(18.204.227.34) 您好!臺灣時間:2021/05/17 05:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張鍾鴻
論文名稱:應用FPGA於正子斷層造影儀之數位信號處理模組
論文名稱(外文):FPGA based digital signal processing module for Positron Emission Tomography
指導教授:吳宗達吳宗達引用關係
指導教授(外文):Tzong-Dar Wu
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:92
中文關鍵詞:正子斷層造影儀數位信號處理模組
相關次數:
  • 被引用被引用:4
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出了一種精巧的正子斷層造影儀之數位信號處理模組,並成功地將此模組實現於單一FPGA晶片上,達到模組的微型化以及系統的硬體電路體積縮小的目標。針對使用「Pulse trigger」以及「timing-mark」為時間資訊信號的兩種前級偵檢器,分別實現適合之時間符合計算電路來因應。
此外,在本數位信號處理模組中,數位即時堆疊減算校正電路的設計與實現解決了因為事件堆疊而產生的能量累積問題,還原出無堆疊的能量信號,並經由將時間資訊信號延遲,恢復已還原之無堆疊能量信號與事件發生時間的時序同步。
在實測與驗證上,本論文以4對4前端偵檢器配置架構進行整體數位信號處理模組之模擬,成功判別符合事件並將代表正子事件資訊之配對信號與相對應事件位置以及能量信號合併,輸出至後級資料傳輸介面。
根據測試之結果,論文並將比較使用「Pulse trigger」以及「timing-mark」為時間資訊信號的數位信號處理模組之間的差異以及優劣。
第一章 序論….…………………………………………………...……...1
1.1 PET正子斷層造影介紹………………………………………..1
1.2 研究緣起與目的………………………………...……………...3
1.3 正子/單光子雙用途乳房造影儀系統架構…………………….5
1.4 論文整體架構……………………………………...…………...9
第二章 數位信號處理與FPGA平台……………………..…………...10
2.1 文獻回顧……………………………...……………………….10
2.2 數位信號處理模組之架構………………….………………...17
2.3 FPGA平台介紹…………………………………………….…20
第三章 數位信號處理模組之設計…………………………………….22
3.1 事件堆疊…..……………………….…………….…................22
3.2 HYPER演算法………………………………………………..24
3.3 即時堆疊減算校正電路………………………………………28
3.3.1 即時堆疊減算校正電路之結構介紹……...…………29
3.3.2 即時減算校正單元…………………………...………31
3.4 時間符合計算電路……………………………………………33
3.4.1 總符合事件計算單元…………………...……………35
3.4.2 延遲電路………………………………………..…….38
3.4.3 符合事件資料傳輸控制電路………………………...39
第四章 數位信號處理模組之實現與測試…………..…..………….…41
4.1 數位即時堆疊減算校正電路之實現………………………....41
4.1.1 即時減算校正單元…………………..……………….42
4.1.2 時序控制電路………………………...………………46
4.1.3 資料儲存單元…………………………...……………48
4.2 時間符合計算電路之實現………………………...………….50
4.2.1 符合事件計算單元……………………...……………52
4.2.2 時序控制電路……………………….………………..54
4.2.3 延遲電路………………………….…………………..55
4.2.4 資料儲存單元……………….…….………………….56
4.2.5 符合事件資料傳輸控制電路……………………..….57
4.3 數位即時堆疊減算校正電路之測試……………..…………..60
4.4 事件符合計算電路之測試………………….………………...65
4.4.1 延遲電路之測試……………………..……………….65
4.4.2 總符合事件計算之測試…………………...…………69
4.4.3 符合事件資料傳輸控制電路之測試………………...73
4.5 數位信號處理模組之測試………………………..…………..76
第五章 結論與未來展望………………………..……………………...84
5.1 結論…………………………………………………...……….84
5.2 未來展望………………………………………………………86
參考文獻………………………..…………………………….…………..87
[1] W.-H.Wong, “A position camera design with cross-coupled scintillators and quadrant sharing photomultipliers,” IEEE Trans. Nucl. Sci., vol. 40, no. 4, pp. 962–966, Aug. 1993.
[2] M. E. Casey and R. Nutt, “A multicrystal two dimensional BGO detector system for positron emission tomography,” IEEE Trans. Nucl. Sci., vol. 33, no. 2, pp. 460–467, Jun. 1986.
[3] S. R. Cherry, Y. Shao, S. Siegel, R. W. Silverman, E. Mumcuoglu, K. Meadors, and M. E. Phelps, “Optical fiber readout of scintillator arrays using a multi-channel PMT: A high resolution PET detector for animal imaging,” IEEE Trans. Nucl. Sci., vol. 43, no. 2, pp. 1932–1937, Jun. 1996.
[4] C. Schmelz, S. M. Bradbury, I. Holl, E. Lorenz, D. Renker, and S. Ziegler, “Feasibility study of an avalanche photodiode readout for a high resolution PET with nsec time resolution,” IEEE Trans. Nucl. Sci., vol. 42, no. 4, pp. 1080–1084, Aug. 1995.
[5] S. Surti, J. P. Karp, R. Freifelder, and F. Liu, “Optimizing the performance of a PET detector using discrete GSO crystals on a continuous lightguide,” IEEE Trans. Nucl. Sci., vol. 47, no. 2, pp. 1030–1036, Jun. 2000.
[6] J. Uribe, H. Li, T. Xing, Y. Liu, H. Baghaei, Y. Wang, R. Ramirez, and W.-H. Wong, “Signal characteristics of individual crystals in high resolution BGO detector designs using PMT-quadrant sharing,” IEEE Trans. Nucl. Sci., vol. 50, no. 2, pp. 355–361, Jun. 2003.
[7] J. Uribe,W.-H.Wong, G. Hu, K. Hicks, J.Wang, H. Baghaei, N. Zhang, H. Li, and S. Yokoyama, “Effect of the rotational orientation of circular photomultipliers in a PET camera block detector design,” IEEE Trans. Nucl. Sci., vol. 44, no. 2, pp. 1266–1270, Jun. 1997.
[8] W.-H. Wong, J. Uribe, K. Hicks, and M. Zambelli, “A 2-dimensional detector decoding study on BGO arrays with quadrant sharing photomultipliers,” IEEE Trans. Nucl. Sci., vol. 41, no. 4, pp. 1453–1457, Aug. 1994.
[9] W.-H.Wong, S. Yokoyama, J. Uribe, H. Baghaei, H. Li, J.Wong, and N. Zhang, “An elongated position sensitive block detector design using the PMT quadrant-sharing configuration and asymmetric light partition,” IEEE Trans. Nucl. Sci., vol. 46, no. 3, pp. 542–545, Jun. 1999.
[10] W.-H.Wong, J. Uribe,W. Lu, G. Hu, and K. Hicks, “Design of a variable field prototype PET camera,” IEEE Trans. Nucl. Sci., vol. 43, no. 2, pp. 1915–1920, Jun. 1996.
[11] S. Xie, R. Ramirez, Y. Liu, T. Xing, J. Uribe, H. Li, Y. Wang, H. Baghaei, S. Kim, and W.-H. Wong, “A pentagon photomultiplier-quadrant- sharing BGO detector for a rodent research PET (RRPET),” IEEE Trans. Nucl. Sci., vol. 52, no. 1, pp. 210–216, Feb. 2005.
[12] W.-H. Wong, H. Li, S. Xie, R. Ramirez, S. Kim, J. Uribe, Y. Wang, Y. Liu, T. Xing, and H. Baghaei, “Design of an inexpensive high-sensitivity rodent-research PET camera (RRPET),” in Proc. IEEE Nuclear Science Symp. Conf., vol. 3, Oct. 2003, pp. 2058–2062.
[13] W.-H.Wong, S. Xie, R. A. Ramirez, S. Kim, H. Li, Y. Zhang, J. Uribe, Y. Wang, and H. Baghaei, “An improved quadrant-sharing BGO detector for a low-cost rodent-research PET (RRPET),” in Proc. IEEE Nuclear Science Symp. Conf., vol. 6, Oct. 2004, pp. 3407–3411.
[14] Hongdi Li, Wai-Hoi Wong et. al., "Front-end electronics based on high-yield-pileup -event-recovery method for a high resolution PET camera with PMT-quadrant-sharing detector modules," 2003 IEEE Nuclear Science Symposium and Medical Imaging Conference Record, pp. 699 - 703, 2003
[15] W.H. Wong, H. Li, J. Uribe, H. Baghaei, Y. Wang, S. Yokoyams, “Feasibility of a high speed gamma camera design using the high-yield-pileup-event-recovery (HYPER) method,” The Journal of Nuclear Medicine, vol.42, no. 4, April 2001.
[16] H. Li, W.H. Wong, et al, “A new pileup-prevention front-end electronics design for high resolution PET and gamma cameras,” IEEE Trans. Nucl. Sci., vol. 49(5), October 2002.
[17] Y. Wang, et al, “A modular low dead-time coincidence system for high resolution PET cameras,” Conference record of the 2002 IEEE MIC Conference.
[18]Muehllehner G. Positron camera with extended count range capability. J Nucl Med. 1975;16:653– 657.
[19]Muehllehner G, Buchin M, Dudek J. Performance parameters of a positron imaging camera. IEEE Trans Nucl Sci. 1976;NS-23:528 –537.
[20]Miyaoka RS, Lewellen TK, Kim JS, et al. Performance of a dual headed SPECT system modified for coincidence imaging. IEEE Med Imaging Conf Rec. 1995;3:1348 –1352.
[21]Miyaoka RS, Costa W, Lewellen TK, et al. Coincidence imaging using a standard dual head gamma camera. IEEE Med Imaging Conf Rec. 1996;2:1127–1129.
[22]Lewellen TK, Bice AN, Pollard KR, Zhu JB, Plunkett ME. Evaluation of a clinical scintillation camera with pulse tail extrapolation electronics. J Nucl Med.1989;30:1544 –1558.
[23]Karp JS, Muehllehner G, Beerbohm D, Mankoff D. Event localization in a continuous scintillation detector using digital processing. IEEE Trans Nucl Sci.1986;33:550 –555.
[24]Kolodziejczyk J: Method and apparatus for measuring the time integrals of exponentially decaying pulses. US Patent 5,430,406, July 1995.
[25]Tournier E, Chaillout JJ, Chapuis A, et al. A digital processing of pile-up gamma camera events by signal deconvolution [abstract]. J Nucl Med. 1992;33(suppl):1003P.
[26]Brasse D, Tararine M, Lamer O, Bendriem B. Investigation of noise equivalent count rate in positron imaging using a dual head gamma camera. IEEE Trans Nucl Sci. 1998;45:438–442
[27]Wong W-H, Li H. A scintillation detector signal processing technique with active pileup prevention for extending scintillation count rates. IEEE Trans Nucl Sci.1998;45:838–842.
[28]Wong W-H, Li H, Uribe J. A high count rate position decoding and energy measuring method of nuclear cameras using Anger logic detectors. IEEE Trans Nucl Sci. 1998;45:1122–1127.
[29]Wong W-H, Li H, Uribe J, Baghaei H, Zhang N, Wang J. A high speed gamma camera using the high yield pileup-event recovery (HYPER) method [abstract]. J Nucl Med. 1999;40(suppl):148P.
[30]Li H, Wong W-H, Uribe J, Baghaei H, Zhang N, Wang Y. A high speed positron-decoding electronics for BGO block detectors in PET. IEEE Trans Nucl Sci., 2000; vol. 47, pp. 1006 –1010.
[31]H. M. Dent, et al., “A real time digital coincidence processor for positron emission tomography,” IEEE Trans. Nucl. Sci., vol. 33, pp. 556-559, Feb. 1986
[32]D. F. Newport, et al., “Coincidence detection and selection in positron emission tomography using VLSI,” IEEE Trans. Nucl. Sci., vol. 36, pp. 1052-1055, Feb. 1989
[33]D. F. Newport and J. W. Young , “An ASIC Implementation of Digital Front-End Electronics for a High Resolution PET Scanner,” IEEE Trans. Nu. Sc., vol. 40, pp. 1017-1019, 1993
[34]J. W. Young, et al, “Optimum Bandwidth Usage in Digital Coincidence Detection for PET”, Conference Record of the 1993 IEEE MIC Conference, Vol. 2, pp 1205-1208.
[35]D. M. Binkley, et al, “A Custom CMOS Integrated Circuit for PET Tomograph Front-End Applications”, 1993 IEEE Conference Record, Vol. 2, pp. 867-871.
[36]R. Lecomte, et al, “FPGA/DSP-based coincidence unit and data acquisition system for the Sherbrooke animal PET scanner” , 2001 IEE.
[37]W-H. Wong, et al., “The Design of a High Resolution Transformable Whole body PET camera”. IEEE Transactions on Nuclear Science, 49(5): October, 2002 and. IEEE MIC Conference Record 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top