波無反射室量測環境…………………………………...42
圖3.5.4 天線模擬電流圖(a) 800 MHz、(b) 2.39 GHz……………44
圖3.5.5 天線實際量測場型圖(a) 900 MHz、(b) 2.4 GHz………….46
圖3.5.6 天線量測增益值(a) 900 MHz、(b) 2.4 GHz……………….47
圖3.6.1.1無PBG結構之天線幾何圖………………………………49
圖3.6.1.2 PBG結構之反射損耗比較………………………………49
圖3.6.1.3 2.4 GHz天線實際量測場型圖…………………………...50
圖3.6.2 調整傳輸線寬度(Wf)之反射係數………………………...51
圖3.6.3 調整傳輸線長度(Wh)之反射係數………………………...53
圖3.6.4 調整Meander line寬度(Mw)之反射係數………………….54
圖3.6.5 調整Meander line間距寬度(Mg1)之反射係數…………56
圖3.6.6 調整間距(Dg)之反射係數………………………………...57
圖3.6.7 調整導向子長度(Dl)之反射係數…………………………59
圖3.7.1 天線之結構幾何圖………………………………………...61
圖3.7.1.1 天線實際量測與模擬之反射損耗比較圖………………63
圖3.7.1.2 八木天線改良設計之實際照片…………………………64
圖3.7.1.3 天線模擬電流圖(a) 900 MHz、(b) 2.43 GHz……………66
圖3.7.1.4 天線實際量測場型圖(a) 900 MHz、(b) 2.4 GHz………67
圖3.7.1.5 天線量測增益值(a) 900 MHz、(b) 2.4 GHz……………69


表目錄
表2.1 RFID使用頻帶與優缺點……………………………………...9
表2.3.1間隙耦合饋入之圓極化天線相關參數…………………...17
表3.4.1天線之相關參數…………………………………………....37
表3.5.1天線實際量測與模擬頻段與頻寬…………………………40
表3.6.2調整傳輸線寬度(Wf)之反射損耗結果比較………………52
表3.6.3調整傳輸線長度(Wh)之反射損耗結果比較………………53
表3.6.4調整Meander line寬度(Mw)之反射損耗結果比較………55
表3.6.5調整Meander line間距寬度(Mg1)之反射損耗結果比較…56
表3.6.6調整間距(Dg)之反射損耗結果比較……………………....58
表3.6.7調整導向子長度(Dl)之反射損耗結果比較………………..59
表3.7.1天線之相關參數……………………………………………61
表3.7.1.1 天線實際量測與模擬頻段與頻寬………………………64
[1] J. Landt, “Shrouds of Time: The history of RFID, Pittsburgh, AIM-Inc,” Mar. 2005.
[2] C. Kern, “Radio-frequency-identification in libraries,” The Electronic Library , vol. 22:4, pp.317-324, 2004.
[3] K. Finkenzeller, RFID Handbook :fundamentals and applications in contactless smart cards and identification, Wiley, Chichester, England, 2003.
[4] International Telcommunication, “Union, Frequently asked questions,” Mar. 2005.
[5] G. A. Deschamps, “Microstrip microwave antenna,” presented at the Third USAF Sympoisum on Antennas, 1953.
[6] A. A. Kishk and L. Shafai, “The effect of various parameters of circular microstrip antennas on their radiation efficiency and the mode excitation,” IEEE Trans. Antennas Propagat., vol. 34, pp. 969-976, Aug. 1986.
[7] J. Huang, “The finite ground plane effect on the microstrip antenna radiation patterns,” IEEE Trans. Antennas Propagat., vol. 31, pp. 649-653, 1983.
[8] A. K. Bhattacharyya, “Effects of finite ground plane on the radiation
characteristics of a circular patch antenna,” IEEE Trans. Antennas Propagat., vol. 38, pp. 152-159, 1990.
[9] A. K. Bhattacharyya, “Effects of ground plane truncation on the impedance of a patch antenna,” IEE Proc.-Microw. Antennas Propagat., vol. 138, pp. 560-564,1991.
[10] K. L. Wong and T. W. Chiou, “Finite Ground Plane Effects on Broadband Dual Polarized Patch Antenna Properties,” IEEE Trans. Antennas Propagat., (reviced)
[11] S. A. Bokhari, J. R. Mosig, and F. E. Gardiol, “Radiation pattern computation of microstrip antennas on finite size ground planes,” IEE Proc.-Microw. Antennas Propagat., vol. 139, pp. 278-286, 1992.
[12] S. Noghanian, and L. Shafai, “Control of microstrip antenna radiation characteristics by ground plane size and shape,” IEE Proc.-Microw. Antennas Propagat., vol. 145, pp. 207-212, 1998.
[13] J. H. Lu, C. L. Tang and K. L. Wong, "Single-feed slotted equilateral-triangular microstrip antenna for circular polarization," IEEE Trans. Antennas Propagat., vol. 47, pp. 1174-1178, 1999.
[14] W. S. Chen, C. K. Wu and K. L. Wong, “Single-feed square-ring microstrip antenna with truncated corners for compact circular polarization operation,” Electron Lett. vol. 34, pp. 1045-1047, May 28, 1998.
[15] F. R. Hsiao, T. W. Chiou and K. L. Wong, “Circularly Polarized Low-Profile Square Dielectric Resonator Antenna with a Loading Patch,” Microwave Opt. Technol. Lett., vol. 31, pp. 157-159, Nov. 5, 2001.
[16] J. Y. Sze and K. L. Wong, "Slotted rectangular microstrip antenna for bandwidth enhancement," IEEE Trans. Antennas Propagat., vol. 48, no. 8, pp. 1149-1152, Aug. 2000.
[17] S. T. Fang, K. L. Wong and T. W. Chiou, “Bandwidth Enhancement of Inset-Microstrip-Line-Fed Equilateral-Triangular Microstrip Antenna,” Electron. Lett.,vol. 34, pp. 2184-2186, Nov. 12, 1998.
[18] S. T. Fang, T. W. Chiou and K. L. Wong, “Broadband Equilateral-Triangular Microstrip Antenna with Asymmetric Bent Slots and Integrated Reactive Loading,” Microwave Opt. Technol. Lett., vol. 23, pp. 149-151, Nov. 5, 1999.
[19] F. E. Gardiol and J.-F. Zuercher, “Broadband patch antennas - A SSFIP update,” 1996 IEEE AP-S Int'l Symp. Dig., pp. 2-5.
[20] N. Herscovici, “New considerations in the design of microstrip antennas,” IEEE Trans. Antennas Propagat., vol. 46, pp. 807-812, 1998.
[21] G. A. E. Vandenbosch and A. R. Van de Capelle, “Study of the capacitively fed microstrip antenna element,” IEEE Trans. Antennas Propagat., vol. 42, pp.1648-1652, 1994.
[22] P. S. Hall, “Probe compensation in thick microstrip patches,” Electron. Lett., vol.23, pp. 606-607, May 21, 1987.
[23] K. L. Wong and W. S. Hsu, “Broadband triangular microstrip antenna with U-shaped slot,” Electron. Lett., vol. 33, pp. 2085-2087, Dec. 4, 1997.
[24] S. D. Targonski and D. M. Pozar, "Design of wideband circularly polarized aperture coupled microstrip antenna," IEEE Trans. Antennas Propagat., vol. 41, pp. 214-220, 1993.
[25] K. L. Wong and T. W. Chiou, “Broad-Band Single-Patch Circularly Polarized Microstrip Antenna with Dual Capacitively Coupled Feeds,” IEEE Trans. Antennas Propagat., vol. 49, pp. 41-44, Jan. 2001.
[26] T. W. Chiou and K. L. Wong, “Single-Layer Wideband Probe-Fed Circularly Polarized Microstrip Antenna,” Microwave Opt. Technol. Lett., vol. 25, pp.74-76, Apr. 5, 2000.
[27] H. M. Chen, Y. F. Lin and T. W. Chiou, “Broadband Circularly Polarized Aperture-Coupled Microstrip Antenna Mounted in a 2.45 GHz Wireless Communication System,” Microwave Opt. Technol. Lett., vol. 28, pp. 100-101,Jan. 20, 2001.
[28] J. H. Lu, C. L. Tang and K. L. Wong, "Single-feed slotted equilateral-triangular microstrip antenna for circular polarization," IEEE Trans. Antennas Propagat., vol. 47, pp. 1174-1178, 1999.
[29] W. S. Chen, C. K. Wu and K. L. Wong, “Single-feed square-ring microstrip antenna with truncated corners for compact circular polarization operation,” Electron Lett. vol. 34, pp. 1045-1047, May 28, 1998.
[30] F. R. Hsiao, T. W. Chiou and K. L. Wong, “Circularly Polarized Low-Profile Square Dielectric Resonator Antenna with a Loading Patch,” Microwave Opt. Technol. Lett., vol. 31, pp. 157-159, Nov. 5, 2001.
[31] G. A. E. Vandenbosch and A. R. Van de Capelle, "Study of the capacitively fed microstrip antenna element," IEEE Trans. Antennas Propagat., vol. 42, pp.1648-1652, 1994.
[32] P. S. Hall, “Probe compensation in thick microstrip patches,” Electron. Lett., vol.23, pp. 606-607, May 21, 1987.
[33] K. L. Wong and W. S. Hsu, “Broadband triangular microstrip antenna with U-shaped slot,” Electron. Lett., vol. 33, pp. 2085-2087, Dec. 4, 1997.
[34]呂仕勛(1994),車用行動通訊多頻組合式天線之研製,國立中央大學電機工程研究所碩士論文。
[35] G. Zheng, A.A. Kishk, A.W. Glisson and A.B. Yakolev, “Simplified feed for modified printed yagi antenna,” Electron Lett. , Vol. 40, No. 8, Apr. 15, 2004.
[36] V. C. Garcia, R. Casaleiz, E. M. Segura, P. Otero and C. C. Penalosa, “BALUN EFFECTS IN THE QUASI-YAGI ANTENNA,” IEEE MELECON, pp. 320-323, May 16-19, 2006.
[37] M. Sun and Y. P. Zhang, “100-GHz Quasi-Yagi Antenna in Silicon Technology,” Electron Lett., VOL. 28, NO. 5, pp455-457, May 2007.
[38] 黃耿毅(1992),剖風儀之關鍵零組件—印刷式八木天線設計,國立中央大學通訊工程研究所碩士論文。
[39] C. P. Wen, “Coplanar Waveguide, a Surface Strip Transmission Line Suitable for Nonreciprocal Gyromagnetic Device Applications,” IEEE Transactions on Microwave Theory and Techniques, Vol. 17, pp. 1087 – 1090, Dec. 1969.
[40] H. C. Liu, T. S. Horng, and N. G. Alexopoulous, “Radiation of Printed Antennas with a Coplanar Waveguide-Fed,” IEEE Transactions antennas Prop., vol. 10, pp. 1143-1148, 1995.
[41] J. W. Greiser, “Coplanar Stripline Antenna,” Microwave Journal, vol. 21, pp. 47-49, 1976.
[42] L. T. Wang, X. C. Lin and J. S. Sun “The broadband loop slot antenna with Photonic Band Gap structure,” Antennas and Propagation 2003, Vol. 2, pp. 470-472, Mar. 31~Apr. 3, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top