(3.238.173.209) 您好!臺灣時間:2021/05/09 15:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:王俊生
論文名稱:氣動式微幫浦內部噴嘴長度對於幫浦性能的影響
論文名稱(外文):Effect of Nozzle Length on Pumping Performance for a Gas-driven Mircopump
指導教授:闕振庚
指導教授(外文):S.G. Chuech
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:機械與機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:73
中文關鍵詞:微機電製程PDMS製程濕蝕刻微幫浦微噴嘴負壓式
相關次數:
  • 被引用被引用:1
  • 點閱點閱:210
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:0
微機電系統技術中之由於其重要性,因此各種微幫浦的理論及設計,成為微流體系統的研發重心。微幫浦過去研發大部分集中在正壓式微幫浦上,對於利用負壓驅動的微幫浦則少之又少,而負壓式微幫浦不需要薄膜與閥片,不但可以延長壽命,且具有抽真空之互補性優點,也可應用於控制流量之功能。由於負壓式微幫浦內部流道結構,可影響幫浦抽排性能,因此本論文將針對負壓式氣動微幫浦噴嘴長度變化,進行各種不同微幫浦的製造與抽排實驗,以找出最佳化的負壓式微幫浦設計。
本研究首先利用PDMS製程來製作氣動式微型幫浦,並對幫浦吸取流量與抽取真空能力之實驗結果提出討論,並評估PDMS製程之優缺點,最後決定使用微機電技術之濕式蝕刻製程來製作,是以矽晶圓、聚甲基丙烯酸甲酯(Polymethylmethacrylate, PMMA)、氫基丙烯酸酯(Cyanoacrylate)為主要材料。在測試過程中,讓高壓氣體進入噴嘴驅動微幫浦,而來測試微幫浦的抽排效果,實驗測試包括:測試微幫浦吸取流體的流量及真空能力。
本論文的研究成果包括:設計微噴嘴結構,PDMS製程製作氣動式微幫浦的評估,設計應用於KOH濕蝕刻中微噴嘴與擴散器的角落補償結構,完成氣動式微型幫浦之成品以及微幫浦吸取流量與抽取真空能力測試實驗,其中噴嘴長度越接近左右兩邊吸入口的對應位置,吸取流量與抽取真空能力為最佳。
關鍵字:微機電製程、PDMS製程、濕蝕刻、微幫浦、微噴嘴、負壓式
目錄
中文摘要-------------------------------------------------------------------- i
英文摘要-------------------------------------------------------------------- iii
目錄-------------------------------------------------------------------------- v
圖目錄----------------------------------------------------------------------- vii
表目錄----------------------------------------------------------------------- xi
第一章 緒論--------------------------------------------------------------- 1
1-1 研究背景-------------------------------------------------------- 1
1-2 研究動機與目的----------------------------------------------- 1
1-3 文獻回顧-------------------------------------------------------- 2
1-3-1 非壓力式微幫浦---------------------------------------- 3
1-3-2 壓力式微幫浦------------------------------------------- 6
1-4 研究架構-------------------------------------------------------- 11
第二章 驅動原理與PDMS製程--------------------------------------- 12
2-1負壓驅動原理及特性------------------------------------------ 12
2-2 微幫浦之噴嘴結構設計-------------------------------------- 12
2-3 PDMS製作氣動式微幫浦之探討--------------------------- 13
2-3-1 PDMS之特性----------------------------------------------- 14
2-3-2製作流程----------------------------------------------------- 15
2-3-3製程步驟-----------------------------------------------------
--------------------------------------- 18
2-3-4幫浦流量與抽取真空之實際量測----------------------- 25
2-3-5 PDMS氣動式微幫浦之優缺點--------------------------
28
第三章 補償設計與濕蝕刻製程--------------------------------------- 29
3-1 噴嘴長度結構設計-------------------------------------------- 29
3-2 內部結構角落補償設計-------------------------------------- 30
3-3 濕蝕刻製程----------------------------------------------------- 40
3-3-1 製作流程---------------------------------------------------- 40
3-3-2 製程步驟---------------------------------------------------- 46
3-3-3 製作氣動式微幫浦過程之說明------------------------- 47
第四章 微幫浦成品的性能測試--------------------------------------- 58
4-1 氣動式微幫浦之吸取流量與抽取真空測試-------------- 58
4-2 探討幫浦內部噴嘴長度變化之吸取流量能力----------- 59
4-3 探討幫浦內部噴嘴長度變化之抽取真空能力----------- 62
第五章 結論與未來展望------------------------------------------------ 66
5-1 結論--------------------------------------------------------------
66
5-2 未來展望-------------------------------------------------------- 67
參考文獻-------------------------------------------------------------------- 69












































圖目錄

圖1 Richter製作之EHD微幫浦示意圖[20]-------------------------- 3
圖2離子牽引式微幫浦Au-ITO複合式電極示意圖[21]----------- 4
圖3電磁式微幫浦[10]--------------------------------------------------- 5
圖4壓電式微幫浦[24]--------------------------------------------------- 6
圖5形狀記憶合金式微幫浦[25]--------------------------------------- 7
圖6靜電式微幫浦[26]--------------------------------------------------- 8
圖7擴散式微幫浦作動示意圖[27]------------------------------------ 9
圖8蠕動式微幫浦作動剖面示意圖[28]------------------------------ 10
圖9熱驅動式微幫浦[30]------------------------------------------------ 11
圖10氣動式微幫浦示意圖---------------------------------------------- 13
圖11氣動式微幫浦光罩設計圖---------------------------------------- 14
圖12氣動式微幫浦之母模製作流程圖------------------------------- 15
圖12氣動式微幫浦之母模製作流程圖(續)------------------------- 16
圖12氣動式微幫浦之母模製作流程圖(續)------------------------- 17
圖12氣動式微幫浦之母模製作流程圖(續)------------------------- 18
圖13光罩玻璃------------------------------------------------------------- 18
圖14光阻塗佈機---------------------------------------------------------- 19
圖15加熱面板------------------------------------------------------------- 20
圖16軟烤時間與溫度參數圖------------------------------------------- 20
圖17雙面對準曝光機---------------------------------------------------- 21
圖18曝後烤時間與溫度參數圖---------------------------------------- 21
圖19超音波震洗機------------------------------------------------------- 22
圖20 SU8微幫浦之母模------------------------------------------------- 22
圖21顯微鏡下之母模結構---------------------------------------------- 22
圖22 PDMS 主劑與固化劑--------------------------------------------- 23
圖23水流抽氣機---------------------------------------------------------- 23
圖24烤箱------------------------------------------------------------------- 24
圖25氧氣電漿清洗機---------------------------------------------------- 24
圖26 PDMS氣動式微幫浦成品圖------------------------------------- 25
圖27吸取流量實驗配置圖---------------------------------------------- 25
圖28抽取真空實驗配置------------------------------------------------- 26
圖29 PDMS氣動式微幫浦吸取流量之實驗結果------------------- 26
圖30 PDMS氣動式微幫浦抽取真空度之實驗結果---------------- 27
圖31 PDMS破裂---------------------------------------------------------- 28
圖32微幫浦初步光罩圖------------------------------------------------- 29
圖33非等向性蝕刻------------------------------------------------------- 31
圖34 Miller指數(100)、(110)、(111)晶格平面示意圖--------------- 31
圖35矽晶圓之凸角結構角落攻擊示意圖---------------------------- 31
圖36噴嘴入口之矩形補償結構示意圖------------------------------- 32
圖37 Case 1噴嘴出口之長條形補償結構示意圖------------------- 33
圖38 Case 1噴嘴入口蝕刻過程中角落攻擊示意圖---------------- 33
圖39入口噴嘴角落攻擊示意圖---------------------------------------- 34
圖40噴嘴入口蝕刻過程中角落攻擊示意圖------------------------- 35
圖41噴嘴出口之補償結構示意圖------------------------------------- 36
圖42 (100)與(110)晶面蝕刻出的溝槽比較示意圖----------------- 36
圖43噴嘴出口蝕刻過程中角落攻擊示意圖------------------------- 37
圖44擴散器入口處角落補償結構------------------------------------- 38
圖45擴散器出口處角落補償結構------------------------------------- 38
圖46 Case 1氣動式微幫浦設計之光罩圖形------------------------- 39
圖47 Case 2氣動式微幫浦設計之光罩圖形------------------------- 39
圖48 Case 3氣動式微幫浦設計之光罩圖形------------------------- 39
圖49 Case 4氣動式微幫浦設計之光罩圖形------------------------- 40
圖50氣動式微幫浦之晶片製作流程圖------------------------------- 40
圖50氣動式微幫浦之晶片製作流程圖(續)------------------------- 41
圖50氣動式微幫浦之晶片製作流程圖(續)------------------------- 42
圖50氣動式微幫浦之晶片製作流程圖(續)------------------------- 43
圖50氣動式微幫浦之晶片製作流程圖(續)------------------------- 44
圖50氣動式微幫浦之晶片製作流程圖(續)------------------------- 45
圖51氣動式微幫浦晶片完成示意圖---------------------------------- 45
圖52光罩玻璃------------------------------------------------------------- 48
圖53清洗晶圓------------------------------------------------------------- 48
圖54旋塗光阻------------------------------------------------------------- 49
圖55矽晶圓與光罩玻璃放置於曝光機平台上---------------------- 50
圖56矽晶圓顯影完之光學顯微鏡所拍攝光阻結構圖------------- 50
圖57硬烤過程------------------------------------------------------------- 51
圖58去除氮化層後的矽晶圓結構------------------------------------- 51
圖59反應離子蝕刻機---------------------------------------------------- 52
圖60 KOH蝕刻過程------------------------------------------------------ 53
圖61蝕刻完後的矽晶圓------------------------------------------------- 53
圖62蝕刻完之噴嘴入口------------------------------------------------- 54
圖63蝕刻完之噴嘴出口------------------------------------------------- 54
圖64蝕刻完之擴散器左右半邊入口處------------------------------- 54
圖65 PMMA鑽孔--------------------------------------------------------- 55
圖66 PMMA與矽晶圓接合--------------------------------------------- 55
圖67 Case 1之氣動式微幫浦成品圖---------------------------------- 56
圖68 Case 2之氣動式微幫浦成品圖---------------------------------- 56
圖69 Case 3之氣動式微幫浦成品圖---------------------------------- 57
圖70 Case 4之氣動式微幫浦成品圖---------------------------------- 57
圖71吸取流量實驗配置圖---------------------------------------------- 58
圖72抽取真空實驗配置圖---------------------------------------------- 58
圖73 Case 1吸取流體流量之實驗結果------------------------------- 59
圖74 Case 2吸取流體流量之實驗結果------------------------------- 60
圖75 Case 3吸取流體流量之實驗結果------------------------------- 60
圖76 Case 4吸取流體流量之實驗結果------------------------------- 61
圖77 Case 2與Case 3吸取流體流量之實驗結果------------------- 62
圖78 Case 1 抽取真空之實驗結果------------------------------------- 62
圖79 Case 2 抽取真空之實驗結果------------------------------------- 63
圖80 Case 3 抽取真空之實驗結果------------------------------------- 64
圖81 Case 4 抽取真空之實驗結果------------------------------------- 64
圖82 Case 2與Case 3抽取真空之實驗結果------------------------- 65
















表目錄

表1入口噴嘴長度設計一覽表----------------------------------------- 30
表2 RIE製程參數設定值------------------------------------------------ 52
參考文獻
1. J. S. Kilby, “Miniaturized electronic Circuits,” U. S. Patent 3, 138, 743, June 23,1964(field February 6,1959).
2. R. N. Noyce, “Semiconductor Device-and-Lead Structure,” U. S. Patent 2, 918, 877, April 25,1961(field July 30,1959)
3. S. Fatikow and U. Rembold, “Microsystem Technology and Microrobotics,” Springer, 1996.
4. L. J. Yang, “Recognize the Micro-electro-mechanical Systems (MEMS), ” Tsang-Hai,Taichung,Taiwan,pp.95,2001.(Chinese version)
5. Kashani, R. ,Kang , S. , and Hallianan, K. P. “Electro-Hydrodynamic Pumped Hydraulic Actuation with Application to Active Vibration Control, ” Proceedings of SPIE - The International Society for Optical Engineering, v 3675, 1999, pp. 180-189. Proceedings of the 1999 Smart Structures and Materials on Smart Materials Technologies, Mar 3-Mar 4 1999, Newport Beach, CA, USA.
6. Kashani, R., Kang, S., Hallianan, K. P. ,“ Micro-Scale Electrohydrodynamic Pumped High Performance Actuation,” Journal of Intelligent Material Systems and Structures, v 11, n 5, May 2000, pp. 343-350.
7. Hsu, T.-R., MEMS & Microsystems Design and Manufacture, Published by McGraw-Hill Company, 2002, pp. 87-90.
8. Jang J., and Lee S. S., “ Theoretical and Experimental Study of MHD (magnetohydrodynamic) Micropump,” Sensors and Actuators A, v 80,2000 ,pp. 84-89.
9. Soerensen, O.,Drese, K. S., Ehrfeld, Wolfgang, Hartmann, and Hans-Joachim, “Micromachined flow Handling Components – Micropumps,” Proceedings of SPIE - The International Society for Optical Engineering, v 3857, 1999, Proceedings of the 1999 Chemical Microsensors and Applications II, Sep 19-Sep 20 1999, Boston, MA, USA, pp. 52-60.
10. Kaemper, K.-P., Doepper, J., Ehrfeld, W., and Oberbeck, S., “Self-filling Low-cost Membrane Micropump,” Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), 1998, Proceedings of the 1998 IEEE 11th Annual International Workshop on Micro Electro Mechanical Systems, Jan 25-29 1998, Heidelberg, Ger, pp. 432-437.
11. Guo, S., Nakamura, T., Fukuda, T., and Oguro, K., “Development of the Micro Pump Using ICPF Actuator,” Proceedings of IEEE International Conference on Robotics and Automation, ICRA. Part 1 (of 4), v 1, Apr. 20-25 1997, Albuquerque, NM, USA, pp. 266-271.
12. Guo, S., Nakamura, T., Fukuda, T., and Oguro, Keisuke, “Design and Experiments of Micro Pump using ICPF Actuator,” Proceedings of the International Symposium on Micro Machine and Human Science, Oct 2-4 1996, Nagoya, Japan, pp. 235-240.
13. Hartley, F. T., “Miniature Peristaltic Pump Technology and Applications,” Journal of Advanced Materials, v 32, n 3, Jul, 2000, pp. 16-22.
14. Wong, C. C., Adkins, D. R., Chu, D., “Development of a Micropump for Microelectronic Cooling,” American Society of Mechanical Engineers, Dynamic Systems and Control Division (Publication) DSC, v 59, 1996, Micro-Electro-Mechanical Systems (MEMS), Proceedings of the 1996 ASME International Mechanical Engineering Congress and Exposition, Nov 17-22 1996, Atlanta, GA, USA, pp. 239-244.
15. Polla, D. L., “MEMS Technology for Biomedical Applications, ” Proceeding of 6th International Conference, v 1 , 2001, pp. 19 –22.
16. Varadan, V. K., Varadan, V. V., “Micro Pump and Venous Valve by Micro Stereo Lithography,” Proceedings of SPIE - The International Society for Optical Engineering, v3990, 2000, pp. 246-254. Smart Structures and Materials 2000 - Smart Electronics and MEMS, Mar 6-Mar 8 2000, Newport Beach, CA, USA.
17. Skardon, J., “Applications for New Micro-Miniature Gear Pump Featuring Meso-Scale Components,” Instrumentation in the Aerospace Industry : Proceedings of the International Symposium, v 44, 1998, pp. 674-679. May 3-7, 1998, Reno, NV, USA.
18. Lofdahl, L., and Gad-el-Hak, M., “MEMS Applications in Turbulence and Flow Control,” Progress in Aerospace Sciences, v 35, n 2, Feb, 1999, pp. 101-203.
19. Zhao, Y., Tai, J., and Ahmed, F., “Simulation Of Micro Flows with Moving Boundaries Using High-Order Upwind FV Method on Unstructured Grids,” Computational Mechanics, v 28, n 1, February , 2001.
20. A. Richter, A. Plettner, K. A Hofmann and H. Sandmaier, “A Micromachined Electrohydrodynamic (EHD) Pump, ” Seneors and Actuators A 29,1991,pp.159-168.
21. Lung-Jieh Yang, Jiun-Min Wang and Yu-Lin Huang , “The Micro Ion Drag Pump Using Indium-Tin-Oxide (ITO) Electrodes to Resist Aging, ” Sensors and Actuators A: Physical, Volume 111, Issue 1, 1 March 2004, Pages 118-122
22. Zanzucchi, P. J., McBride, S. E., Burton Charlotte A., and Cherukuri Satyam C., “Apparatus and Methods for Controlling Fluid Flow in Microchannels,” Patent No.US5632876, Publication Date May 27,1997.
23. Li, Paul C. H., and Harrison, J. D., “Transport, Manipulation and Reaction of Biological cells On-Chip Using Electrokinetic Effects,” Anal. Chem., v 69, 1997, pp.154-158.
24. Michael Koch, Nick Harris, Alan G.R. Evans, Neil M. White, and Arthur Brunnschweiler, “A Novel Micromachined Pump Based on Thick-Film Piezoelectric Actuation,” Sensors and Actuators A: Physical, Volume 70, Issues 1-2, 1 October 1998, Pages 98-103.
25. Xu, Dond, and Wang, Li, “ Characteristics and Fabrication of NiTi╱Si Diaphragm Micropump,” Sensors and Actuators A, v 93, 2001, pp. 87-92.
26. Zengerle, R., and Ulrich, J.,“ A Bi-Directional Silicon Micropump,” Sensors and Actuators A, Vol. 50, 1995, pp. 81-86.
27. A. Olsson, P. Enoksson ,G. Stemme,and E. Stemme,“ A Valveless Planar Pump Isotropically Etched in Silicon, ” Proceedings of Micromechanics Europe 1995,(Copenhagen,Denmark),120(1995).
28. Quake S., and Scherer A., “From Micro- to Nanofabrication With Soft Materials,” Science ,Vol. 290, 2000, pp.1536-1540.
29. Spencer J. G.,“Piezoelectric Micropump With Three Valves Working Peristaltically,” Sensor and Actuators A, v 21-23, 1990 pp. 203-206.
30. Jeong, O,C., and Yang, S. S., “ Fabrication and Test of a Ahermopneumatic Micropump with a Corrugated p+ Diaphragm,” Sensors and Actuators A, v 83, 2000, pp. 249-255.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔