(3.92.96.236) 您好!臺灣時間:2021/05/07 15:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳建霖
研究生(外文):Jian-Lin Chen
論文名稱:氧化鋅摻錳薄膜之電激發光研究
論文名稱(外文):A Study of ZnO:Mn Thin-Film Electroluminescent Devices
指導教授:張忠誠張忠誠引用關係
指導教授(外文):Chung-Cheng Chang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:110
中文關鍵詞:氧化鋅摻錳射頻磁控濺鍍法電激發光元件
外文關鍵詞:ZnO:MnRF Sputteringelectroluminescence device
相關次數:
  • 被引用被引用:0
  • 點閱點閱:96
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以射頻磁控濺鍍法於SiO2/Si(P+)基板上沈積氧化鋅摻錳薄膜,並針對在氮氣氣氛下,經過不同退火溫度處理後的薄膜,利用XRD繞射儀,掃描式顯微鏡(SEM),原子力顯微鏡(AFM),光激發螢光(Photo-Luminescence )進行特性量測及分析,並進行電激發光元件之製作。
在元件製作方面,採用氧化鋅摻錳薄膜薄製作出異質型p-n接面(heterojunction)的電激發光元件,元件組成為 ITO/ZnO:Mn/SiO2/Si (P+)/Al,並探討退火溫度對元件發光性質之影響。研究結果指出,當氧化鋅摻錳薄膜在氮氣氣氛下,經由300℃、500℃、700℃、900℃與1000℃這五種溫度退火一小時後,其中以1000℃退火後會有較佳的結晶性,此時能夠得到在(100)、(101)與(110)取向較小的FWHM,以及由PL光譜看出,當以900退火後所激發出光強度最強。
在本實驗中使用磁控濺鍍系統沈積氧化鋅摻錳薄膜於SiO2/Si(P+)基板之上。製作出異質型p-n接面(heterojunction)的電激發光元件,經由施加適當電壓後,由光譜量測其激發光強度。
In this study, RF (radio frequency) magnetron sputtering method is used to deposit ZnO:Mn thin film on SiO2/Si(P+) substrate. The annealing was done under nitrogen at different temperatures. The properties were measured and analyzed by XRD analysis, scanning electron microscope (SEM),atomic force microscope (AFM),and photoluminescence analysis. In addition electroluminescence devices were produced.
In the device preparation aspect, we used zinc oxide (ZnO) doped with manganese (Mn) to produce a p-n heterojunction electroluminescence device. The composition of the device was ITO/ZnO:Mn/SiO2/Si (P+)/Al,and we explored the effect of the annealing temperature to the luminescent properties of the device. From our study, as ZnO:Mn thin films were annealed under nitrogen at five different temperatures, 300℃, 500℃, 700℃, 900℃, and 1000℃ respectively for one hour, the annealing at 1000℃ had the best crystallization. We can obtain a rather smaller FWHM at (100), (101), and (110). Also by observing the PL spectra it can found that annealing at 900℃ will result with the strongest luminescence of light.
In the current experiment, magnetron sputtering system is used to deposit ZnO:Mn thin film on the SiO2/Si(P+) substrate to produce p-n heterojunction electroluminescence devices. A suitable voltage was applied and the luminescent light intensity was measured by the corresponding spectrum.
Contents

Chapter 1 Introduction………………………………………………... 1
1-1 Classification of electroluminescence device………………. 3
1-2 The advantages and disadvantages of thin film EL device…. 3
1-2.1 The advantages of thin film EL device…………….. 3
1.2-2 The disadvantages of thin film EL device………….. 4
1-3 Full-color EL thin films……………………………………... 5
1-4 Research objectives…………………………………………. 6
Chapter 2 Theoretical background and literature review…………... 8
2-1 Progress to the history of Electroluminescence device……... 8
2-2 Thin film electroluminescence device……………………… 9
2-2.1 Device structure…………………………………….. 9
2-2.2 Light emitting mechanism………………………….. 11
2-2.2.1 Direct impact excitation theorem………… 11
2-2.2.2 Energy transfer theorem………………….. 12
2-2.3 Visible light emission………………………………. 13
2-3 Material requirement………………………………………... 13
2-3.1 Substrates…………………………………………... 13
2-3.2 Transparent Conducting Films……………………... 14
2-3.3 Insulating Layers…………………………………… 15
2-3.4 Phosphor Layers……………………………………. 17
2-3.5 Metal Electrodes……………………………………. 18
2-4 Phosphor thin films…………………………………………. 18
2-4.1 Introduction of ZnO………………………………... 18
2-4.2 The light emitting mechanism of ZnO……………... 20
2-4.3 Introduction of ZnO:Mn……………………………. 22
2-4.3.1 The light emitting characteristic of

ZnO:Mn………………………………….. 22
2-4.3.2 3d Transition metal (Mn)………………… 24
2-5 CIE chromatic coordinate…………………………………... 24
2-6 Theory of reactive RF magnetron sputtering……………….. 25
2-7 Principle of deposition thin film……………………………. 26
Chapter 3 Experimental method and procedure…………………….. 28
3-1 High temperature diffusion furnace process……................... 28
3-2 The preparation of ZnO:Mn thin film………………………. 29
3-2.1 Substrate cleaning ………………………………….
29
3-2.2 Sputtering procedure and parameters………………. 30
3-2.3 Annealing treatment………………………………... 30
3-3 The preparation of the electrode for EL device……………... 31
3-3.1 The design of mask for transparent electrode……… 31
3-3.2 Lithography process and the deposition of
transparent electrode……………………………….. 31
3-3.3 Back electrode deposition………………………….. 32
3-4 Measurement of the characteristics…………………………. 32
3-4.1 X-ray diffractometer ……...………………………... 32
3-4.2 Surface analysis by scanning electron microscope… 33
3-4.3 Surface analysis of the atomic force microscope…... 33
3-4.4 Characteristic analysis by Photo-Luminescence….... 34
3-4.5 Characteristic analysis of Electro-Luminescence….. 35
Chapter 4 Results and Discussion…………………………………….. 36
4-1 Room temperature deposition of zinc oxide (ZnO) doped
with Mn thin film analysis………………………………….. 36
4-1.1 Surface morphology analysis………………………. 36
4-1.2 Analysis of the crystalline characteristics………….. 37
4-1-3 Characteristic analysis of the PL spectrum………… 37
4-2 The effect of annealing temperature on ZnO:Mn thin film…. 38
4-2.1 Surface morphology analysis………………………. 39
4-2.1.1 SEM surface analysis…………………….. 39
4-2.1.2 AFM surface analysis……………………. 39
4-2.2 Analysis of crystalline characteristic……………….. 40
4-2.3 Characteristic analysis of photoluminescence
Spectrum……………………………………………. 41
4-3 The measurement of electroluminescence device…………... 42
4-3.1 The effect of different annealing temperatures…….. 42
4-3.1.1 Electroluminescence……………………... 43
4-3.1.2 Spectrum measurement…………………... 44
4-3.1.3 CIE coordinate…………………………… 45
4-3.1.4 I-V characteristic curve…………………... 46
4-3.2 The effect of different electric currents…………….. 46
4-3.2.1 Electroluminescence……………………... 46
4-3.2.2 Spectrum measurement…………………... 47
4-3.2.3 CIE coordinate…………………………. 47
4-3.3 Increase of the luminescent area…………………… 48
Chapter 5 Conclusion………………………………………………….. 49
Reference ………………………………………………………………. 51


List of tables

Table. 2-1 Basic characteristic of ZnO……………………………. 63
Table 3-1 sputter parameter of ZnO:Mn………………………….. 77

Figure Captions

Fig. 1-1 flat panel display…………………………………………... 61
Fig. 1-2 Characteristics of four types of EL device………………... 62
Fig. 1-3 Schematic structures of multicolor thin-film EL panels:(a)
Stacked phosphor method﹐(b) red green and blue
fluorescence layer parallel placement method ﹐(c) white
light plus color filter method……………………………… 62
Fig. 2-1 The original Destriau cell…………………………………. 64
Fig. 2-2 The modified Destriau cell……..………………………... 64
Fig. 2-3 The double insulating layer structure of ac thin film EL
device.................................................................................... 65
Fig. 2-4 Energy-band diagram of the double-insulating layer type
TFEL device and the EL emission mechanism…………… 66
Fig. 2-5 Energy transfer diagram of S and A at a distance R. HSA:
Hamiltonian interaction. FS(E) and FA(E) are respectively
the absorption function of S and A………………………... 67
Fig. 2-6 The electromagnetic spectra from the ultraviolet region to
the infrared region………………………………………… 67
Fig. 2-7 Construction of electroluminescent device: A-silicon
substrate; B-insulating oxide layer; C-doped zinc sulphide
layer; D-semi-transpar- ent gold electrode; E-back Al
electrode…………………………………………………... 68
Fig. 2-8 Equivalent circuit of the inner EL single insulator………... 68
Fig. 2-9 Zinc Oxide Crystal structure…………………...…………. 69
Fig. 2-10 The PL spectra of ZnO films for: (a) annealed sample (b)
unannealed sample………………………………………… 69
Fig. 2-11 Intensity of the (a) green emission peak and (b)free-carrier
electron density for ZnO as a function of reduction anneal
temperature………………………………………………... 70
Fig. 2-12 E. G. Bylandern’s proposal of the energy gap fpr ZnO plot 71
Fig. 2-13 B. Lin’s proposal of the energy gap for ZnO plot………… 71
Fig. 2-14 The PL spectra obtained from samples deposited with the
oxygen pressure of 0, 2.0 and 5.2 Pa at room temperature.. 72
Fig. 2-15 Cathodoluminescence spectra of ZnO:Mn films at room
Temperature……………………………...………………... 73
Fig. 2-16 Photoluminescence spectra of ZnO with and without Mn
implantation after annealing at 800 °C for 10 min………... 74
Fig. 2-17 hv of undoped and Mn doped zinc oxide thin-films………. 74
Fig. 2-18 Calculated energy levels of 4T1 , 4T2 , 4E, and 4A1 for
Mn+2 impurities in ZnO, ZnS, ZnSe, ZnTe, and GaAs……. 75
Fig. 2-19 CIE color coordinates……………………………………... 75
Fig. 2-20 Thin film growth process (a) Nucleation, (b) Grain Growth
, (c) Coalescence, (d) Filling of Channels, (e) Film Growth 76
Fig. 2-21 Structural zone mode for coating growth as proposed by
Thornton for sputtered coatings…………………………… 76
Fig. 3-1 The Flow chart of experimental procedure………..……… 77
Fig. 3-2 Illustration of light mask design and the finished device
Product…………………………………………………….. 78
Fig. 3-3 (a) The fabrication steps of ITO,(b) The fabricatied
(b) ZnO:Mn EL devices……………………….…………... 79
Fig. 3-4 The SEM cross section of Al thin-film……………... 80
Fig. 3-5 The PL system…………………………………………….. 80
Fig. 3-6 Electronic transition diagram……………………………... 81
Fig. 3-7 The measure system of EL Spectrum………………...…… 81
Fig. 4-1 The SEM cross section of ZnO:Mn thin-film……………... 82
Fig. 4-2 SEM photographs of the surface of ZnO:Mn thin-films
with deposition temperature 25 oC………………………… 82
Fig. 4-3 AFM 3D photographs of ZnO:Mn thin-films with
deposition temperature 25 oC……………………………… 83
Fig. 4-4 The XRD pattern of the ZnO:Mn thin-films with
deposition temperature 25 oC……………….....…………... 84
Fig. 4-5 The PL Spectrum of the ZnO:Mn thin-films with
deposition temperature 25 oC……………………………… 84
Fig. 4-6 The surface morphology of ZnO:Mn thin-films annealed at
different temperature (a) 300℃, (b) 500℃, (c) 700℃, (d)
900℃, (e) 1000℃ in an atmosphere of N2 for one hour… 85
Fig. 4-7.1 AFM image of ZnO:Mn thin-films annealed at different
temperature(a)300℃,(b) 500℃,(c) 700℃in an atmosphere
of N2 for one hour………………………………………… 86
Fig.4-7.2 AFM image of ZnO:Mn thin-films annealed at different
temperature (d) 900℃,(e)1000℃ in an atmosphere of
N2 for one hour…………………………………………… 87
Fig. 4-8 The relationship between Roughness (Rrms) of ZnO:Mn
thin-film and annealing temperature……………………… 88
Fig.4-9.1 The XRD pattern of ZnO:Mn thin-film annealed at
different temperature (a)300℃, (b)500℃, (c) 700℃ in
an atmosphere of N2 for one hour……………………….. 89
Fig.4-9.2 The XRD pattern of ZnO:Mn thin-films annealed at
different temperature (d)700℃,(e)1000℃in an atmosphere
of N2 for one hour……………………………..................... 90
Fig. 4-10 The relationship between FWHM of (110)、(101)、(100)
ZnO:Mn thin-films and annealing temperature…………. 91
Fig.4-11.1 The PL spectrum of ZnO:Mn thin-films annealed at (a)300
℃, (b)500℃, (c)700℃ in an atmosphere of N2 for one
hour……………………………………………………….. 92
Fig.4-11.2 The PL spectrum of ZnO:Mn thin-films annealed at (d)900
℃,(e) 1000℃ in an atmosphere of N2 for one hour……... 93
Fig. 4-12 The relationship between Intensity(a.u.) of ZnO:Mn
thin-films and annealing temperature…………………… 94
Fig. 4-13 Photographs of the EL Device…………………………….. 95
Fig. 4-14 Green light luminescence of the device at voltage 30V and
current 1mA (a) 300℃, (b)500℃, (c) 700℃, (d)900℃,
(e)1000℃………………………………………………….. 96
Fig.4-15.1 The EL spectrum of ZnO:Mn thin-films annealed at (a)300
℃, (b)500℃,(c)700℃in an atmosphere of N2 for one hour. 97
Fig.4-15.2 The EL spectrum of ZnO:Mn thin-films annealed at (d)900
℃,(e)1000℃ in an atmosphere of N2 for one hour…... 98
Fig. 4-16 The relationship between EL spectrum Intensity(a.u.) of
ZnO:Mn thin-film annealing at different temperature in an
atmosphere of N2 for one hour……………………………. 99
Fig.4-17.1 CIE color coordinates of ZnO:Mn thin-films annealed at
different temperature (a) 300℃, (b) 500℃, (c) 700℃, (d)
900℃ in an atmosphere of N2 for one hour……………… 100
Fig.4-17.2 CIE color coordinates of ZnO:Mn thin-films annealed at
different temperature (e) 1000℃ in an atmosphere of N2
for one hour……………………………………………….. 101
Fig. 4-18 The Current-voltage curve of the heterojunction…………. 102
Fig. 4-19 Energy band dagrams of the heterojunction in forward bias 102
Fig. 4-20 Green light luminescence of ZnO:Mn thin film after
annealing at 900℃. Voltage applied at 30V and the
currents respectively at(a) 3mA, (b)5 mA, (c) 7mA, (d)
9mA……………………………………………………….. 103
Fig.4-21.1 The EL spectrum of ZnO:Mn thin-films annealed at 900℃
in an atmosphere of N2 for one hour.input current(a)3mA,
(b)5mA…………………………………………………… 104
Fig.4-21.2 The EL spectrum of ZnO:Mn thin-films annealed at 900℃
in an atmosphere of N2 for one hour. input current(c)7mA,
(d)9mA……………………………………………………. 105
Fig. 4-22 The relationship between EL intensity and drive current…. 106
Fig. 4-23 CIE color coordinates of ZnO:Mn thin-films inputed
different current (a) 3 mA, (b) 5 mA, (c) 7 mA, (d) 9 mA... 107
Fig. 4-24 Area of the EL Device is in 0.7cm×0.7cm………………… 108
Fig. 4-25 Green light luminescence of ZnO:Mn thin film after
annealing at 900℃. Voltage applied at 30V and
9mA of current…………………………………………….. 109
Fig. 4-26 The EL spectrum of ZnO:Mn thin-films annealed at 900℃
in an atmosphere of N2 for one hour. input current 9m 109
Fig. 4-27 CIE color coordinates of ZnO:Mn thin-films inputed
current 9 mA………………………………………………. 110
Fig. 4-28 The relationship between EL intensity and Area. 110
[1] Yoshimasa A. Ono, “Electroluminescent displays”, World Scientific Publishing Company ,1995.
[2] Y. J. Tung, et al., in Proc. Society for “Information Display”, Seattle, WA, pp. 48-51, 2004.
[3] G. Destriau, J. Chim. Physique (France) 33 (1936) 587
[4] N.A. Vlasenko and Iu. A. Poplov, Optics & Spestroscopy 8 (1960) 39.
[5] E.J. Soxman and R.D. Ketchpel, JANAIR Report 720903 (1972)
[6] M.J. Russ and D.I. Kennedy, J. Electrochem. Soc. 114 (1967) 1066.
[7] D. Kahng, “Electroluminescence of Race-Earth and transition metal molecules in II-VI compounds VIA impact excitation”, Appl. Phys. Lett. 13 (1968) 210.
[8] T. Inoguchi, M. Takeda, Y. Kakihara, Y. Nakata and M. Yoshida,Digest of 1974 SID International Symposium, (1974) 84.
[9] 蔡淑卿,“ZnO 與ZnS 摻錳螢光薄膜之發光性質研究”,國
立成功大學材料科學及工程研究所碩士論文,(2004)。
[10] 陳登銘D. M. Chen 教授“Emission Wavelength-Tunable Phosphors—Design Principles and Their Applications in
White Light LEDs”, 工業材料雜誌,2008年,257 期。
[11] D. L. Dexter, J. Chem., “A theory of sensitized luminescence in liquids” , Phys. 21, 836 (1953).
[12] 施敏(原著),黃調元(譯),“半導體元件物理與製作技術”,國立交通大學出版社,2002 年9 月。
[13] R. Tueta and M. Braguier, “ Fabrication and Characterization of Indium Tin Oxide Thin Films for Electroluminescent Applications”,Thin Solid Films80(1981)143.
[14] Y.Shimizu and T.Matsudaira,Conference Record of the 1985 International Display Research Conference(1985)101
[15] P. M. Alt, “Thin-film electroluminescent displays: Device characteristics and performance”, Proc. SID 25, pp. 123-146, 1984.
[16] W. E. Howard, IEEE Trans. Electron Device, “The Importance of Insulator Properties in a Thin-Film Electroluminescent Device”, ED-24, pp. 903-908, 1977.
[17] W. E. Howard, “Importance of insulator properties in a thin-film electroluminescent devices”, Proc. SID 18, pp. 119-124, 1977.
[18] S. K. Tiku and G. C. Smith, “Choice of dielectrics for TFEL displays”, IEEE Trans. Electron Device, ED-31,pp. 105-108,1984.
[19] W. Tang, D.C. Cameron, “Electroluminescent zinc sulphide devices produced by sol-gel processing”, Thin Solid Films 280, pp. 221-226, 1996.
[20] J.Y. Zhang, Boon Lim, I.W. Boyd, “Characteristics of high quality tantalum oxide films deposited by photoinduced chemical vapor deposition”, Appl. Phys. Lett., vol. 73, No.16,
19 October 1998
[21] Z.M. Jarzebzki, in: R.B. Pamplin (Ed.), Oxide Semiconductors, Pergamon Press, Oxford, 1973, p. 239.
[22] Norton, D P; Heo, Y W; Ivill, M p; Ip, K; Pearton, S J; Chisholm, M F; Steiner, T, “ZnO: growth, dopong & processing”, Meterials Today. Vol.7, pp.34, 2004.
[23] Y. Ito, K. Kushida, K. Sugawara, and H. Takeuchi, “A 100-MHz Ultrasonic Transducer Array Using ZnO Thin Films” ,IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control, 42p. 316-323(1995)
[24] P. Zu, Z.K. Tang, G.K.L. Wang, M. Kawasaki, A. Ohtomo, H.
Koinuma, Y. Segawa, “Ultraviolet spontaneous and stimulated emissions from ZnO microcrystallite thin films at room temperature”,Solid State Commun. 103 (1997) 459.
[25] Y.F. Chen, N.T. Tuan, Y. Segawa, H.J. Ko, S.K. Hong, T. Yao, “Stimulated emission and optical gain in ZnO epilayers grown by plasma-assisted molecular-beam epitaxy with buffers”,Appl. Phys. Lett. 78 (2001) 1469.
[26] D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y.Shen, T. Goto, “Optically pumped lasing of ZnO at room temperature”,Appl. Phys. Lett. 70 (1997) 2230.
[27] Z.K. Tang, G.K.L. Wang, P. Yu, M. Kawasaki, A. Ohtomo, H.
Koinuma, Y. Segawa, “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films ”,Appl. Phys. Lett. 72 (1998) 3270.
[28] B.J. Jin, S. Im, S.Y. Lee, “Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition” ,Thin Solid Films 366 (2000) 107-110.
[29] Y.R. Ryu, S. Zhu, J.D. Budai, H.R. Chandrasekhar, P.F. Miceli, H.W. White, “Optical and structural properties of ZnO films deposited on GaAs by pulsed laser deposition” ,Appl. Phys. Lett. 88 (2000) 201.
[30] D. H. Zhang and D. E. Brodie, “Crystallite orientation and the related photoresponse of hexagonal ZnO films deposited by r.f. sputtering” , Thin Solid Films Vol.251, pp. 151, 1994.
[31] D H Zhang, “Fast photoresponse and the related change of crystallite barriers for ZnO films deposited by RF sputtering” , J. Phys. D, Vol.25, pp. 1273, 1995.
[32] H. Y. Kirn, J. H. Kirn, M. 0. Park and S. Im, “Photoelectric, •stoichiometric and structural properties of n-ZnO film on p-Si” , Thin Solid Films Vol.398, pp. 93, 2001.
[33] H. Y. Kim, J. H. Kim, Y. J. Kim, K. H. Chae, C. N. Whang, J. H. Song and S. Im, “Photoresponse of Si detector based on n-ZnO/p-Si and n-ZnO/n-Si structures” , Opt. Mater. Vol.17, pp. 141, 2001.
[34] S. Liang, H. Sheng, Y. Liu, Z. Huo, Y. Lu and H. Shen , “ZnO Schottky ultraviolet photodetectors” , J. Cryst. Growth Vol.225, pp. 110, 2001.
[35] S. A. Studenikin, Nickolay Golego, and Michael Cocivera , “Carrier mobility and density contributions to photoconductivity transients in polycrystalline ZnO films” , J. Appl. Phys. Vol.87, pp. 2413, 2000.
[36] B. L. ZHU,X. H.SUN1, S. S. GUO1, X. Z. ZHAO1, J. WU, R. WU and J. LIU, “Effect of Thickness on the Structure and Properties of ZnO Thin Films Prepared by Pulsed Laser Deposition” , Jpn. J. Appl. Phys. Vol. 45, 2006, pp. 7860–7865
[37] D. H. Zhang and D. E. Brodie, “Crystallite orientation and the related photoresponse of hexagonal ZnO films deposited by r.f. sputtering” , Thin Solid Films Vol.251, pp. 151, 1994.
[38] Z.C. Jin, I. Hamberg, G.G. Granquist, “Optical properties of transparent and heat reflecting ZnO:Al films made by reactive sputtering ” , Appl. Phys. Lett. 51 (3) (1987) 149.
[39] S.N. Bai, T.Y. Tseng, “ Influence of sintering temperature on electrical properties of ZnO varistors ” , J. Appl. Phys. 74 (1) (1993) 695.
[40] W. Water and S. Y. Chu, “Physical and structural properties of ZnO sputtered films,” Mater. Lett., vol. 55, pp. 67-72, 2002.
[41] S. Y. Chu, W. Water and J. T. Liaw, “Influence of postdeposition annealing on the properties of ZnO films prepared by RF magnetron sputtering,” J. Eur. Cera. Soc.,vol. 23, pp. 1593-1598, 2003.
[42] Hey-Jin Lim,Deuk Yong Lee and Young-Jei Oh, “Gas sensing properties of ZnO thin films prepared by microcontact printer”, Sensors and Actuators: Physical Vol.125, pp. 405, 2006.
[43] A. Barker, S. Crowther, D. Rees, “Room-temperature r.f. magnetron sputtered ZnO for electromechanical devices ”,Sensors Actuators A 58(1997)229.
[44] D. G. Baik and S. M. Cho, “Application of sol-gel films for ZnO/n-Si junction solar cells”,Thin Solid films, vol. 354, pp. 227-231, 1999.
[45] P. Nunes, D. Costa, E. Fortunato and R. Martins,“Performances presented by zinc oxide thin films deposited by r.f. magnetron sputtering”, Vacuum, vol. 64, pp. 293-297, 2002.
[46] S. Tuzemen, G. Xiong, J. Wilkinson, B. Mischuck, K. B. Ucer and R. T. Williams, “Production and properties of p-n junctions in reactively sputtered ZnO”,Physica B, vol. 308-310, pp. 1197-1200, 2001.
[47] P. Yu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H.
Koinuma and Y. Segawa: Proc. 23th Int. Conf. Physics of Semiconductors,Berlin, 1996, vol. 2, p. 1453.
[48] Y. Segawa, A. Ohtomo, M. Kawasaki, H. Koinuma, Z. K. Tang, P. Yu and G. K. L. Wong, “Growth of ZnO thin film by leaer MBE : Lasing of excetion at room temperature”,Phys. Status Solidi (b) 202 (1997) 669.
[49] S.B. Zhang, S.-H. Wei, Alex Zunger, “Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO”,Phys. Rev. B 63(2001) 075205.
[50] A.F. Kohan, G. Ceder, D. Morgan, Chris G.Van de Walle, “First -principles study of native point defects in ZnO”,Phys. Rev. B 61 (2000) 15019.
[51] G. Heiland, E. Mollwo, and F.Stockmann, “Solid State Physics”, edited by F. Seitz and D. Turnbull (Academic, New York, 1959), Vol. 8, p. 191.
[52] D. C. Look and J. W. Hemsky, “Residual Native Shallow Donor in ZnO”, Phys. Rev. Lett. 82, 2552 - 2555 (1999)
[53] K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga and A.
Shimizu, “Growth of p-type Zinc Oxide Films by Chemical Vapor Deposition”, Jpn. J. Appl. Phys. 36 (1997) L1453.
[54] Y. Igasaki and H. Saito, “The effects of Zinc diffusionon the electrical and optical properties of ZnO:Al films prepared by RF reactive sputtering”,Thin Solid Films, vol. 199, pp. 223-230, 1991.
[55] M.T. Young and S.D. Keun, “Effects of rapid thermal annealing on the morphology and electrical properties of ZnO/In Films”, Thin Solid Films, vol. 410, pp. 8-13, 2002.
[56] B. Z. Dong, G.. J. Fang, J. F. Wang, W. J. Guan, and X. Z. Zhao, “Effect of thickness on structural, electrical, and optical properties of ZnO: Al films deposited by pulsed laser deposition”, J. Appl. Phys. Vol. 101, pp. 033713, 2007.
[57] Sunglae Cho, Jing Ma, Yunki Kim, Yi Sun, George K. L. Wong, and John B. Ketterson, “Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn”,Applied Physics Letters, Vol 75, pp. 2761-2763, 1999.
[58] B.X. Lin, Z.X. Fu, Y.B. Jia, “Green luminescent center in undoped zinc oxide films deposited on silicon substrates” , Appl. Phys. Lett. 79 (2001) 943.
[59] Q. P. Wang, D. H. Zhang, Z. Y. Xue, X. T. Hao,“Violet luminescence emitted from ZnO films deposited on Si substrate by rf magnetron sputtering”, Applied Surface Science, vol. 201, pp.123-128, 2002.
[60] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant and J. A. Voigt, “Mechanisms behind green photo luminescence in ZnO phosphor powders,” J. Appl. Phys., vol. 79(10), pp. 7983-7990, 1996.
[61] W. Li, D. Mao, F. Zhang, X. Wang, X. Liu, S. Zou, Y. Zhu, Q. Li and J. Xu, “Characteristics of ZnO:Zn phosphor thin films by post-deposition annealing”, Nucl. Instr. and Meth. B, vol.169, pp. 59-63, 2000.
[62] E. G. Bylander,“Surface effects on the low-energy cathodoluminescence of zinc oxide”, J. Appl. Phys., vol.49(3), pp. 1188-1195, 1978.
[63] B. Lin, Z. Fu, Y. Jia and G. Liao, “Defect photoluminescence of undoping ZnO films and its dependence on annealing conditions”, J. Electrochem. Soc., vol. 148(3), pp.G110-G113, 2001.
[64] Z. Y. Xue, D. H. Zhang, Q. P. Wang and J. H. Wang, “The blue photoluminescence emitted from ZnO films deposited on glass substrate by rf magnetron sputtering”,Applied Surface Science, vol. 195, pp.126-129, 2002.
[65] Zheng-Wu Jin, Y.-Z. Yoo, T. Sekiguchi and T. Chikyow; H. Ofuchi;H. Fujioka and M. Oshima; H. Koinumab,“Blue and ultraviolet cathodoluminescence from Mn-doped epitaxial ZnO thin films”,Appl. Phys. Lett. 83, No.1(7), (2003), 39-41.
[66] C. Ronning,a) P. X. Gao, Y. Ding, and Z. L. Wangb, “Manganese
-doped ZnO nanobelts for spintronics”, Appl. Phys. Lett. Vol.84, No5, (2004).
[67] V. A. L. Roy. et al., “Magnetic properties of Mn doped ZnO
tetrapod structures”, Applied Physics Letters 84(5), (2004)
756-758.
[68] X.T. Zhanga, Y.C. Liub, J.Y. Zhang, Y.M. Lub, D.Z. Shenb, X.W.
Fan, X.G. Kong,“Structure and photoluminescence of Mnpassivated nanocrystalline ZnO:S thin films”, Journal of Crystal Growth 254, (2003) 80–85.
[69] V.R. Shinde, T.P. Gujar, C.D. Lokhande, R.S. Maneb, Sung-Hwan Hanb, “Mn doped and undoped ZnO films: A comparative structural,optical and electrical properties study”, Materials Chemistry and Physics, 2006, 96(2-3), 326-330
[70] T. Mizokawa, T. Nambu, A. Fujimori, T. Fukumura, and M.
Kawasaki, “Electronic structure of the oxide-diluted magnetic
semiconductor Zn1-xMnxO”, Phys. Rev.B , V.65, (2002), 085209
[71] http://www.knowledgerush.com/kr/encyclopedia/CIE
[72] Kiyotaka Wasa and Shigeru Hayakawa,“Handbook of sputter
deposition technology : Chap 5 Deposition of Compound thin
films ”, Noyes , U.S.A. (1992) 125-146.
[73] H. L. Hartnagel, A. L. Dawar, A. K. Jain and C. Jagadish,“2.7.3 ZnO sputtering”, Semiconducting Transparent Thin Films, Institute of Physics Publishing Bristol and Philadelphoa, 116-122.
[74] L. Eckertova and T. Ruzicka, Diagnostics and Applications of Thin Films, Ch.1&2, Institute of Physics Publishing, 1993.
[75] J. A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings”, J. Vac. Sci. Tech. 11, pp. 666-670, 1974.
[76] J. A. Thornton, “Influence of substrate temperature and deposition rate on structure of thick sputtered Cu coatings”, J. Vac. Sci. Tech. 12(4), pp. 830-835, 1975.
[77] Jia-Min Shieh, Yi-Fan Lai, Yong-Chang Lin, and Jr-Yau Fang, “
Photoluminescence: Principles, Structure,and Applications”,奈米通訊,第十二卷第二期
[78] S. A. Studenikin and M. Cocivera, “Time-resolved luminescence and photoconductivity of polycrystalline ZnO films”,J. Appl. Phys. 91, 5060(2002).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔