(3.238.186.43) 您好!臺灣時間:2021/03/02 10:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:周立人
研究生(外文):Lee-Jen Chou
論文名稱:從不同海拔高地之向下太陽輻射通量觀測估計雲輻射驅動力
論文名稱(外文):The Estimation of Cloud Radiative Forcing from Different Level DSI Observations at Highland
指導教授:林博雄林博雄引用關係
指導教授(外文):Po-Hsiung Lin
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:大氣科學研究所
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:86
中文關鍵詞:太陽輻射通量雲輻射驅動力雲量
外文關鍵詞:solar irradiancecloud radiative forcingcloud amounts
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
雲與氣膠對於向下太陽輻射通量(downward solar irradiance, DSI)的衰減,是氣候系統能量收支的重要環節。本研究利用同一區域內(45 km × 15 km)不同海拔高度的地面DSI觀測資料、雲量和雲狀觀測,仔細篩選出晴空條件個案及有雲條件個案,用以分析和估計該地區地面短波雲輻射驅動力(surface solar cloud radiative forcing, SSCRF) 的月際與年際變化。我們首先探討中央氣象局所屬日月潭、阿里山、玉山測站雲量資料之可用性評估,結果顯示雲量呈現隨海拔增加而減少、夏季大於冬季、以及雲量逐月變化三測站類似等合理結果。此外,我們也對月平均雲量與日照率的相關性加以分析,結果顯示負相關係數均達 -0.97以上,三測站的線性趨勢亦相當接近,顯示雲量主觀觀測與日照率儀器觀測特性一致。在輻射資料檢核方面,DSI與雲量的線性迴歸方程式斜率,用以代表單位雲量對DSI的影響,結果呈現冬季斜率較小,夏季斜率較大。
本研究進一步利用阿里山測站資料,經資料檢定、篩選及比對驗證後,得到逐月晴空條件個案共25個,最後建立全年各月份晴空條件之日累積DSI基準值,以做為計算SSCRF的基礎。資料分析顯示SSCRF平均值月際變化在 -64.7 Wm-2 ~ -170.4 Wm-2之間,月際之間單位雲量的SSCRF值則介於 -16.9 Wm-2 ~ -28.6 Wm-2,年際平均的SSCRF逐月變化有季節趨勢,呈現夏季大於冬季;相對地,單位雲量的SSCRF數值之月際變化較為穩定;這些數據與Chou and Zhao (1997)和Gautier and Landsfeld (1997)的研究結果相近。我們透過已驗證之晴空個案,做為該太陽日條件下的逐時DSI標準,針對相同太陽日條件下,估計出逐時SSCRF值的變化,並利用雲量、雲種資料,分析出不同雲種對SSCRF值的影響。在過濾雲量、雲重疊效應與環境遮蔽等變因後,得到不同雲種之單位雲量SSCRF值49例。依據中央氣象局測報作業規範之雲屬分類,分析得到積雲個案SSCRF值介於 -20.6 Wm-2 ~ -118.1 Wm-2之間,層積雲個案SSCRF值介於-22.2 Wm-2 ~ -75.3 Wm-2之間,層雲個案SSCRF值介於 -28.1 Wm-2 ~ -94.7 Wm-2之間。
此外,本研究另從台大實驗林所屬微氣象站具有完整DSI資料期間,通過驗證條件的晴空個案共有11個,計算出中午時段DSI垂直梯度共66筆,結果顯示DSI隨高度每1000公尺遞增約7.5 %,與阿爾卑斯山區的密集觀測結果7-10 %相近(鄭,1995) 。以2005年3月6日大氣乾淨程度良好個案而言,百公尺DSI垂直梯度為 2.65 Wm-2 ,是2003年11月30日個案 7.71 Wm-2 的1/3,此結果與Iziomon and Mayer (2002)針對德國西南部山區的觀測研究結果相近。
The decline of downward solar irradiance (DSI) by Cloud and aerosol is one of the important processes on earth climate radiation budget. In this study, we used the measurements of shortwave DSI and cloud (amounts and types) in a highland area with 15 km × 45 km area and 700 m to 2700 m altitude variation at Taiwan, to estimate the monthly and yearly SSCRF through the DSI deviation between clear-sky cases and cloudy-sky cases. The observed cloud amounts at Son-moon-Lake, Ali-shan, Yu-shan weather stations in our research area were studied first. We found there existed several reasonable phenomena including (1) the inverse trend of cloud amounts and weather stations’ altitude, (2) more cloud amounts in summer than in winter, and (3) similar monthly cloud amounts variations among these stations. Furthermore, we also analyzed the correlation between month-average cloud amounts (from observer) and sunshine duration ratio record (from instrument). It showed that the coefficient of negative correlation R is over -0.97 and the linear regressions at these stations are similar to each other. The linear regression slope, which is explained as DSI decline effect of per cloud amount, was smaller in winter than in summer.
In order to build up the baseline of SSCRF (surface solar cloud radiative forcing) computation in this study, twenty-five DSI cases under whole daily clear-sky at Ali-shan station were selected and processed. Then we got the monthly mean SSCRF with a range of -64.7 Wm-2 to -170.4 Wm-2, and the monthly mean SSCRF per cloud amount with a range of -64.7 Wm-2 to -170.4 Wm-2. These results are compatible to the works done by Chou and Zhao (1997) and Gautier and Landsfeld(1997).
For discussing the hourly DSI variation with cloud amount and cloud types, forty-nine cases of the cloudy-sky days which had the same Julian days to the SSCRF baseline cases were diagnosed. The factors of cloud multi-layer overlapping and environment shade were excluded carefully, and we found the SSCRF of cumulus is about -20.6 Wm-2 to -118.1 Wm-2, the SSCRF of stratocumulus is about -22.2 Wm-2 to -75.3 Wm-2 , and SSCRF of stratus has the magnitude between -28.1 Wm-2 to -94.7 Wm-2.
This study also chose 11 clear-sky cases from the complete DSI operated by NTU experimental forest, to compute the vertical gradient of DSI at noon time. From sixty-six cases, they showed that the 7.5 % vertical decrease per 1000 m on DSI agreed with the result 7-10 % from Alpine intense observations (Zheng, 1995). The most clean and clear-sky case on March 6, 2005 provided the lowest 2.65 Wm-2 per 100 m, and this amount is close to the observation result at Germany west-southern highland area by Iziomon and Mayer (2002).
口試委員會審定書……………Ⅰ
誌謝……………………………Ⅱ
中文摘要………………………Ⅲ
英文摘要..……………………Ⅴ
目錄......................Ⅶ
圖目錄…………………………Ⅸ
表目錄…………………………Ⅻ
第一章 前言……….………………………1
1.1太陽輻射與全球能量收支.………………1
1.2太陽輻射通量研究回顧.…………………4
1.2.1估計雲輻射驅動力..………………4
1.2.2懸浮微粒輻射驅動力 .............5
1.2.3估計晴空條件下太陽輻射隨高度的變化 …6
1.3 研究動機與研究架構 ..………………7
第二章 資料來源與處理 .……………10
2.1 資料來源與特性 ………………..…11
2.2 資料建置與篩選 …………..………14
第三章 研究區域概況 ……………….17
3.1 研究區域地理與氣候特徵 …………17
3.2 雲量資料品質之檢核 ………………21
3.3 輻射氣候特徵 …………………..…23
第四章 雲輻射驅動力的估計 ………..….28
4.1雲輻射驅動力的計算 ……………….28
4.2晴空條件下的輻射通量 ……………...30
4.3 雲輻射驅動力的氣候特徵 ……………38
4.4 不同雲種之雲輻射驅動力個案研究 49
第五章 晴空條件下太陽輻射隨高度的變化54
5.1 台灣長期生態研究網輻射資料評估 54
5.2 太陽輻射之垂直梯度 ………………58
5.3 移動性量測之可行性評估 …………66
第六章 總結與討論 ……………………….71
6.1結論 ………………………………….71
6.2討論與展望 ………………………….75


參考文獻 …………………………….…….79
附錄 …………………………….………….84
中央氣象局,1986: 地面氣象測報作業規範。
江灝,季國良,1995:1992年冬天蘭洲城市污染大氣的輻射狀況。高原氣象,14(2),151-156。
吳奇樺,2003:亞洲夏季季風期間雲/輻射效應的分析與模擬研究,台灣大學大氣所碩士論文。
林博雄、黃培育、盧濟明,2007:利用超輕型飛機進行大氣邊界層熱力場與太陽輻射垂直剖面觀測。2007臺灣地球科學聯合會學術研討會,桃園龍潭。
林博雄,劉紹臣,馮欽賜,周宗玄,葉瑞元,2004:臺灣地區太陽輻射量之校驗與長期趨勢。第八屆全國大氣科學研討會,桃園龍潭。
林博雄,徐仲毅,簡振和,2002:風場變形對地面降水觀測造成偏差之個案探討。 大氣科學,30,241-258。
柳中明,馮欽賜,1989:近地面直達太陽輻射通量受大氣懸浮微粒衰減分析。大氣科學,17,169-18.
姚榮鼐、陳信雄、魏聰輝,1999:塔塔加地區不同坡向日射量分布特性之探討.國立臺灣大學農學院實驗林研究報告,13,129-144。
夏禹九,金恆鑣,林敏雄,2000:長期生態研究的台灣經驗。科學發展月刊,28,679-685。
陳信雄、魏聰輝,2005:塔塔加地區表層土壤熱通量特性之研究.中華水土保持學報,36(3),249-265。
陳詠昌,2004:台灣地區衛星觀測及地面觀測之懸浮微粒光學特性,台灣大學大氣所碩士論文。
陳福來,1997:窺豹臺灣百年地面與高空氣象觀測及儀器沿革。中華民國氣象學會年刊,38,5-25。
鄭師中(譯),1995:山岳天氣與氣候,第四章,287-304,國立編譯館。
賴彥任,2003:集水區內太陽輻射量時空分佈估算之研究,台灣大學森林所博士論文。
劉廣仁、王躍思、胡非、張文、胡玉瓊,2003:320公尺氣象塔太陽輻射梯度觀測。太陽能學報,24(3),295-301。
Anderson, T. L. et al.,2003: Variability of aerosol optical properties derived from in-situ aircraft measurements during ACE-Asia. J. Geophys. Res., 108, D23, 8647-8665.
Arking, A., 1999:The influence of clouds and water vapaor on atmospheric absorption. Geophys. Res Lett., 26, 2729-2732.
Andreae, M.O., J. Fishman, and J. Lindesay, 1996: The Southern Tropical Atlantic Region Experiment (STARE): Transport and Atmospheric Chemistry near the Equator-Atlantic (TRACE A) and South African Fire-Atmosphere Research (SAFARI): An introduction. J. Geophys. Res., 101, 23519-23520.
Bess, T. D., and G. L. Smith ,1993: Earth radiation budget: Results of outgoing longwave raduation from Nimbus-7, NOAA-9, and ERBS satellites. J. Appl. Meteor., 32, 813-824.
Chou, M. D., P. H. Lin, P. L. Ma and H. J. Lin, 2006: Effects of aerosols on the surface solar radiation in a tropical urban area. J. Geophys. Res. 111, D15207, doi:10.1029/2005JD006910.
Chu, D. A., Y. J., Kaufman, G., Zibordi , J. D., Chern, J., Mao ; C., Li ;B. N., Holben , 2003:Global monitoring of air pollution over land from the Earth Observing System-Terra Moderate Resolution Imaging Spectroradiometer(MODIS), J. Geophys. Res. 108, D21, Nov 2003. DOI:10.1029/2002JD003179
Chu, D. A., Y. J., Kaufman, C., Ichoku, L. A., Remer, D., Tanre, and B. N., Holben, 2002: Validation of MODIS aerosol optical depth retrieval over land, Geophys. Res. Letters, 29, MOD 1-1, MOD1-4.
Conant, W. C., A. M. Vogelmann and V. Ramanathan, 1998: The unexplained solar absorption and atmospheric H2O: a direct test using clear-sky data. Tellus, 50A, 525-533, 1998.
Chou, M. D. and W. Zhao, 1997: Estimation and model validation of surface solar radiation and cloud radiative forcing using TOGA COARE measuements. J. Clim., 4, 610-620.
Gautier, C., and Landsfeld, M., 1997: Surface solar radiation flux and cloud radiative forcing for the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP): a satellite, surface observations, and radiative transfer model study. J. Atmos. Sci., 54, 1289-1307.
Haywood, J., S. Osbome, P .Formenti, and M. O. Andreae, 2003: The mean physical and optical properties of biomass burning aerosols measured by C-130 aircraf during SAFARI-2000, J. Geophys Res., 108(D3),8488.
Halthore, R. N., S. Nemesure, S.E. Schwartz, D. G. Imre, A. Berk, E. G. Dutton and M. H. Bergin, 1998: Model overestimate diffuse clear-sky surface irradiance: A case for excess atmospheric absorption. Geophy. Res. Letter, 25,3591-3594.
Harrison, E. F., B. R. Barkstrom, V. Ramanathan, R. Cess, and G. Gibson, 1990: Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiments. J. Geophys. Res. 95, 18 687-18 703.
Herman, G. F., and Curry, J. A., 1984: Observational and Theoretical Studies of Solar Radiation in Arctic Stratus Clouds. J. Climate and Applied Meteorology, 23, 5-24.
Harding, R. J., 1979: Radiation in the British uplands. J.Applied Ecology, 16,161-170.
Intergovernmental Panel on Climate Change (IPCC), 2007: Fouth Assessment Report, Climate Change 2007. L. Bernstein et al.
Iziomon, M. G. and Mayer, H., 2002: Characterisation of the shortwave radiation regime for locations at different altitudes in south-west Germany. Climate Research, 20, 203-209.
Intergovernmental Panel on Climate Change (IPCC), 2001: Third Assessment Report, Climate Change 2001. J. T. Houghton et al. Cambridge University Press.
Kaufman, Y. J. D. Tanre and O. Boucher, 2002: A satellite view of aerosols in the climate system. Nature, 419, 215-223.
Kaufman, Y. J., et al., 1998: Smoke, Clouds, and Radiation-Brazil (SCAR-B) experiment. J. Geophy. Res., 103, 31,783-31,808.
Kiehl, J. T and Trenberth, K. E. 1997: Earth’s annual global mean energy budget, Amer. Met. Soc., 78(2): 197-208.
Kato, S.,T. P. Ackerman, E. E. Clothiaux, J.H. Mather, G. G. Mace, M. L. Wesely, F. Murcray and J. Michalsky, 1997: Uncertainties in modeled and measured clear-sky surface shortwave irradiances. J. Geophy. Res., 27, 25881-25898.
Kyle, H. L., J. R. Hickey, P. E. Ardunuy, H. Jacobowitz, A. Arking, G. G. Campbell, and T.H. Vonder Haar, 1990: A comparison of two major Earth radiation budget data sets. J. Geophys. Res. 95, 9951-9970.
Lin, P.-H., M.-D. Chou, Q. Ji and S.-C. Tsay, 2002: Clear-sky surface radiation during south China Sea Monsoon Experiment. J. Terrestrial, Atmospheric and Oceanic Science, 13, 185-196.
Long, Charles N. and Ackerman, Thomas P., 1995: Surface Measurements of Solar Irradiance: A study of the spatial correlation between simultaneous measurements at separated sites. J. Appl. Meteor., 34, 1039-1046.
Mace, Gerald G., Sally Bebson, and Seiji Kato, 2006:Cloud radiative forcing at Atmospheric Radiation Measurement Program climate research facility: 2. vertical redistribution of radiant energy by clouds. J. Geophys. Res., 111, D11S91, doi:10.1029/2005JD005922.
Myhre, G., T.K. Berntsen, J. M. Haywood, J. K. Sundet, B. N. Holben, M. Johnsrud, and F. Stordal, 2003: Modeling the solar radiative impact of aerosols from biomass burning during the Southern African Regional Science Initiative(SAFARI-2000) experiment, J. Geophys. Res., 108(D13), 8501, doi:10.1029/2002JD002313.
Peng, C. M. and N. H. Lin, 2002: Long-range transport of Asian dust: An integrated modeling study. 6th International Aerosol Conference(IAC2002), 663-664.
Pilewskie, P., M. Rabbette, R. Bergstrom, J. Marquez, B. Schmind, and P. B. Russell,2000: The discrepancy between measured and modeled downwelling solar irradiance at the ground: Dependence on the water vapor. Geophy. Res. Letter, 27, 137-140.
Ramanathan, V., et al., 2001: Idian Ocean Experiment (INDOEX): An integrated assessment of the climate forcing and effects of great Indo-Asian haze, J. Geophys. Res., 106, 28, 371-28, 289.
Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosefeld, 2001: Aerosol, Climate, and Hydrological Cycle. Science, 294, 2, 119-2, 124.
Russell, P. B. et al.,1999: Aerosol induced radiative flux changes off the United States mid-Atlantic coast: comparison of values calculated from sun photometer and in situ data with those measured by airborne pyranometers. J. Geophys. Res., 104, 2289-2308.
Satheesh, S. K. and V. Ramanathan, 2000: Large differences in tropical aerosol forcing at the top of the atmosphere and earth’s surface. Nature, 405, 60-63.
Trentmann, J., M. O. Andreae, H. F. Hobbs, R. D. Ottmar, and T. Trautnmann, 2002: Simulation of a biomass-burning plume: Comparison of model results with observations. J. Geophys. Res., 107, AAC 5-1 – 5-15.
Wang, W. C., Gong, W., W.-S, Kau, C.-T., Chen, H.-H., Hsu, and C.-H., Tu, 2004: Characteristics of cloud radiation forcing over east China. J. Clim., 17, 845-853.
WMO, 1996: Guide to Meteorological Instruments and Methods of Observation.
Wendisch, M., S. Mertes, A. Ruggaber, and T. Nakajima, 1996: Vertica1 profiles of aerosol and radiation and influence of a temperature inversion: Measurement and radiative transfer calculation. J. Applied Meteor., 35, 1703-1715.
Yun Qian, Dale P. Kaiser, L. Ruby Leung, and Ming Xu, 2006: More frequent cloud-free sky and less surface solar radiation in China from 1995 to 2000. Geophysical research letters, 33, L01812, doi:10.1029/2005GL024586
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 姜添輝(2004)。我國大幅擴充高等教育的成因與問題分析,載於中華民國比較教育學會主編(2004):教育整合與競爭力。高雄:復文,35-84。
2. 林本炫(1998)。學費自由化以完善的扶助為前提。國策專刊,5,14-16。
3. 李富秉(2004)。評中國大學的高收費政策。當代中國研究,11(4)。2004年12月,104-112。
4. 張碧娟(1994)。我國大學校院學雜費政策之探析。教育與心理研究月刊, 17,203-232。
5. 楊瑩(2005)。英國高等教育學費政策及助學貸款制度之改革。教育研究月刊,137。138-158。
6. 蓋浙生(2003)。我國高等教育財政改革計劃:挑戰與因應。教育研究資訊,11(1),23-47。
7. 蕭霖(1995)。全方位的教育經費補助:就學貸款。教育研究集刊,44,34-38。
8. 戴曉霞(1999)。市場導向及其對高等教育之影響。教育研究集刊,42,233-254。
9. 顯東(2003)。評中國大陸高校的高收費政策。亞洲研究,47,30-46。
10. 林博雄,徐仲毅,簡振和,2002:風場變形對地面降水觀測造成偏差之個案探討。 大氣科學,30,241-258。
11. 柳中明,馮欽賜,1989:近地面直達太陽輻射通量受大氣懸浮微粒衰減分析。大氣科學,17,169-18.
12. 姚榮鼐、陳信雄、魏聰輝,1999:塔塔加地區不同坡向日射量分布特性之探討.國立臺灣大學農學院實驗林研究報告,13,129-144。
13. 夏禹九,金恆鑣,林敏雄,2000:長期生態研究的台灣經驗。科學發展月刊,28,679-685。
14. 陳信雄、魏聰輝,2005:塔塔加地區表層土壤熱通量特性之研究.中華水土保持學報,36(3),249-265。
 
系統版面圖檔 系統版面圖檔