(44.192.66.171) 您好!臺灣時間:2021/05/18 00:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:楊勝雄
研究生(外文):Sheng-Hsiung Yang
論文名稱:多封包傳輸離散時間網路控制系統研究
論文名稱(外文):Study on Discrete-Time Networked Control Systems under Multiple Packet Transmission
指導教授:吳政郎
指導教授(外文):Jenq-Lang Wu
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:76
中文關鍵詞:網路控制系統多封包傳輸線性矩陣不等式
外文關鍵詞:Networked Control SystemMultiple Packet TransmissionLinear Matrix Inequality
相關次數:
  • 被引用被引用:2
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
當一個控制系統其回授路徑是透過網路連接以傳送感測信號或控制信號,則稱為網路控制系統(Networked Control Systems; NCSs)。實際較大型的控制系統,感測器與致動器往往分散於不同地方,所有的感測或控制信號無法在同一封包內傳送。本論文旨在考慮資料分散在多個封包傳輸下,網路控制系統的穩定性分析與控制器設計。首先,我們考慮多封包傳輸網路控制系統的回授穩定問題。將所考慮系統的動態模型化成切換控制系統,使用多重 Lyapunov 函數的方法來分析其穩定性,並且利用線性矩陣不等式(Linear Matrix Inequality; LMI)的技巧找出可以使多封包傳輸網路控制系統穩定的具記憶性之週期性狀態及輸出回授控制器。其次,我們探討多封包傳輸網路控制系統的 控制問題。同樣將其模型化成切換控制系統,使用多重 Lyapunov 函數及線性矩陣不等式的方法找出可使閉迴路系統內部穩定且滿足 要求的具記憶性之週期性狀態及輸出回授控制器。最後,考慮利用網路可以廣播式傳輸資料的特性,考慮一種新的分散式網路回授控制器。我們將系統模型化成切換系統,利用多重 Lyapunov 函數及線性矩陣不等式等技巧找出可以使廣播式多封包傳輸網路控制系統穩定的具記憶性之週期性狀態及輸出回授控制器。我們提供數個例子以驗證所推導的理論。
A feedback control system with feedback loop closing through a real-time network is called a Networked Control System (NCS). For a real NCS, all measured state information being transmitted in a single packet is often impossible since the sensors might distribute in different places. The main objective of this thesis is concerning with stability analysis and control synthesis for NCSs under multiple packet transmission. Firstly, we consider the stabilization problem for multiple packet transmission NCSs. The dynamics of the considered NCS can be modeled as a switched control system. Based on the multiple Lyapunov function method, memorial and periodic state feedback and output feedback laws can be derived by the linear matrix inequality (LMI) approach. Then, the control problem for multiple packet transmission NCSs is considered. Similarly, we model the considered NCS as a switched control system. By the multiple Lyapunov function method, memorial and periodic state feedback and output feedback controllers can be obtained by the LMI approach. Finally, we consider the case that the measured data from a sensor node is broadcasted to all the actuator nodes. At each actuator node, a local controller is used to compute the control signal for the actuator. We model the considered decentralized networked control system as a switched control system. Based on the multiple Lyapunov function method, memorial and periodic feedback laws can be derived by the LMI approach. Several examples are provided for verification.
摘要................................................................................................................I
Abstract.......................................................................................................III
Contents.......................................................................................................IV
List of Figures.............................................................................................VI
Chapter 1 Introduction.........................................................................1
1.1 Networked Control Systems...................................................1
1.2 Motivation..............................................................................2
1.3 Pervious Research..................................................................3
1.4 Contribution............................................................................6
1.5 Organization of the Thesis......................................................7
Chapter 2 Stabilization for Discrete-time Networked Control System under Multiple Packet Transmission.....................8
2.1 State feedback case..................................................................8
2.2 Output feedback case.............................................................14
2.3 Numerical Example...............................................................18
2.4 Summary................................................................................26
Chapter 3 -Control for Discrete-time Multiple Packet Transmission Networked Control Systems......................27
3.1 State feedback case................................................................27
3.2 Output feedback case.............................................................34
3.3 Numerical Example...............................................................40
3.4 Summary................................................................................50
Chapter 4 Multiple Packet Transmission Networked Control Systems - Broadcast Case.................................................51
4.1 State feedback case................................................................51
4.2 Output feedback case.............................................................57
4.3 Numerical Example...............................................................61
4.4 Summary.................................................................................68
Chapter 5 Conclusions.........................................................................69
References..................................................................................................71
[1] G. C. Walsh, H. Ye, and L.G. Bushnell, “Stability Analysis of Networked Control Systems,” IEEE Transactions on Control System Technology, vol. 10, no. 3, pp. 438-446, May 2002.
[2] W. Zhang, M. S. Branicky, and S. M. Philips, “Stability of Networked Control System,” IEEE Control Systems Magazine, vol. 21, pp. 84-96, Feb. 2001.
[3] D. Yue, Q. L. Han, and C. Peng, “State Feedback Controller Design of Networked Control Systems,” IEEE Transactions on Circuits and Systems. II, Exp. Briefs, vol. 51, no. 11, pp. 640-644, Nov. 2004.
[4] L. Zhang, Y. Shi, T. Chen, and B. Huang, “A New Method for Stabilization of Networked Control Systems with Random Delays,” IEEE Transactions on Automatic Control, vol. 50, no. 8, pp. 1177-1181, Aug. 2005.
[5] M. Yu, L. Wang, G. M. Xie, and T. G. Chu, “Stabilization of Networked Control Systems with Data Packet Dropout via Switched System Approach,” Proc. IEEE International Symposium on Computer-Aided Control System Design, pp. 362-367, Sep. 2004.
[6] W. Zhang, M. S. Branicky, and S. M. Phillips, “Stability of Networked Control Systems,” IEEE Control Systems Magazine, vol. 21, no. 1, pp. 84-99, Feb. 2001.
[7] J. Nilsson, “Real-Time Control Systems with Delays,” Ph.D. dissertation, Dept. Automatic Control, Lund Inst. Technology, Lund, Sweden, 1998.
[8] L. Xiao, A. Hassibi, and J. P. How, “Control with Random Communication Delays via a Discrete-Time Jump Linear System Approach,” Proceedings of American Control Conference, pp. 2199-2204, June 2000.
[9] Q. Ling and M. D. Lemmon, “Soft Real-Time Scheduling of Networked Control Systems with Dropouts Governed by a Markov Chain,” Proceedings of American Control Conference, pp. 4845-4850, June 2003.
[10] D. Huang and S. K. Nguang, “State Feedback Control of Uncertain Networked Control Systems with Random Time Delays,” IEEE Transactions on Automatic Control, vol. 53, no. 3, pp. 829-834, Apr. 2008.
[11] M. S. Branicky, S. M. Philips, and W. Zhang, “Scheduling and Feedback Co-design for Networked Control Systems,” Proceedings of Conference on Decision and Control, 1211-1217, Dec. 2002.
[12] L. S. Hu, T. Bai, P. Shi, and Z. Wu, “Sampled-data Control of Networked Linear Control Systems,” Automatica, vol. 43, issue: 5, pp. 903-911, May. 2007.
[13] E. K. Boukas, “Stabilization of Stochastic Nonlinear Hybrid Systems,” International Journal of Innovative Computing, Information and Control, no. 1, pp. 131-141, Feb. 2005.
[14] E. K. Boukas and N. F. Al-Muthairi, “Delay-dependent Stabilization of Singular Linear Systems with Delays,” International Journal of Innovative Computing, Information and Control, vol.2, no. 2, pp. 283-291, Apr. 2006.
[15] B. Chen, J. Lam, and S. Xu, “Memory State Feedback Guaranteed Cost Control for Neutral Delay Systems,” International Journal of Innovative Computing, Information and Control, vol.2, no. 2, 293-303, Apr. 2006
[16] M. Sahebsara, T. Chen, and S. L. Shah, “Optimal Filtering in Networked Control Systems with Multiple Packet Dropout,” IEEE Transactions on Automatic Control, vol. 52, no. 8, Aug. 2007.
[17] P. Seiler and R. Sengupta, “An Approach to Networked Control,” IEEE Transactions on Automatic Control, vol. 50, no. 3, Mar. 2005.
[18] E. K. Boukas and P. Shi, “ Control for Discrete-Time Linear Systems with Markovian Jumping Parameters,” Proceedings of Conference on Decision and Control, pp. 4134-4139, Dec. 1997
[19] Y. Y. Cao and J. Lam, “Stochastic Stabilizability and Control for Discrete-Time Jump Linear Systems with Time Delay,” Journal of the Franklin Institute, vol. 336, pp. 1263-1281, Sep. 1999.
[20] P. Seiler and R. Sengupta, “A Bounded Real Lemma for Jump Systems,” IEEE Transactions on Automatic Control, vol. 48, no. 9, pp. 1651-1654, Sep. 2003.
[21] R. Brockett, “Stabilization of Motor Networks,” Proceedings of Conference on Decision and Control, pp. 1484-1488, Dec, 1995.
[22] G. V. Kondraske, R. A. Volz, D. H. Johnson, D. Tesar, J. C. Trinkle, and C. R. Price, “Networked-based Infrastructure for Distributed Remote Operations and Robotics Research,” IEEE Transactions on Robotics and Automation, vol. 9, no. 5 pp. 702-704, Oct. 1993.
[23] W. S. Wong and R. W. Brockett, “Systems with Finite Communication Bandwidth Constrains-I: State Estimation Problems,” IEEE Transactions on Automatic Control, vol. 42, no. 9, pp. 1294-1299, Sep. 1997.
[24] W. S. Wong and R. W. Brockett, “Systems with Finite Communication Bandwidth Constrains-II: Stabilization with Limited Information Feedback,” IEEE Transactions on Automatic Control, vol.44, no. 5, pp. 1049-1053, May 1999.
[25] D. Hristu and K. Morgansen, “Limited Communication Control,” Systems and Control Letters, 37, (7), pp. 193-205, July 1999.
[26] D. Hristu and K. Morgansen, “Stabilization of LTI Systems with Communication Constraints,” Proceedings of American Control Conference, pp. 2342-2346, June 2000.
[27] J. K. Yook, D. M. Tilbury, and N. R. Soparkar, “Trading Computation for Bandwidth: Reducing Communication in Distributed Control Systems Using State Estimators,” IEEE Transactions on Control Systems Technology, vol. 10, no. 4 pp. 503-518, July 2002.
[28] R. Brockett and D. Liberzon, “Quantized Feedback Stabilization of Linear Systems,” IEEE Transactions on Automatic Control, vol. 45, no. 7, pp. 1279-1289, July 2000.
[29] N. Elia and S. K. Mitter. “Stabilization of Linear Systems with Limited Information,” IEEE Transactions on Automatic Control, vol. 46, no. 9, pp. 1384-1400, Sep. 2001.
[30] P. Antsaklis and J. Baillieul, “Guest Editorial Special Issue on Networked Control Systems,” IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1241-1243, Sep. 2004.
[31] S. Bittanti and P. Colaneri, “Periodic Control,” Encyclopedia of Electrical and Electronics Engineering, J. Webster, Ed. New York: Wiley, vol. 16, pp. 59-73, 1999.
[32] M. S. Branicky, S. M. Philips, and W. Zhang, “Stability of Networked Control Systems: Explicit Analysis of Delay,” Proceedings of American Control Conference, pp. 2352-2357, June 2000.
[33] S. Hu and Q. Zhu, “Stochastic Optimal Control and Analysis of Stability of Networked Control Systems with Long Delay,” Automatica, vol. 39, pp. 1877-1884, May 2003.
[34] C. Ma, S. Chen, and W. Liu, “Maximum Allowable Delay Bound of Networked Control Systems with Multi-step Delay,” Automatica, vol. 43, pp. 513-520, Jan. 2007.
[35] M. Garcia-Rivera and A. Barreiro, “Analysis of Networked Control Systems with Drops and Variable Delays,” Automatica, vol. 43, pp.2054-2059, Sep. 2007.
[36] A. Hassibi, S. P. Boyd, and J. P. How, “Control of Asynchronous Dynamical Systems with Rate Constraints on Events,” Proceedings of Conference on Decision and Control, pp. 1345-1351, Dec. 1999.
[37] J. Wu and T. Chen, “Design of Networked Control Systems with Packet Dropouts,” IEEE Transactions on Automatic Control, vol. 52, no. 7, July 2007.
[38] W. A. Zhang and L. Yu, “Output Feedback Stabilization of Networked Control Systems with Packet Dropouts,” IEEE Transactions on Automatic Control, vol. 52, no. 9, Sep. 2007.
[39] M. Yu, L. Wang and T. Chu, “Sampled-data Stabilization of Networked Control Systems with Nonlinearity,” IEE Processing on Control Theory Application, vol. 152, no. 6, pp. 609-614, Nov. 2005.
[40] J. Sun and G. P. Liu, “Robust Stabilization of a Class of Nonlinear Networked Control Systems,” Chinese Control Conference, pp. 2035-2040, 2006.
[41] M. C. De Oliveira, J. C. Geromel, and J. Bernussou, ”Extended H2 and H∞ Norm Characterizations and Controller Parametrizations for Discrete-Time Systems,” International Journal of Control, vol. 75, no. 9, pp. 666-679, 2002.
[42] P. Gahinet and P. Apkarian, ”A Linear Matrix Inequality Approach to Control,” International Journal of Robust and Nonlinear Control, vol. 4, pp. 421-448, 1994.
[43] W. Zhang, “Stability Analysis of Network Control Systems,” Doctor Thesis, Case Western Reserve University, Aug. 2001.
[44] R. E. Skelton, T. Iwazaki, K. Grigoriadis, A Unified Algebraic Approach to Linear Control Design, Taylor and Francis Series in Systems and Control, Taylor & Francis, London, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top