(3.236.122.9) 您好!臺灣時間:2021/05/12 18:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蕭嘉源
研究生(外文):Chia-Yuan Hsiao
論文名稱:雙纖衣摻鉻釔鋁石榴石晶體光纖之微結構拉曼分析
論文名稱(外文):Raman Analysis of Microstructure in Cr4+:YAG Crystal Fiber with Double-cladding Structure
指導教授:羅家堯
指導教授(外文):Chia-Yao Lo
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:79
中文關鍵詞:拉曼光譜雙纖衣摻鉻釔鋁石榴石晶體光纖
外文關鍵詞:Raman spectraDouble-claddingCr4+:YAGCrystal Fiber
相關次數:
  • 被引用被引用:0
  • 點閱點閱:92
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於近幾年在網際網路快速成長與資料傳輸量的需求,大大的增加了DWDM(dense wavelength division multiplexing)技術上的發展,在DWDM系統中的資料傳輸通道數量所仰賴的是光放大的增益頻寬及雷射源。而利用半導體雷射激發Cr4+:YAG晶纖產生3T2→3A2之自發輻射光譜,且其吸收頻譜在900 nm~1200 nm波長範圍內,激發波長涵蓋了1300 nm∼1600 nm整個低損耗通訊頻段,同時YAG晶體亦具有很好的機械特性,適合高功率的激發光源幫浦,故非常適合於晶體光纖放大器之應用。
  本論文除了簡述如何生長雙纖衣晶體光纖外,並說明如何製備量測樣品。在此使用拉曼光譜針對內層(YAG+SiO2)、外層纖衣(SiO2)及纖心三層的結構作描述,本樣品是使用雷射加熱基座生長法所成長的Cr4+:YAG雙纖衣晶體光纖來分析,由於此生長法能生長出純度高及缺陷低的單晶,故主要的損耗因素為傳輸損耗,我們利用拉曼光譜發現界面上的缺陷將大幅增加傳輸損耗,並使用Cr4+螢光量測來搭配拉曼光譜解釋,探討界面缺陷相對拉曼光譜背景強度的影響,其中以800℃退火樣品的缺陷最為顯著,損耗也最為大,無退火樣品則螢光最強。980℃退火樣品則出現了結晶性較好之六角形狀,且擁有較低的傳輸損耗,但卻沒有較好的螢光效率,主要是因Cr2O3的擴散而未能有最好的螢光效率。
The rapid growth of the internet and data traffic in optical communication networks in recent years has strongly stimulated the research and development of dense wavelength division multiplexing (DWDM) network system. The number of transmission channels in WDM system depends on the gain bandwidth of optical amplifiers and the laser sources. Cr4+:YAG has potential to meet this demand because its 3T2→3A2 transition has a strong spontaneous emission that just covers the low-loss band (1300 nm-1600 nm) of optical fiber and it’s absorption band at 900 nm-1200 nm. The crystalline also demonstrate good mechanical characteristic and lt is proper to be high pumping power, so it’s suitable for crystal fiber amplifier.
In this thesis, we introduce the preparation and grown of the double-clad Cr4+:YAG crystal fiber and Raman spectra of the three layers of double-clad fiber are described here. The three layers of double-clad fiber are denoted as core, inner cladding, and outer cladding. The double-clad Cr4+:YAG crystal fibers was grown by the laser-heated pedestal growth method. Due to this method can produce high-purity, low-defect-density single crystals, therefore propagation loss of the crystal fiber is one mainly of the causes of optical loss. Raman spectra results show that the interface defects will increase propagation loss. We also measure Cr4+ fluorescence intensity to harmony with Raman spectra, to analysis of the influence of interface defects and associated Raman background intensity. We have observed the most of the defects concentration and propagation loss at the sample of annealing temperature of 800℃and non-anneal sample have the most fluorescence intensity. And that the annealing temperature of 980℃ have the lowest propagation loss and appears hexagonal structure, but the fluorescence efficiency had the lowest that was mainly Cr2O3 diffusion from to to inner cladding.
目錄
致謝
中文摘要
英文摘要
目錄
圖目錄
表目錄
第一章 緒論...............................1
第二章 Cr4+:YAG晶體光纖特性及製備...........3
2-1 Cr4+:YAG晶體光纖特性.................3
2-1-1 晶體結構............................3
2-1-2 能階模型............................6
2-1-3 電荷補償............................10
2-2 Cr4+:YAG晶體光纖生長...................12
2-2-1 雷射加熱基座生長法(LHPG)..............12
2-2-2 共同提拉LHPG法.......................16
2-3 錫包覆與研磨拋光.......................19
第三章 Cr4+:YAG拉曼光譜量測.................25
3-1 拉曼光譜儀器簡介........................25
3-2 拉曼光譜...............................27
3-2-1 拉曼光譜歷史.........................27
3-2-2 拉曼和瑞立散射的機制..................28
3-2-3 拉曼和瑞立散射的波動模型...............30
3-2-4 拉曼和紅外線光譜的比較.................32
3-3 雙纖衣Cr4+:YAG晶體光纖拉曼光譜...........36
3-3-1 纖心部分Cr4+:YAG.....................36
3-3-2 外層纖衣SiO2.........................43
3-3-3 內層纖衣Cr4+:YAG-SiO2................47
第四章 Cr4+:YAG晶體光纖之微結構分析..........52
4-1 退火樣品之拉曼光譜量測...................55
4-2 退火樣品之Cr4+螢光量測..................64
4-3 結果與討論.............................70
第五章 結論................................73
參考文獻...................................75
[1]J. S. Haggerty, “Production of Fibers by a Floating Zone Fiber Drawing Technique,” Final Report NASA-CR-120948, May (1972).
[2]C. A. Burrus and J. Stone, “Single-crystal Fiber Optical Devices: A Nd:YAG Fiber Laser,” Applied Physics Letters 26, 318-320 (1975).
[3]M. M. Fejer, G. A. Magel, and R. L. Byer, “High-speed High-resolution Fiber Diameter Variation Measurement System,” Applied Optics 24, 2362-2368 (1985).
[4]S. Sudo, A. Cordova Plaza, R. L. Byer, and H. J. Shaw, “Mgo:LiNbO3 Single-crystal Fiber with Magnesium-ion In-diffused Cladding,” Optics Letters 12, 938-940 (1987).
[5]H. Eilers, W. M. Dennis, W. M. Yen, S. Kuck, K. Peterman, G. Huber, and W. Jia, “Performance of a Cr:YAG Laser,” IEEE Journal of Quantum Electronics 29, 2508-2512 (1993).
[6]M. A. Gulgun, W. Y. Ching, Y. N. Xu, and M. Ruhle, “Electron States of YAG Probed by Energy-loss Near-edge Spectrometry and AB Initio Calculations,” Philosophical Magazine B 79, 921-940 (1999).
[7]S. Kuck, J. Koetke, K. Petermann, U. Pohlmann, and G. Huber, “Spectroscopic and Laser Studies of Cr4+:YAG and Cr:Y2SiO5,” OSA Proceedings on Advanced Solid-State Lasers 15, 334-338 (1993).
[8]Y. Chang, “Ultrafast Optical Pulse Generation from Cr4+-doped Yttrium Aluminum Garnet Tunable Solid-state Laser,” Ph.D. dissertation, National Library of Canada (1999).
[9]H. Eilers, U. Hommerich, S. M. Jacobsen, and W. M. Yen, “Spectrocopy and Dynamics of Cr4+:Y3Al5O12,” Physical Review B 49, 15505-15513 (1994).
[10]A. Sennaroglu and C. R. Pollock, “Efficient Continuous-wave Chromium-doped YAG Laser,” Journal of the Optical Society of America B 12, 930-937 (1995).
[11]V. Petricevic, S. K Gayen, R. R. Alfano, K. Yamagishi, H. AnZai, and Y. Yamaguchi, “Laser Action in Chromium-doped Forsterite,” Applied Physics Letters 52, 1040-1042 (1988).
[12]V. Petricevic, S. K. Gayen, and R. R. Alfano, “Laser Action in Chromiumactivated Forsterite for Near-infrared Excitation : Is Cr4+ the Lasing Ion?” Applied Physics Letters 53, 2590-2592 (1988).
[13]H. R. Verdun, L. M. Thomas, D. M. Andrausks, T. McCollum, and A. Pinto, “Chromium-doped Forsterite Laser Pumped with 1.06 μm Radiation,” Applied Physics Letters 53, 2593-2595 (1988).
[14]S. A. Markgraf, M. F. Pangborn, and R. Dieckmann, “Influence of Different Divalent Co-dopants on the Cr4+ Content of Cr-doped Y3Al5O12,” Journal of Crystal Growth 180, 81-84 (1997).
[15]B. M. Tissue, W. Jia, Lizhu Lu, and William M. Yen, “Coloration of Chromium-doped Yttrium Aluminum Garnet Single-crystal Fiber Using a Divalent Codopant,” Journal of Applied Physics 70, 3775-3777 (1991).
[16]http://www.webelements.com/
[17]陳志勇, “柴式法生長鈮酸鋰塊晶之研究分析,” 國立中央大學機械工程研究所碩士論文(2004)。
[18]余樹楨, “晶體之結構與性質,” 渤海堂(2000)。
[19]G. A. Magel, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched Second Harmonic Generation of Blue Light in Periodically Poled LiNbO3,” Applied Physics Letters 56, 108-110 (1990).
[20]L. Hesseling and S. Redfield, “Photorefractive Holographic Recording in Strontium Barium Niobate Fiber,” Optics Letters 13, 877-879 (1988).
[21]D. B. Gasson and B. Cockayne, “Oxide Crystal Growth Using Gas Lasers,” Journal of Materials Science 5, 100-104 (1970).
[22]R. S. Feigelson, W. L. Kway, and R. K. Route, “Single Crystal Fbers by the Laser-heated Pedestal Growth Method,” Optical Engineering 24, 1102-1107 (1985).
[23]Yen-Sheng Lin, Chien-Chih Lai, Kuang-Yao Huang, Jian-Cheng Chen, Chia-Yao Lo, Sheng-Lung Huang, Tao-Yuan Chang, Jiun-Yu Ji, Pouyan Shen, “Nanostructure Formation of Double-clad Cr4+:YAG Crystal Fiber Grown by Co-drawing Laser-heated Pedestal,” Journal of Crystal Growth 289, 515-519 (2006).
[24]http://www.struers.com/
[25]J. R. Ferraro and K. Nakamoto, “Introductory Raman Spectroscopy,” Harcourt Brace & Company (1994).
[26]D. Chiriu, P. C. Ricci, C. M. Carbonaro, A. Anedda, M. Aburish-Hmidat, A. Grosu, P. G. Lorrai, and E. Fortin, “Vibrational Properties of Mixed (Y3Al5O12)x-(Y3Sc2Ga3O12)1?x Crystals,” Journal of applied physics 100, 033101-1 ~033101-5 (2006).
[27]J. P. Hurrell, S. P. S. Porto, I. F. Chang, S. S. Mitra, and R. P. Bauman, “Optical Phonons of Yttrium Aluminum Garnet,” Physical review 173, 851-856 (1968).
[28]W. Braue, P. Mechnich, K. Fritscher, and L. Niewolak, “Compatibility of Mixed Zone Constituents (YAG, YAP, YCrO3) with a Chromia-enriched TGO Phase during the Late Stage of TBC Lifetime,” Surface & Coatings Technology 202, 670-675 (2007).
[29]Frank L. Galeener, “Band Limits and the Vibrational Spectra of Tetrahedral,” Physical review B 19, 4292-4297 (1979).
[30]A. E. Geissberger and F. L. Galeener, “Raman Studies of Vitreous SiO2 Versus Fictive Temperature,” Physical Review B 28, 3266-3271 (1983).
[31]A. Pasquarello and R. Car, “Identification of Raman Defect Lines as Signatures of Rings Structures in Vitreous Silica,” Physical Review Letters 80, 5145-5147 (1998).
[32]F. L. Galeener and A. E. Geissberger, “Vibrational Dynamics in 30Si-substituted Vitreous SiO2,” Physical Review B 27, 6199-6204 (1983).
[33]I. R. Lewis and H. G. M. Edwards, “Handbook of Raman Spectroscpy,” Practical Spectroscopy Series 28, Marcel Dekker, New York, p449 (2001).
[34]O. Fabrichnaya, H. J. Seifert, R. Weiland, T. Ludwig, F. Aldinger, and A. Navrotsky, “Phase Equilibria and Thermodynamics in the Y2O3-Al2O3-SiO2 System,” Zeitschrift fur Metallkunde 92, 1083-1097 (2001).
[35]S. Kochawattana, A. Stevenson, S. H. Lee, M. Ramirez, V. Gopalan, J. Dumm, V. K. Castillo, G. J. Quarles, and G. L. Messing, “Sintering and Grain Growth in SiO2 Doped Nd:YAG,” Journal of the European Ceramic Society 28, 1527-1534 (2008).
[36]M. Okuno, N. Zotov, M. Schmuecker, and H. Schneider, “Structure of SiO2-Al2O3 Glasses: Combined X-ray Diffraction, IR and Raman studies,” Journal of Non-crystalline Solids 351, 1032-1038 (2005).
[37]A. A. Kaminskii, Ken-ichi Ueda, H.J. Eichler, S.N.Bagaev, K. Takaichi, J. Lu, A. Shirakawa, H. Yagi, and T. Yanagitani, “Observation of Nonlinear Lasing χ-effects in Highly Transparent Nanocrystalline Y2O3 and Y3Al3O12 Ceramics,” Laser Physics Letters 1, 6-11 (2004).
[38]Ch. Beck, K. H. Ehses, R. Hempelmann, and Ch. Bruch, “Gradients in Structure and Dynamics of Y2O3 Nanoparticles as Revealed by X-ray and Raman Scattering,” Scripta mater 44, 2127-2131 (2001).
[39]P. Mcmillan, “Structural Studies of Silicate Glasses and Melts-applications and Limitations of Raman Spectroscopy,” American Mineralogist 69, 622-644 (1984).
[40]K. T. Liu, Y. K. Su, S. J. Chang, K. Onomitsu, and Y. Horikoshi, “Photoluminescence and Raman Scattering in Mg and P Co-implanted GaN Epitaxial Layers,” Physica Status Solidi (b) 241, 2693-2697 (2004).
[41]S. Kuck, K. Petermann, and G. Huber, “Spectroscopic Investigation of the Cr4+-center in YAG,” OSA Proceedings on Advanced Solid-state Lasers 10, 92-94 (1991).
[42]陳建誠, “Spectroscopic Study on the Fluorescence of Cr ions in Double-clad Cr:YAG Crystal Fiber,” 國立中山大學光電工程研究所博士論文(2006).
[43]Bethanie J. Hills Stadler, “Relationships Between Optical Properties and Processing in A12O3-Y2O3 Thin Film Waveguides and Amplifiers,” Ph.D. dissertation, Case Western Reserve University (1990).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔