(3.237.178.91) 您好!臺灣時間:2021/03/04 08:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:籃子員
研究生(外文):Lan Tzyy-yuan
論文名稱:不同負重率對背向行走之生物力學分析
論文名稱(外文):Biomechanical Analysis of Backward Walking under Various Bearing
指導教授:翁梓林翁梓林引用關係
指導教授(外文):Wong Zih-lin
學位類別:碩士
校院名稱:國立臺北教育大學
系所名稱:體育學系碩士班
學門:教育學門
學類:專業科目教育學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:69
中文關鍵詞:背向行走負重運動生物力學
外文關鍵詞:backward walkingloadingBiomechanical
相關次數:
  • 被引用被引用:3
  • 點閱點閱:226
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究目的:探討國小學童不同負重率(0%、10%、15%)對背向行走之運動學、動力學和肌電圖之影響。方法與步驟:本研究受試者以臺北市大同區日新國民小學五年級九名男性學童為受試對象(年齡:11.18±0.41歲、身高:146.74 ±3.62公分、體重:42.21±10.97公斤)。以雙肩後背之負重方式,在平地的實驗步道上進行背向行走,使用Mega Speed 25ks高速攝影機(100Hz)一台、AMTI測力板(1000Hz)和肌電儀(1000Hz)等儀器,以同步方法擷取人體背向行走之動作。影片以Kwon 3D動作分析系統進行量化,經線性轉換(DLT)和濾波(filter)處理,取得運動學參數。測力板原始訊號以Dasy Lab 6.0分析軟體,經濾波(filter)、校正模組(scaling)得到前後和垂直的地面反作用力,以體重倍率(Body Weight,B.W)標準化;肌電原始訊號經DasyLab 6.0分析軟體,進行濾波(10-500Hz)、全波上翻和積分運算,獲得積分肌電量,再除以積分期間的時間,得到肌電振幅,並以MVC法進行標準化。實驗資料以相依樣本單因子變異數分析(α=.05)進行統計分析。結果與討論:在10%和15%負重率的背向行走站立期間之制動期中,軀幹前傾角度達到最大,至制動腳尖著地瞬間,腳尖接觸測力板時,產生第一峰值,與最大負荷率值。股直肌得到更多的激發及徵召,在腳尖著地瞬間,先行徵召脛骨前肌,以維持歩態平衡。接續推蹬期,軀幹前傾角逐漸變小,制動腳跟推蹬地面離地瞬間時,產生第二峰值,由於必須逐漸移轉重心至支撐脚,步速降低制動腳跟離地瞬間的負荷,所以,第二峰值在三種負重率並無顯著差異。股二頭肌在制動期並未完全受到徵召,直到推蹬期時,取代股直肌,與腓腸肌出現較制動期大的平均肌電振幅,徵召明顯增加。站立期間衝量也因承受較大的負重率隨之遞增,皆有顯著性差異。結論:10%與15%負重率對國小學童背向行走而言,因為跨歩長與步速的減緩,使背向行走和緩穩健;選擇吸震佳的運動場地,可以減少地面反作用力對下肢的衝擊;在下肢肌群,可強化股直肌,以協助股四頭肌穩定膝關節。因此,在15%負重率以內,背向行走可做為國小學童訓練下肢肌力的方法之ㄧ。
The purpose of this study was to investigate different loading rate(0%、10%、15%) to backward walking to elementary school students, in kinematical, dynamics and lower limbs electromyograpic (EMG) parameters. The experiment subjects are 9 male students from the Taipei Municipal Ze Hsin Primary School (age: 11.18±0.41 years old, height: 146.74 ±3.62 cm, weight: 42.21±10.97kg) . A Mega speed 25k high-speed camera (100Hz) , an AMTI force plate (1000Hz) and Biovision EMG system (1000Hz) are used to simultaneously capture kinematical , dynamics and lower limbs EMG parameters during the subjects different loading rate to backward walking in one gait cycle. Kinematical parameters are filmd through the camera,,then the obtained film undergoes human limb sections of parameter organizational system, Direct Linear Transformation and filter by the Kwon3D movement analysis software, in order to obtain the parameters such as stride length, stride cadence, gait cycle and tilting angle of trunk. The original signal from the force plate, processed by DASYLab 6.0 software to low-pass filtering (10Hz) and calibrate modular, calculates the original ground reaction force. Body weight (B.W) is used as the basis for standardization to obtain ground reaction force values and impulse values. The original signal of EMG from Rectus femoris (RF), Biceps femoris (BF), Tibialis anterior (TI) and Gastrocnemius lateral head (GAS) is processed by DASYLab 6.0 software to band-pass (10-500Hz), full-wave rectification and low-pass filtering (10Hz), after intergration analysis to get the intergration EMG (IEMG) ,divided by total gait cycle, obtain the average EMG,,and finally to use the most big EMG in gait cycle as the basis for standardization (100% ) . The resulting data undergoes one-way ANOVA via SPSS 12.0 statistics software ,The level of significance for this experiment is set to α=.05. Study result and discussion: At 10% and 15% weight bearing during the backward walking phase and braking phase, the forward angle of the body (trunk) reaches the maximum. The instant the tip of the foot brakes to touch the ground, the first peak value is produced the moment it comes in contact with the force plate along with the maximum rate of loading. The rectus femoris muscle elicits greater excitation and recruitment. The instant the tip of the foot is in contact with the ground; Tibialis anterior muscle is first recruited to maintain balance while taking steps. Then, in the push-off phase, the forward angle of the body (trunk) gradually narrows. The moment the braking leg pushes-off from the ground, the second peak value is produced. Since focus has to be gradually shifted to the leg used to break, reduce the pace and load the instant the leg used in braking is pushed-off the ground, there appears to be no significant difference in “second peak value” under the three weight bearings. Moreover, Biceps femoris muscle is not completely recruited during the braking phase until it replaces rectus femoris muscle during the push-off phase. When the average EMG amplitude of the gastrocnemius muscle is greater than that of the braking period, the recruitment increases significantly. Measurements during the standing phase also show significant differences as weight bearings increase.
Conclusion: In view of backward walking for elementary school children, since long steps at a slower pace are taken, backward walking is smooth and stable. The selection of a sport with good shock-absorbance feature will minimize the impacts of ground reaction force on lower extremities. For lower-extremity muscle groups, rectus femoris muscle can be strengthened to assist the quadriceps femoris muscle that stabilizes the knee joint. Therefore, backward walking is regarded as one of the ways to train the lower extremity muscle strength for elementary school children within a load bearing of 15%.
目 錄
壹、緒論...........................................................01
一、問題背景.....................................................01
二、研究目的.....................................................04
三、研究範圍與限制...............................................05
四、名詞操作性定義...............................................06
貳、文獻探討.......................................................11
一、負重對動作表現之文獻探討.....................................11
二、背向行走之生物力學文獻探討...................................15
三、本章結語.....................................................25
參、研究方法與步驟.................................................26
一、研究對象.....................................................26
二、實驗時間與地點...............................................26
三、研究架構.....................................................27
四、實驗儀器與工具...............................................28
五、實驗場地與儀器架設...........................................32
六、實驗方法與步驟...............................................34
七、資料收集與處理...............................................40
八、統計方法.....................................................41
肆、結果...........................................................42
一、不同負重率背向行走之運動學參數分析...........................42
二、不同負重率背向行走之動力學參數分析...........................45
三、不同負重率背向行走之下肢肌電圖(EMG)分析....................49
四、不同負重率背向行走之生物力學參數綜合分析.....................51

伍、討論...........................................................55
一、探討不同負重率對背向行走之運動學參數分析.....................55
二、探討不同負重率對背向行走之地面反作用力參數分析...............57
三、探討不同負重率對背向行走下肢肌電訊號特性.....................60
四、本章結語.....................................................62
陸、結論...........................................................63
參考文獻
一、中文部分.....................................................64
二、外文部分.....................................................66
附錄...............................................................69
表 次
表2-1 背向行走步態參數摘要表.....................................18
表2-2 背向行走訓練垂直和前後方向動力學參數統計表.................19
表2-3 背向行走於三種坡度之下肢各作用肌群肌電參數統計摘要表.......23
表3-1 受試者基本資料.............................................26
表3-2 測力板精確度誤差...........................................35
表4-1 不同負重率背向行走之時間空間步態參數統計摘要表.............43
表4-2 不同負重率站立期前後方向地面反作用力參數統計摘要表.........46
表4-3 不同負重率站立期垂直方向地面反作用力參數統計摘要表.........47
表4-4 不同負重率制動腳在制動期下肢肌群肌電之參數統計摘要表.......50
表4-5 不同負重率制動腳在推蹬期下肢肌群肌電之參數統計摘要表.......50
圖 次
圖1-1 背向行走步態週期示意圖.....................................07
圖1-2 站立期間足部與地面接觸的情形................................07
圖1-3 背向行走之前後分力曲線圖...................................08
圖1-4 背向行走之垂直分力、衝量及負荷率曲線圖.....................09
圖1-5 負重身體軀幹角度定義圖.....................................10
圖3-1 研究架構圖.................................................27
圖3-2 高速攝影機.................................................28
圖3-3 線性轉換參考架.............................................29
圖3-4 AMTI 測力板................................................30
圖3-5 肌電圖測量儀器.............................................31
圖3-6 實驗場地與儀器佈置圖.......................................33
圖3-7 測力板比例模組校正圖.......................................35
圖3-8 同步控制器之訊號方形波標記.................................36
圖3-9 電極片黏貼位置圖...........................................37
圖3-10 實驗流程...................................................39
圖4-1 不同負重率對背向行走之軀幹前傾角度變化圖(單一受試者).....44
圖4-2 不同負重率在站立期間之前後方向分力參數變化圖(單一受試者).46
圖4-3 不同負重率在站立期間之垂直方向分力衝量比較圖(單一受試者).48
圖4-4 0%負重率背向行走生物力學相關參數圖(單一受試者)........ ..52
圖4-5 10%負重率背向行走生物力學相關參數圖(單一受試者)..........53
圖4-6 15%負重率背向行走生物力學相關參數圖(單一受試者)..........54
ㄧ、中文部分:
阮五福(1996)。人體下肢空間步態擺盪期力學模型及膝下義肢步態模擬分析。未出版碩士論文,國立成功大學,臺南市。
宋宏偉(2003)。國小學童不同背重率之步態分析。未出版碩士論文,國立屏東師範學院,屏東市。
呂東武 (2001)。步態分析技術發展現況與未來趨勢,生物醫學新知,5,21-25。
李昭慶(1999)。肌電圖在骨骼肌纖維類型判定的應用。台灣體育,101,24-27。
吳慧芬(1994)。正常兒童之步態肌電訊號分析。國立成功大學,台南市。
林大豐(1989)。身體不同部位負重走路之生理反應比較研究。未出版碩士論文,國立臺灣師範大學,台北市。
林中寶、吳新凡 (2003)。背向行走訓練對老年平衡能力研究。澳門理工學報,1 (3) ,129-139。
林正常(1996)。運動生理學實驗指引(增訂三版)。臺北:師大書苑有限公司。
林貴福(1996)。中年男子走路運度訓練強度的研究。國立臺灣師範大學博士學位論文,臺北市。
侯捷仁(2004)。老年人背向行走之生物力學分析。未出版碩士論文,國立臺灣師範大學,臺北市。
唐瑞顯、黃勝裕、黃長福(1999)。不同身體部位負重立定跳遠之運動學分析。二十一世紀體育運動倫理及體育運動發展之展望專刊,213- 216。
陳宏盈(2004)。手持重物立定跳遠之運動生物力學分析。未出版碩士論文,國立臺灣師範大學,臺北市。
郭士龍(2004)。排球扣球動作肌群肌電分析。未出版碩士論文,國立體育學院,桃園縣。
黃雅婷(2008)。背向與正向行走斜坡之生物力學分析。未出版碩士論文,國立臺北教育大學,臺北市。
黃詩帆(2006)。國小學童不同背重率行走之生物力學探討。未出版碩士論文,國立台北教育大學,台北市。
楊明恩等(1998)。不同步態之生物力學分析。國立體育學院論叢,8(2),223-236頁。
鞋技通訊編輯室(2000)。足的解剖-足的構造與機能。鞋技通訊,102,27-33。
鍾祥賜(2002)。國小學童以不同負重方式與速度行走對足底壓力的影響。未出版碩士論文,臺灣師範大學,臺北市。
二、 英文部分:
Astrand, P. O. , & K. Rodahl. (1986). Textbook of Work Physiology.(3th edi), McGraw-Hill Books.Company,New York,192 , 273-292.
Caiozzo, V. J., & Kyle, C. R. (1980). The effect of external loading upon power output in stair climbing. European Journal of Applied Physiology, 44, 217-222.
Cipriani, D. J., Armstrong, C. W. & Gaul, S. (1995). Backward walking at three levels of treadmill inclination: an electromyographic and kinematic analysis. Journal of Orthopedic and Sports Physical Therapy, 22, 95-102.
Datta, S. R.,and Ramanathan, N. L.(1971).Ergonomics comparison of seven modes of carrying loads on the horizontal plane. Ergonomics, 14(2)
Devita, P. & Stribling, J. (1991). Lower extremity joint kinematics and nergetics during backward running. Medicine and Science in Sport and Exercise, 23, 602-610.
Flynn, T. W. & Soutas-Little, R. W. (1993). Mechanical power and muscle action during forward and backward running. Journal of Orthopedic and Sports Physical Therapy, 17, 108-112.
Goh, J. H., Thambyah, A., & Bose, K. (1998). Effects of varying backpack loads on peak forces in the lumbosacral spine during walking. Clinical Biomechanics, 13(1), 26-31.
Grasso, R., Bianchi, L. & Lacquaniti, F. (1998). Motor patterns for human gait: backward versus forward locomotion. Journal of Neurophysiology, 8, 1868-1885.
Hong, Y., & Brueggemann, G. P.(2000). Changes in gait patterns in 10-year-old boys with increasing loads when walking on a treadmill. Gait and Posture, 11, 254-259.
Kathleen, J. G., & Christopher, M. P. (2005). Gait kinematics and kinetics of 7-year-old children: a comparison to adults using age-specific anthropometric data. Gait and Posture, 21, 141-145.
Laufer, Y. (2003). Age-and gender-related changes in the temporal-spatial characteristics of forwards and backwards gaits, Physiotherapy Research International, 8, 131-142.
Lynn, S. M.(1996): Scientific rationale and physiological basis for the use fo closed kinetic chain exercise in the lower extremity. Journal of Sport Rehabilitation. 5, 2-12.
Mackie, J. W. & Dean, T. E.(1984).Running backward trainingeffects on upper leg Musculature and ligament instability of injured kness . Medicine and Science in Sport and Exercise, 16, 151(abstract).
Minetti, A. E., & Ardigo, L. P. (2002). Halteres used in ancient Olympic long jump Nature. 420, Nov 14, 141-142
Nordin, M. & Frankel, V. H. (2001). Basic Biomechanics of the Musculoskeletal System, (3rded). Philadelphia: Lea & Febiger
Passmore, R.& J. Durnin, (1955).Human energy expenditure.Physiology Review 35,801.
Schurman, C.(2005).Backward walking for rehabilitation of lower extremities.Received from http://www.bodyresults.com/E2BackwardsWalking.asp Thomas, M. A., & Fast, A. (2000).One step forward and two steps back;The dangers of walking backwards in therapy.Americal Journal of Physical Medicine & Rehabilitation,79,459-461.
Thorstensson, A. (1986). How is the normal locomotor program modified to produce backward walking? Experimental Brain Research, 61, 664-668.
Threlked, A. J., Horn, T. S., Wojtowicz, G. M., Rooney, J. G. & Shapiro, R. (1989). Kinematic ground reaction force and muscle balance produce by backward running. Journal of Orthopedic and Sports Physical Therapy, 11, 56-63.
Van Deursen, R.W., Flynn, T. W., McCrory, J. L. & Morag, E. (1998). Does a single control mechanism exist for both forward and backward walking? Gait and Posture, 7, 214-224.
Winter, D. A., Patia, A. E., Frank, J. S. & Walt, S. E. (1990). Biomechanical walking pattern changes in the fit and health elderly, 70, 340-347.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔