跳到主要內容

臺灣博碩士論文加值系統

(44.200.171.156) 您好!臺灣時間:2023/03/27 08:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:簡秀純
研究生(外文):HSIU-CHUN CHIEN
論文名稱:非線性高階方程反週期解的存在性
論文名稱(外文):Existence of Anti-periodic Solution for Nonlinear Higher Order Ordinary Differential Equations
指導教授:王富祥
指導教授(外文):FU-HSIANG WONG
學位類別:碩士
校院名稱:國立臺北教育大學
系所名稱:數學暨資訊教育學系(含數學教育碩士班)
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:5
中文關鍵詞:定點邊界值問題高階存在性
外文關鍵詞:Fixed pointBoundary value problemsHigher orderExistence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:216
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
在這篇文章中,運用「Leray-Schauder定點定理」針對邊界值問題(BVP)提供了幾個對於解是否存在的判別法則。
In this paper, we prove several new existence results for a nonlinear anti-periodic nth-order problem using a Leray-Schauder alternative to find the existence of solutions for (BVP).
1、Introduction------------------------------------------------1
2、Main Results------------------------------------------------2
3、References--------------------------------------------------4
[1] A. Abdurrahman, F.Anton, J.Bordes, Half-string oscillator approach to string field theory (Ghost sector. I), Nuclear Phys. B, 397(1993), 260–282.
[2]R. Aftabizadeh, Y. K. Huang, N. H. Pavel, Nonlinear third-order differential equations with anti-periodic boundary conditions and some optimal control problems, J. Math. Anal. Appl., 192(1995) ,266–293.
[3] R. Aftabizadeh, N. H. Pavel, Y. K. Huang, Anti-periodic oscillations of some second-order differential equations and optimal control problems, J. Comput. Appl. Math., 52 (1994), 3–21.
[4].C. Ahn, C. Rim, Boundary flows in general coset theories, J. Phys. A, 32 (1999), 2509–2525.
[5]. S. Aizicovici, S. Mckibben, S. Reich, Anti-periodic solutions to nonmonotone evolution equations with discontinuous nonlinearities, Nonlinear Anal. Ser. A: Theory, Methods, 43(2001), 233–251.
[6].S. Aizicovici, N. H. Pavel, Anti-periodic solutions to a class of nonlinear differential equations in Hilbert space, J. Funct. Anal., 99(1991), 387–408.
[7].S. Aizicovici, S. Reich, Anti-periodic solutions to a class of non-monotone evolution equations, Discrete Contin. Dynam. Systems, 5 (1999), 35–42.
[8].H. L. Chen, Antiperiodic wavelets, J. Comput. Math., 14 (1996), 32–39.
[9]. Y. Q.Chen, On Massera’s theorem for anti-periodic solution, Adv. Math. Sci. Appl., 9 (1999), 125–128.
[10].F. J. Delvos, L. Knoche, Lacunary interpolation by antiperiodic trigonometric polynomials, BIT, 39(1999), 439–450.
[11].D. Franco, J. J. Nieto, First-order impulsive ordinary differential equations with anti-periodic and nonlinear boundary conditions, Nonlinear Anal., 42(2000), 163–173.
[12].D. Franco, J. J. Nieto and D. O’Regan, Anti-periodic boundary value problem for nonlinear first order ordinary differential equations, Mathematical Inequalities & Applications,Volume6. Number 3(2003),477-485。
[13]. H. Kleinert, A.Chervyakov, Functional determinants from Wronski Green functions, J. Math. Phys.,40 (1999), 6044–6051.
[14]. M. Nakao, Existence of an anti-periodic solution for the quasilinear wave equation with viscosity, J.Math. Anal. Appl., 204 (1996), 754–764.
[15]. H. Okochi, On the existence of anti-periodic solutions to a nonlinear evolution equation associated with odd subdifferential operators, J. Funct. Anal., 91(1990), 246–258.
[16]. D. O’Regan, “Existence Theory for Nonlinear Ordinary Differential Equations”, Kluwer, Dordrecht, (1997).
[17]. S. Pinsky, U. Trittmann, Antiperiodic boundary conditions in supersymmetric discrete light cone quantization, Phys. Rev. D (3), 62 (2000), 87701, 4 pp.
[18]. P. Souplet, Optimal uniqueness condition for the antiperiodic solutions of some nonlinear parabolic equations, Nonlinear Anal., 32(1998), 279–286.
[19].Y. Yin, Anti-periodic solutions of some semilinear parabolic boundary value problems, Dynam. Contin.Discrete Impuls. Systems 1(1995), 283–297.
[20]. Y. Yin, Monotone iterative technique and quasilinearization for some anti-periodic problems, Nonlinear World, 3 (1996), 253–266.
[21]. Y. Yin, Remarks on first order differential equations with anti-periodic boundary conditions, Nonlinear Times Digest, 2(1995), 83–94.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top