跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/05 12:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭國輝
研究生(外文):Kuo-Huai Kuo
論文名稱:新穎性光可交聯樹脂在黑色矩陣之運用:合成、製備、與動力學研究
論文名稱(外文):Novel UV-Curable Resins for Black Matrix Application: Synthesis, Preparation, and Kinetic Study
指導教授:邱文英邱文英引用關係
指導教授(外文):Wen-Yen Chiu
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:218
中文關鍵詞:光可交聯樹酯黑色矩陣
外文關鍵詞:UV-curable resinblack matrix
相關次數:
  • 被引用被引用:0
  • 點閱點閱:341
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在液晶顯示器產業中,黑色矩陣是彩色濾光片上的一個重要的遮光元件。本研究主要是開發新型的碳黑光阻,其用途是可以使用微影製程來製備高遮光性之黑色矩陣。碳黑光阻包含碳黑、碳黑分散劑、光可交聯樹酯、黏著促進劑、以及光起始劑。本論文分兩部分來探討:一、在碳黑光阻的成分中,其合成以及功能探討。二、光聚合動力學以及穩定自由基聚合動力學探討。
在第一部份中,為了要在溶劑單甲基醚丙二醇醋酸酯(PGMEA)中製備出高濃度且穩定懸浮之碳黑分散液(碳黑含量佔總分散液重量的10%),首先我們使用分散劑來對碳黑進行表面處理。我們分別使用三種不同的碳黑分散劑:一種商業化的分散劑以及兩種新合成的分散劑。藉由分散劑的氨基與碳黑表面的酸基所產生的作用力,碳黑可以有效的吸附於碳黑表面上。另外,分散劑擁有適當鏈長可以提供碳黑良好的立體穩定性。此外,我們也有探討分散劑的含量與結構對於碳黑的穩定性以及遮光性質的影響。在這些碳黑分散劑中,其中一種分散劑含有methacrylate 官能基,因此具有光可交聯的特性。此分散劑的合成分兩步驟:首先是以穩定自由基聚合法來製備styrene-methacrylate的高分子型碳黑分散劑。為了使得此分散劑具有光可交聯的性質,在第二步驟,我們使用氨基鉀酸酯連結反應(urethane linkane)將methacrylate 官能基接枝於先前合成的分散劑中。此外,另一種新合成的碳黑分散劑也很有趣,因為它同時擁有光可交聯的特性以及鹼性水溶液可溶解的特性,因此可以使用微影製程來製備微結構圖案。此種分散劑的合成也是兩步驟:首先藉由bisphenol-A epoxy diacrylate 以及benzophenone tetracarboxylic dianhydride來製備鹼可溶解之光可交聯樹酯。之後為了使得此樹酯具有分散碳黑的能力,此樹酯與一個含有異氰酸甲酯官能基的單體再更進一步進行反應,最後獲得一光可交聯以及鹼可溶解之碳黑分散劑。
之後,將上述的碳黑分散液加入光起始劑以及光可交聯樹酯(如果是使用光可交聯以及鹼可溶解之碳黑分散劑,則只要添加光起始劑),即可獲得碳黑光阻。然而,由於碳黑的高度吸收光性以及無法溶於任何溶液中的特性,使得碳黑光阻的光敏感性與顯影能力大大的受到碳黑影響而下降。因此要使用低曝光能量來製備具有高遮光性與高解析度之黑色矩陣是一件非常不容易的工作。有鑑於此,光起始劑以及光可交聯樹酯的選擇變的非常重要。在光起始劑方面,我們研究不同光起始劑的吸光特性以及測量在有碳黑的情況下的樹酯的光聚合速率,以選擇最適合的光起始劑。在光可交聯樹酯方面,由於考慮到環保因素,我們合成新型鹼可溶解的光可交聯樹酯,主要是因為他們可以使用非毒性的鹼性顯影液來製備微圖案。論文中討論這些樹酯的光敏感性以及酸基的含量對於黑色矩陣的圖案形狀以及所需要的曝光能量消耗的效應。最後,使用上述所配置的碳黑光阻,在曝光能量為50-200mJ/cm2的微影製程條件下,我們成功的在玻璃基板上製備光學密度為4μm-1以及解析度為10μm的黑色矩陣。
玻璃基板以及黑色矩陣之間的黏著性也是非常重要的。但是,在彩色濾光片的製程中,玻璃基板以及黑色矩陣之間的黏著性在氧化銦錫(ITO)濺鍍製程後大大的下降。為了解決這個問題,本論文中,我們合成了一個新型光可交聯之矽氧烷偶合劑,其用途是添加於碳黑光阻中當作一種黏著促進劑。此種黏著促進劑是bisphenol-A epoxy diacrylate的氫氧基與3-(isocyanatopropyl)-triethoxysilane的異氰酸甲酯官能基反應所得到的產物。由於此種黏著促進劑同時擁有壓克力基以及矽氧烷基團,因此在紫外光曝照下會交聯,在高溫的環境下可與玻璃基板產生共價鍵。本研究探討此種黏著促進劑在氧化銦錫(ITO)濺鍍製程之前或是之後對於玻璃基板與黑色矩陣之間的黏著力的影響。
在第二部份中,首先,我們使用光-微差掃描熱量計(photo-DSC)來探討鹼可溶解之光可交聯樹酯的光聚合動力學行為,並提出了一個新的方法(結合了暗聚合反應以及擬穩定平衡假設)可以用來計算出propagation、bimolecular termination、monomolecular termination速率常數以及正在成長中的自由基濃度與反應程度之關係。從實驗結果我們發現光聚合反應強烈的受到樹脂以及光起始劑中的極性官能基的影響,並且深入的討論極性官能基對於反應速率常數以及起始劑效率的影響。
在合成styrene-methacrylate共聚合物實驗中,我們發現只有在高styrene的含量的時候,才能成功的使用穩定自由基聚合法來製備styrene-methacrylate的高分子型碳黑分散劑。因此我們提出了一個新的動力模型,其可用來解釋為何穩定自由基聚合法總是無法使用在壓克力單體上。另外,我們還發現添加少樣的極性溶劑可以增加壓克力單體的聚合速度。最後,從動力模型以及實驗結果,我們也計算並討論穩定自由基聚合法中的反應速率常數。
Carbon black photo-resist (CB PR), containing CB, CB dispersant, photo-curable resins, adhesion promoter, photo-initiator, and solvent, was developed for production of high resolution of black matrix (BM) which is an important light-shielding element on the color filter in liquid crystal display (LCD) industry. This work was divided into two parts: (1) the synthesis and function of each ingredient in CB PR and (2) the kinetic behaviors of photo-polymerization and TEMPO-mediated polymerization related to the compounds synthesized in the first part.
In the first part, CB was first treated by CB dispersant in order to prepare a high loading of CB dispersion in an organic solvent (propylene glycol monomethyl ether acetate, PGMEA) up to 10 wt%. Three different kinds of dispersants were taken separately to disperse CB, a commercialized dispersant and two newly synthesized dispersants. These three CB dispersants were effectively adsorbed onto CB by the interaction between amino-containing anchoring groups of dispersant and carboxylic acid group on CB surface. They had a moderate chain length to provide a steric repulsion for CB. In addition, the influences of amount and structure of these dispersants on the stability and light-shielding property of CB were discussed. Among these dispersants, one of the newly synthesized dispersants having (meth)acrylate group is an UV-curable CB dispersant, which was synthesized by a two-step process. First, a styrene-(meth)acrylate living copolymer was synthesized as a CB dispersant by TEMPO-mediated living polymerization. In the second step, to render the UV-curable property, additional (meth)acrylate groups were grafted onto the prepared CB dispersant by an urethane linkage reaction. The other newly synthesized CB dispersant was also interesting because it exhibited both UV-curable and alkali-soluble properties, which was capable of forming micro-patterns through an UV-lithographic process. This dispersant was also synthesized by a two-step process. First, UV-curable and alkali-soluble resins were synthesized by the reaction of bisphenol-A epoxy diacrylate with benzophenone tetracarboxylic dianhydride at different molar ratios. Second, to be able to disperse CB particles, these resins were further reacted with an isocyanate-containing methacrylate monomer to produce effective dispersants.
Afterwards, CB PRs were prepared by adding photo-initiator and with or without photo-curable resins into the above CB dispersions. However, it was not easy to prepare a BM with both a high opacity and a good resolution upon a low irradiation energy of UV light. This is because CB is a strong light-shielding material which would reduce the photo-sensitivity of CB PR. Besides, the developability of CB PR was strongly retarded by CB since CB can not be soluble in any solvent. In view of this, the selections of photo-initiator and photo-curable resins are critical because they affect the lithographic performance of CB PR. Several photo-initiators were evaluated with respect to their light absorbance and the rate of photo-polymerization in the presence of CB. In addition, several new photo-curable resins were synthesized in this work. UV-curable and alkali-soluble resins were tailored because they can form patterns by an environmental-friendly alkali developer. The influences of photo-sensitivities and concentration of carboxylic acid groups of these resins on the appearance of BM patterns and the energy consumption of UV light were discussed. Finally, a BM with both a high optical density of 4μm-1 and resolution of 10 μm in size upon irradiation of 50-200 mJ/cm2 was successfully produced by using the aforementioned CB PRs through an UV-lithographic process.
In addition, the adhesion strength between BM and glass substrate was studied. In the manufacturing process of color filter, the adhesion strength between the BM and glass substrate largely decreased after the ITO sputtering process. To overcome this problem, in this work, a newly synthesized UV-curable silane coupling agent as an adhesion promoter was added into a CB PR. This adhesion promoter was synthesized by the reaction between the hydroxyl group of bisphenol A epoxy diacrylate and the isocyanate group of 3-(isocyanatopropyl)-triethoxysilane. This adhesion promoter containing both acrylate and triethoxysilane groups can be cured upon UV irradiation and form a strong covalent bond with the glass substrate at high temperature, respectively. The influence of this adhesion promoter on the adhesion strength between BM and glass substrate before and after ITO sputtering process was discussed.
In the second part, the kinetic behaviors of photo-polymerization of UV-curable resins with carboxylic acid and amino functional groups were investigated. The rate of polymerization and extent of reaction were monitored by using a photo differential scanning calorimeter. A new method combining dark polymerization with pseudo steady state assumption of growing radicals was presented in order to calculate the kinetic constants for propagation, bimolecular termination, monomolecular termination, and the concentration of growing radicals of each resin as a function of extent of reaction. According to the experimental results, it was found that the photo-polymerization was strongly influenced by both functional groups of resins and photo-initiators. The influences of functional groups on the kinetic rate constants and initiator efficiency were discussed in depth.
For the CB dispersant synthesized by TEMPO-mediated copolymerization of styrene and (meth)acrylate monomers, the successful living character was observed only at high styrene molar fraction in feed. In view of this, a new kinetic model was established in order to explain the retardant mechanism of the living polymerization of (meth)acrylate. Besides, it was found that TEMPO-mediated polymerization of acrylate could be improved by adding a small amount of polar solvent, DMF (N,N-dimethylformamide) as a rate-enhancement agent. Finally, by using this kinetic model and experimental results, the kinetic rate constants in the TEMPO-mediated polymerization were then calculated and discussed.
Table of Contents I
List of Tables V
List of Figures VI
摘要 XI
Abstract XIV
Chapter 1 Introduction 1
1-1 Applications of photo-polymerization 1
1-2 Objective of this work 4
1-2.1 Carbon black dispersant 4
1-2.2 Carbon black photo-resists 6
1-2.3 Adhesion promoter 7
1-2.4 Kinetic study of photo-polymerization 7
1-2.5 TEMPO-mediated living polymerization 8
Chapter 2 Novel UV-Curable and Alkali-Soluble Resins for Light-Shielding Black Matrix Application 16
2-1 Introduction 17
2-2 Experimental 20
2-2.1 Materials 20
2-2.2 Synthesis of UV-curable and alkali-soluble resin 20
2-2.3 Structure Analysis 21
2-2.4 Preparation of carbon black dispersion 21
2-2.5 Light absorption property of CB 22
2-2.6 Optical density of black film 22
2-2.7 Photo-polymerization of resins with or without CB 22
2-2.8. Pattern formation 24
2-3 Results and discussion 25
2-3.1 Synthesis of UV-curable and alkali-soluble resins, A3 and B3 25
2-3.2 Influence of dispersant and resins on the particle size of CB 26
2-3.3 Optical density 27
2-3.4 Photo sensitivity of resins 28
2-3.5 Effect of the particle size of CB on the photo-sensitivity of CB PR 29
2-3.6 Resolution of BM 30
2-3.6.1 Effect of B1/DPHA on BM pattern 30
2-3.6.2 Effect of B1/B3 mixture on BM pattern 31
2-3.6.3 Effect of B2/B3 mixture on BM pattern 32
2-4 Conclusion 34
Chapter 3 A Novel Dispersant for Preparation of High Loading and Photo-Sensitive Carbon Black Dispersion 46
3-1. Introduction 47
3-2. Experimental 50
3-2.1 Materials 50
3-2.2 Preparation of P(SEH)-b-P(SEHD) block copolymers 50
3-2.3 Introduction of methacrylate double bond group to P(SEH)-b-P(SEHD) copolymers 51
3-2.4 Structure Analysis 51
3-2.5 Preparation of CB dispersion 51
3-2.6 Photo-reactivity of P(SEH)-b-P(SEHD)C=C/CB composite 52
3-3 Results and discussion 53
3-3.1 Synthesis of P(SEH)-b-P(SEHD) block copolymers 53
3-3.2 Synthesis of photo-sensitive P(SEH)-b-P(SEHD)C=C block copolymers 54
3-3.3 Effect of P(SEH)-b-P(SEHD) on the particle size of CB in dispersion. 55
3-3.4 Effect of P(SEH)-b-P(SEHD)C=C on the particle size of CB 57
3-3.5 Effect of P(SEH)-b-P(SEHD) on different types of CB 59
3-3.6 Photo-reactivity of P(SEH)-b-P(SEHD)C=C/CB composite 60
3-4 Conclusions 62
Chapter 4 Synthesis of an UV-Curable/Alkali-Soluble Dispersant for a High Loading of Carbon Black Dispersion 73
4-1. Introduction 74
4-2. Experimental 77
4-2.1 Materials 77
4-2.2 Synthesis of UV-curable/alkali-soluble resins, A1 and A2 77
4-2.3 Synthesis of UV-curable/alkali-soluble dispersants, B1 and B2 77
4-2.4 Structural analysis 78
4-2.5 Preparation of carbon black dispersion 79
4-2.6 UV/visible absorption spectra of PIs and CB dispersion 79
4-2.7 Photo-polymerization of dispersant/CB composite 79
4-2.8 Pattern formation from UV lithography 80
4-3. Results and discussion 81
4-3.1 Synthesis of UV-curable/alkali-soluble resins, A1 and A2 81
4-3.2 Synthesis of UV-curable/alkali-soluble dispersants, B1 and B2 82
4-3.3 Influence of different dispersants on the particle size of CB 83
4-3.4 Effect of particle size of CB on light absorption property 84
4-3.5 Selection of photo-initiator for CB/dispersant 85
4-3.5.1 Influence of photo-initiator on the rate of polymerization of B2 without CB 86
4-3.5.2 Influence of photo-initiator on the rate of polymerization of B2 with CB 87
4-3.6 UV-lithographic property 89
4-4. Conclusion 90
Chapter 5 Synthesis of UV-curable Silane Coupling Agent as Adhesion Promoter 102
5-1. Introduction 103
5-2. Experimental 105
5-2.1 Materials 105
5-2.2 Synthesis of UV-curable silane coupling agent 105
5-2.3 Structural analysis 105
5-2.4 Adhesion strength 105
5-3. Results and discussion 107
5-3.1 Synthesis of UV-curable silane coupling agent 107
5-3.2 Adhesion strength 107
5-4 Conclusion 109
Chapter 6 Kinetic Behavior of Photo-Polymerization of UV-Curable Resins with Carboxylic Acid and Amino Groups 117
6-1. Introduction 118
6-2. Reaction Mechanism and Kinetic Analysis 121
6-2.1 Principal reactions 121
6-3. Experimental 127
6-3.1 Materials and methods 127

6-3.2 UV/Vis spectrometry 129
6-4. Results and discussion 130
6-4.1 Rate of polymerization by continuous UV-irradiation 130
6-4.2 Rate of polymerization using the dark polymerization method 131
6-4.3 Effect of different functional groups on kp 133
6-4.4 Effect of different functional groups on ktb 134
6-4.5 Effect of different functional groups on ktm 136
6-4.6 Concentration of growing radicals during polymerization 138
6-4.7 Effect of tertiary amine of photo-initiator on the polymerization 138
6-5. Conclusion 142
Chapter 7 Preparation and Kinetic Analysis of PS-b-PBA Block Copolymer by 4-oxo-TEMPO Capped Polystyrene Macro-Initiators 152
7-1 Introduction 153
7-2 Reaction Mechanism and Kinetic Analysis 155
7-2.1 Principal reactions 155
7-2.2 Rate equations and kinetic analysis 156
7-2.2.1 Case I: Influence of bimolecular termination of two polymeric radicals on the polymerization 158
7-2.2.1.1 Case I-a: large [T*]0 159
7-2.2.1.2 Case I-b: [T*]0=0 160
7-2.2.2 Case II: Influence of hydrogen transfer reaction of hydroxylamine to propagating radicals on the polymerization 160
7-2.2.2.1 Case II-a: large [T*]0 161
7-2.2.2.2 Case II-b: [T*]0=0 162
7-3 Experimental 164
7-3.1 Materials 164
7-3.2 Synthesis of polystyrene macro-initiators 164
7-3.3 Synthesis of PS-b-PBA block copolymer by using PS macro-initiators 164
7-3.4 Analysis of polymers 165
7-4 Results and discussion 166
7-4.1 Preparation of PS-b-PBA initiated by PS macro-initiator. 166
7-4.2 Kinetic analysis on the polymerization of BA 167
7-5 Conclusion 171
Chapter 8 Influence of DMF on the Polymerization of Tert-Butyl Acrylate Initiated by 4-oxo-TEMPO-Capped Polystyrene Macroinitiator 178
8-1 Introduction 179
8-2 Reaction Mechanism and Rate Equations 182
8-3 Experimental 186
8-3.1 Materials 186
8-3.2 Synthesis of PS-b-PtBA blocks copolymers by the initiation of PS macroinitiator with the addition of various amounts of DMF. 186
8-3.3 Measurement 186
8-4 Results and discussion 188
8-4.1 PS-b-PtBA block copolymers 188
8-4.2 Effect of DMF on rate constant kact-tBA. 189
8-4.3 Effect of DMF on krec-tBA 190
8-4.4 Effect of DMF on reaction mechanism 192
8-5 Conclusion 196
Chapter 9 Conclusion 206
Chapter 10 Future Work 210
Reference 211
1.Oldring, P. K. T., Chemistry and Technology of UV and EB Formulation for Coatings, Inks and Paints. 1991; Vol. 1-5.
2.Pappas, S. P., Radiation Curing: Science and Technology. Springer: 1992.
3.Fouassier, J. P.; Rabek, J. F., Radiation Curing in Polymer Science and Technology. Elsevier Applied Science: 1993; Vol. 1-5.
4.Roffey, C. G., Photogeneration of Reactive Species for UV Curing. Wiley: 1997.
5.Decker, C. Progress in Polymer Science 1996, 21, (4), 593-650.
6.Decker, C., Materials Science and Technology, Meiser, HEH. VCH Verlay Weinheim: 1997; Vol. 18, p 615.
7.Coons, L. S.; Rangarajan, B.; Godshall, D.; Scranton, A. B. Innovative Processing and Characterization of Composite Materials: Presented at the 1995 ASME International Mechanical Engineering Congress and Exposition, November 12-17, 1995, San Francisco, California 1995.
8.Alvarez, M.; Davidenko, N.; Garcia, R.; Alonso, A.; Rodrog, R.; Guerra, R. M.; Sastre, R. Polym. Int. 1999, 48, 699-704.
9.Decker, C. CHIMIA International Journal for Chemistry 1993, 47, (10), 378-382.
10.Misra, M.; Guest, A.; Tilley, M. Surface Coatings International Part B: Coatings Transactions 1998, 81, (12), 594-595.
11.Vu, C.; Eranian, A.; Faurent, C.; Noireaux, P.; Deveau, J. Proc. Rad. Tech. Eur. 1999, 523-529.
12.Chang, C.-J.; Chang, S.-J.; Shih, K.-C.; Pan, F. U. L. J. Polym. Sci., Part B: Polym. Phys. 2005, 43, (22), 3337-3353.
13.Roper, T. M.; Kwee, T.; Lee, T. Y.; Guymon, C. A.; Hoyle, C. E. Polymer 2004, 45, (9), 2921-2929.
14.Sudder, M. Polymers Paint Colour Journal 2004, 194, (4480), 34-36.
15.Fu, J.; Li, Y.; Guo, J.; Gao, H. Proc. SPIE-Int. Soc. Opt. Eng. 1998, 3560, 116-121.
16.Kang, H.-J.; Lee, C.-W.; Oh, H.-Y.; Lee, C.-S. 2007, US patent 0154820 A1.
17.Kuo, K.-H.; Chiu, W.-Y.; Hsieh, K.-H.; Chen, W.-R.; Chen, S.-H. The 232nd ACS National Meeting, San Francisco, CA, USA 2006.
18.Kamata, H.; Kamijo, M.; Onishi, M. 2006, US patent 0041053 A1.
19.Lee, C.-H. 2005, US patent 0175930 A1.
20.Kudo, T.; Nozaki, Y.; Nanjo, Y.; Yamaguchi, H.; Nagao, K.; Okazaki, H.; Pawlowski, G. Journal of Photopolymer Science and Technology 1996, 9, (1), 121-130.
21.Chen, S. H.; Tsai, J.; Chang, A.; Wang, W.; Wu, C. M. Proceedings of the 12th International Display Workshops in Conjunction with Asia Display 2005 2005, 1419-1420.
22.Kyrlidis, A.; Xiong, K.; Sullivan, S.; Szwec, J.; Step, E. Proceedings of the 12th International Display Workshops in Conjunction with Asia Display 2005 2005, 1291-1294.
23.Sabnis, R. W. Displays 1999, 20, (3), 119-129.
24.Nsib, F.; Ayed, N.; Chevalier, Y. Prog. Org. Coat. 2006, 55, (4), 303-310.
25.Heithaus, M.; Foster, J. Mod. Pai. Coat. 1996, 86, (1), 28-33.
26.Lin, Y.; Smith, T. W.; Alexandridis, P. Langmuir 2002, 18, (16), 6147-6158.
27.Creutz, S.; Jerome, R. Prog. Org. Coat. 2000, 40, (1-4), 21-29.
28.Wang, Z.; Liu, Q.; Zhu, H.; Liu, H.; Chen, Y.; Yang, M. Carbon 2007, 45, (2), 285-292.
29.Kahn, M. G. C.; Banerjee, S.; Wong, S. S. Nano Lett. 2002, 2, (11), 1215-1218.
30.Fernando, K. A. S.; Lin, Y.; Sun, Y.-P. Langmuir 2004, 20, (11), 4777-4778.
31.Lee, J.; Aoai, T.; Kondo, S. i.; Miyagawa, N.; Takahara, S.; Yamaoka, T. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, (11), 1858-1867.
32.Cheng, T.-S.; Lee, H.-Y.; Lee, C.-T.; Chen, H.; Lin, H.-T. Mater. Lett. 2003, 57, (29), 4578-4582.
33.Makita, S.; Kudo, H.; Nishikubo, T. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, (15), 3697-3707.
34.Bosch, P.; Serrano, J.; Mateo, J. L.; Calle, P.; Sieiro, C. J. Polym. Sci., Part A: Polym. Chem. 1998, 36, (15), 2775-2783.
35.Bosch, P.; Serrano, J.; Mateo, J. L.; Guzman, J.; Calle, P.; Sieiro, C. J. Polym. Sci., Part A: Polym. Chem. 1998, 36, (15), 2785-2791.
36.Andrzejewska, E.; Zych-Tomkowiak, D.; Bogacki, M. B.; Andrzejewski, M. Macromolecules 2004, 37, (17), 6346-6354.
37.Andrzejewska, E.; Socha, E.; Bogacki, M.; Andrzejewski, M. Polymer 2005, 46, (15), 5437-5446.
38.Mateo, J. L.; Serrano, J.; Bosch, P. Macromolecules 1997, 30, (5), 1285-1288.
39.Lovestead, T. M.; O''Brien, A. K.; Bowman, C. N. J. Photochem. Photobiol., A 2003, 159, (2), 135-143.
40.Decker, C.; Moussa, K. Macromolecules 1989, 22, (12), 4455-4462.
41.Decker, C.; Moussa, K. Makromol. Chem. 1991, 192, (3), 507-522.
42.Moussa, K.; Decker, C. J. Polym. Sci., Part A: Polym. Chem. 1993, 31, (9), 2197-2203.
43.Decker, C.; Moussa, K. Makromol. Chem., Rapid Commun 1990, 11, (4), 159-167.
44.Jansen, J.; Dias, A. A.; Dorschu, M.; Coussens, B. Macromolecules 2002, 35, (20), 7529-7531.
45.Jansen, J.; Dias, A. Polymer Preprints(USA) 2001, 42, (2), 769-770.
46.Jansen, J. F. G. A.; Dias, A. A.; Dorschu, M.; Coussens, B. Macromolecules 2003, 36, (11), 3861-3873.
47.Beckel, E. R.; Nie, J.; Stansbury, J. W.; Bowman, C. N. Macromolecules 2004, 37, (11), 4062-4069.
48.Berchtold, K. A.; Nie, J.; Stansbury, J. W.; Hacioglu, B.; Beckel, E. R.; Bowman, C. N. Macromolecules 2004, 37, (9), 3165-3179.
49.Yen, T.-C.; Tso, P.-L. Journal of Micromechanics and Microengineering 2004, 14, (7), 867-875.
50.Guerrero, D. J.; DiMenna, B.; Flaim, T.; Mercado, R.; Sun, S. Proc. SPIE-Int. Soc. Opt. Eng. 2003, 5017, 298-306.
51.Fu, J.; Li, Y.; Guo, J.; Gao, H. Proc. SPIE-Int. Soc. Opt. Eng. 1998, 3560, 64-69.
52.Brandrup, J.; Immergut, E. H., Polymer Handbook. 2nd ed.; Wiley: 1975; p II-425.
53.Odian, G., Principles of polymerization. 3rd ed.; Wiley: New York, 1991; p 279.
54.Brady, G. A.; Halloran, J. W. J. Mater. Sci. 1998, 33, (18), 4551-4560.
55.Cho, J.-D.; Ju, H.-T.; Hong, J.-W. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, (3), 658-670.
56.Dega-Szafran, Z.; Katrusiak, A.; Szafran, M. J. Mol. Struct. 1999, 513, (1-3), 15-20.
57.Zhu, J.; Ren, Z.; Zhang, G.; Guo, X.; Ma, D. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2006, 63, (2), 449-453.
58.Kura, H.; Tanabe, J.; Oka, H.; Kunimoto, K.; Matsumoto, A.; Ohwa, M. Radtech Report 2004, 18, (3), 30-35.
59.Li, W.; Xie, Z.; Li, Z. J. Appl. Polym. Sci. 2001, 81, (5), 1100-1106.
60.Liu, T.; Jia, S.; Kowalewski, T.; Matyjaszewski, K.; Casado-Portilla, R.; Belmont, J. Macromolecules 2006, 39, (2), 548-556.
61.Acharya, B. N.; Gupta, G. P.; Prakash, S.; Kaushik, M. P. Pigm. Resin Technol. 2005, 34, (5), 270-274.
62.Lee, C.-F.; Yang, C.-C.; Wang, L.-Y.; Chiu, W.-Y. Polymer 2005, 46, (15), 5514-5523.
63.Sengupta, P. K.; Pramanik, A. R. Eur. Polym. J. 1994, 30, (4), 421-425.
64.Yoshikawa, S.; Tsubokawa, N. Polym. J. 1996, 28, (4), 317-322.
65.Hayashi, S.; Handa, S.; Oshibe, Y.; Yamamoto, T.; Tsubokawa, N. Polym. J. 1995, 27, (6), 623-630.
66.Yang, Q.; Wang, L.; Xiang, W.; Zhou, J.; Li, J. Polymer 2007, 48, (10), 2866-2873.
67.Hayashi, S.; Tsubokawa, N. J. Macromol. Sci., Chem. 1998, A35, (11), 1781-1796.
68.Tsubokawa, N.; Hosoya, M.; Kurumada, J. React. Funct. Polym. 1995, 27, (1), 75-81.
69.Banerjee, S.; Hemraj-Benny, T.; Wong, S. S. Adv. Mater. 2005, 17, (1), 17-29.
70.Tsubokawa, N.; Satoh, T.; Murota, M.; Sato, S.; Shimizu, H. Polym. Advan. Technol. 2001, 12, (10), 596-602.
71.Yang, Q.; Wang, L.; Xiang, W.; Zhou, J.; Deng, L.; Li, J. Eur. Polym. J. 2007, 43, (5), 1718-1723.
72.Bressy, C.; Hugues, C.; Bartolomeo, P.; Margaillan, A. Eur. Polym. J. 2003, 39, (2), 319-326.
73.Dasgupta, S. Prog. Org. Coat. 1991, 19, (2), 123-139.
74.Won, Y.-Y.; Meeker, S. P.; Trappe, V.; Weitz, D. A.; Diggs, N. Z.; Emert, J. I. Langmuir 2005, 21, (3), 924-932.
75.Brakensiek, N. L.; Kidd, B.; Washburn, C.; Murphy, E. The International Society for Optical Engineering, Bellingham, Santa Clara, CA, United States 2004, 5376, 633-639.
76.Asakura, T.; Yamato, H.; Matsumoto, A.; Ohwa, M. Society of Photo-Optical Instrumentation Engineers,Santa Clara, CA 2001, 4345, 484-493.
77.Auschra, C.; Eckstein, E.; Muhlebach, A.; Zink, M.-O.; Rime, F. Prog. Org. Coat. 2002, 45, 83-93.
78.Cameron, N. R.; Reid, A. J. Macromolecules 2002, 35, (27), 9890-9895.
79.Hawker, C. J.; Bosman, A. W.; Harth, E. Chem. Rev. 2001, 101, (12), 3661-3688.
80.Odell, P. G.; Listigovers, N. A.; Quinlan, M. H.; Georges, M. K. ACS Symp. Ser. 1998, 713, 80-95.
81.Zaremski, M. Y.; Plutalova, A. V.; Garina, E. S.; Lachinov, M. B.; Golubev, V. B. Macromolecules 1999, 32, (19), 6359-6362.
82.Abraham, S.; Choi, J. H.; Ha, C. S.; Kim, I. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, (23), 5559-5572.
83.Zaremski, M. Y.; Plutalova, A. V.; Lachinov, M. B.; Golubev, V. B. Macromolecules 2000, 33, (12), 4365-4372.
84.Benoit, D.; Harth, E.; Fox, P.; Waymouth, R. M.; Hawker, C. J. Macromolecules 2000, 33, (2), 363-370.
85.Miura, Y.; Hirota, K.; Moto, H.; Yamada, B. Macromolecules 1998, 31, (14), 4659-4661.
86.Burchell, C. J.; Glidewell, C.; Lough, A. J.; Ferguson, G. Acta Crystallogr., Sect. B: Struct. Sci. 2001, 57, (2), 201-212.
87.Ago, H.; Kugler, T.; Cacialli, F.; Salaneck, W. R.; Shaffer, M. S. P.; Windle, A. H.; Friend, R. H. J. Phys. Chem. B 1999, 103, (38), 8116-8121.
88.Ramanathan, T.; Fisher, F. T.; Ruoff, R. S.; Brinson, L. C. Chem. Mater. 2005, 17, (6), 1290-1295.
89.Pietschmann, N.; Peter, I.; Stroh, P. Eur. Coat. J. 2000, (7-8), 44-52.
90.Kuo, K.-H.; Chiu, W.-Y.; Cheng, K.-C. The 234th ACS National Meeting, Boston, MA, August 19-23 2007, PMSE 293.
91.Yu, A.; Hu, H.; Bekyarova, E.; Itkis, M. E.; Gao, J.; Zhao, B.; Haddon, R. C. Compos. Sci. Technol. 2006, 66, (9), 1187-1194.
92.Carrott, P. J. M.; Carrott, M. M. L. R.; Cansado, I. P. P.; Nabais, J. M. V. Carbon 2000, 38, (3), 465-474.
93.Do, D. D.; Do, H. D. Langmuir 2006, 22, (3), 1121-1128.
94.Chen, R. J.; Zhang, Y.; Wang, D.; Dai, H. J. Am. Chem. Soc. 2001, 123, (16), 3838-3839.
95.Segurola, J.; Allen, N. S.; Edge, M.; McMahon, A.; Wilson, S. Polym. Degrad. Stabil. 1999, 64, (1), 39-48.
96.Tao, Y.; Yang, J.; Zeng, Z.; Cui, Y.; Chen, Y. Polym. Int. 2006, 55, (4), 418-425.
97.Rutsch, W.; Dietliker, K.; Leppard, D.; Kohler, M.; Misev, L.; Kolczak, U. Prog. Org. Coat. 1996, 27, (1-4), 227-239.
98.Mauguiere-Guyonnet, F.; Burget, D.; Fouassier, J. P. J. Appl. Polym. Sci. 2007, 103, (5), 3285-3298.
99.Plueddmann, E. P., Silanes and Other Coupling Agents. The Netherlands, VSP, Utrect: 1992; p 3-19.
100.Chiang, T. H.; Hsieh, T. E. J. Adhes. Sci. Technol. 2005, 19, (1), 1-18.
101.Xu, G.; Gong, M.; Shi, W. Polym. Advan. Technol. 2005, 16, (6), 473-479.
102.Bikiaris, D.; Matzinos, P.; Prinos, J.; Flaris, V.; Larena, A.; Panayiotou, C. J. Appl. Polym. Sci. 2001, 80, (14), 2877-2888.
103.Bikiaris, D.; Matzinos, P.; Larena, A.; Flaris, V.; Panayiotou, C. J. Appl. Polym. Sci. 2001, 81, (3), 701-709.
104.Mohseni, M.; Mirabedini, M.; Hashemi, M.; Thompson, G. E. Prog. Org. Coat. 2006, 57, (4), 307-313.
105.Fu, W.; Yang, H.; Liu, S.; Li, M.; Zou, G. Mater. Chem. Phys. 2006, 100, (2-3), 246-250.
106.Weaver, K. D. Polym. Compos. 1995, 16, (2), 161.
107.Olson, J. R.; Day, D. E.; Stoffer, J. O. J. Compos. Mater 1992, 26, (8), 1181.
108.Ellsworth, M. W.; Novak, B. M. Chem. Mater. 1993, 5, (6), 839-844.
109.Coltrain, B. K.; Landry, C. J. T.; O''Reilly, J. M.; Chamberlain, A. M.; Rakes, G. A.; Sedita, J. S.; Kelts, L. W.; Landry, M. R.; Long, V. K. Chem. Mater. 1993, 5, (10), 1445-1455.
110.Lu, S.; Melo, M. M.; Zhao, J.; Pearce, E. M.; Kwei, T. K. Macromolecules 1995, 28, (14), 4908-4913.
111.Joseph, R.; Zhang, S.; Ford, W. T. Macromolecules 1996, 29, (4), 1305–1312.
112.Saitoh, T.; Sekino, A.; Hiraide, M. Chem. Lett. 2004, 33, (7), 912-913.
113.Sunkara, H. B.; Jethmalani, J. M.; Ford, W. T. Chem. Mater. 1994, 6, (4), 362-364.
114.Hagberg, E. C.; Hart, M. W.; Cong, L.; Allen, C. W.; Carter, K. R. J. Inorg. Organomet. P. 2007, 17, (2), 377-385.
115.Luo, N.; Hutchison, J. B.; Anseth, K. S.; Bowman, C. N. Macromolecules 2002, 35, (7), 2487-2493.
116.Lu, H.; Lovell, L. G.; Bowman, C. N. Macromolecules 2001, 34, (23), 8021-8025.
117.Burdick, J. A.; Peterson, A. J.; Anseth, K. S. Biomaterials 2001, 22, (13), 1779-1786.
118.Masson, F.; Decker, C.; Jaworek, T.; Schwalm, R. Prog. Org. Coat. 2000, 39, (2-4), 115-126.
119.Cook, W. D. Polymer 1992, 33, (10), 2152-2161.
120.Lovell, L. G.; Stansbury, J. W.; Syrpes, D. C.; Bowman, C. N. Macromolecules 1999, 32, (12), 3913-3921.
121.Elliott, J. E.; Lovell, L. G.; Bowman, C. N. Dent. Mater. 2001, 17, (3), 221-229.
122.Young, J. S.; Bowman, C. N. Macromolecules 1999, 32, (19), 6073-6081.
123.Rieumont, J. Acta Polym. 1986, 37, (7), 422-424.
124.Deb, P. C.; Ray, S. Eur. Polym. J. 1978, 14, (8), 607-609.
125.Wen, M.; McCormick, A. V. Macromolecules 2000, 33, (25), 9247-9254.
126.Staudt-Bickel, C.; Koros, W. J. J. Membr. Sci. 1999, 155, (1), 145-154.
127.Chattopadhyay, D. K.; Mishra, A. K.; Sreedhar, B.; Raju, K. V. S. N. Polym. Degrad. Stabil. 2006, 91, (8), 1837-1849.
128.Shipp, D. A. Journal of Macromolecular Science - Polymer Reviews 2005, 45, (2), 171-194.
129.Nesvadba, P.; Bugnon, L.; Sift, R. Polym. Int. 2004, 53, (8), 1066-1070.
130.Georges, M. K.; Veregin, R. P. N.; Kaxmaier, P. M.; Hamer, G. K. Macromolecules 1993, 26, (11), 2987-2988.
131.Davis, K. A.; Matyjaszewski, K. Macromolecules 2000, 33, (11), 4039-4047.
132.Coessens, V.; Pintauer, T.; Matyjaszewski, K., Functional polymers by atom transfer radical polymerization. Progress in Polymer Science 2001; Vol. 26, p 337-377.
133.Wang, J.-S.; Matyjaszewski, K. Macromolecules 1995, 28, (23), 7901-7910.
134.Moad, G.; Rizzardo, E.; Thang, S. H. Aust. J. Chem. 2005, 58, (6), 379-410.
135.Chong, Y. K.; Le, T. P. T.; Moad, G.; Rizzardo, E.; Thang, S. H. Macromolecules 1999, 32, (6), 2071-2074.
136.Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. Macromolecules 1998, 31, (16), 5559-5562.
137.Bian, K.; Cunningham, M. F. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, (1), 414-426.
138.Ananchenko, G. S.; Souaille, M.; Fischer, H.; Le Mercier, C.; Tordo, P. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, (19), 3264-3283.
139.Listigovers, N. A.; Georges, M. K.; Odell, P. G.; Keoshkerian, B. Macromolecules 1996, 29, (27), 8992-8993.
140.Keoshkerian, B.; Georges, M.; Quinlan, M.; Veregin, R.; Goodbrand, B. Macromolecules 1998, 31, (21), 7559-7561.
141.Benoit, D.; Grimaldi, S.; Finet, J. P.; Tordo, P.; Fontanille, M.; Gnanou, Y. American Chemical Society, Polymer Priprints, Division of Polymer Chemistry 1997, 38, 729-730.
142.Georges, M. K.; Lukkarila, J. L.; Szkurhan, A. R. Macromolecules 2004, 37, (4), 1297-1303.
143.Cheng, K.-C.; Chen, J.-J.; Chiu, W.-Y.; Wang, L. Y.; Wang, P.-C. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, (1), 42-49.
144.Ananchenko, G. S.; Fischer, H. J. Polym. Sci., Part A: Polym. Chem. 2001, 39, (20), 3604-3621.
145.Yoshikawa, C.; Goto, A.; Fukuda, T. Macromolecules 2002, 35, (15), 5801-5807.
146.Kruse, T. M.; Souleimonova, R.; Cho, A.; Gray, M. K.; Torkelson, J. M.; Broadbelt, L. J. Macromolecules 2003, 36, (20), 7812-7823.
147.Fukuda, T.; Terauchi, T.; Goto, A.; Ohno, K.; Tsujii, Y.; Miyamoto, T.; Kobatake, S.; Yamada, B. Macromolecules 1996, 29, (20), 6393-6398.
148.Souaille, M.; Fischer, H. Macromolecules 2001, 34, (9), 2830-2838.
149.Moffat, K. A.; Hamer, G. K.; Georges, M. K. Macromolecules 1999, 32, (4), 1004-1012.
150.Gridnev, A. A. Macromolecules 1997, 30, (25), 7651-7654.
151.He, J.; Li, L.; Yang, Y. Macromolecules 2000, 33, (6), 2286-2289.
152.Greszta, D.; Matyjaszewski, K. Macromolecules 1996, 29, (24), 7661-7670.
153.Jousset, S.; Catala, J. M. Macromolecules 2000, 33, (13), 4705-4710.
154.Fischer, H. J. Polym. Sci., Part A: Polym. Chem. 1999, 37, (13), 1885-1901.
155.Goto, A.; Fukuda, T. Macromolecules 1997, 30, (15), 4272-4277.
156.Burguiere, C.; Dourges, M.-A.; Charleux, B.; Vairon, J.-P. Macromolecules 1999, 32, (12), 3883-3890.
157.Marque, S.; Le Mercier, C.; Tordo, P.; Fischer, H. Macromolecules 2000, 33, (12), 4403-4410.
158.Laurence Couvreur, G. P. P. C. M. T. B. C. B. C. J.-P. V. Macromolecular Symposia 2001, 174, (1), 197-208.
159.Fernandez-Garcia, M.; Fernandez-Sanz, M.; Madruga, E. L. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, (1), 130-136.
160.Sciannamea, V.; Bernard, M.; Catala, J.-M.; Jerome, R.; Detrembleur, C. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, (21), 6299-6311.
161.Benoit, D.; Grimaldi, S.; Robin, S.; Finet, J.-P.; Tordo, P.; Gnanou, Y. J. Am. Chem. Soc. 2000, 122, (25), 5929-5939.
162.Busch, M.; Muller, M. Macromolecular Symposia 2004, 206, 399-418.
163.Yin, M.; Wang, Y.; Bauer, I.; Habicher, W. D.; Voit, B. Designed Monomers and Polymers 2005, 8, (3), 211-221.
164.Goto, A.; Fukuda, T. Macromolecules 1999, 32, (3), 618-623.
165.Bian, K.; Cunningham, M. F. Macromolecules 2005, 38, (3), 695-701.
166.Ananchenko, G.; Matyjaszewski, K. Macromolecules 2002, 35, (22), 8323-8329.
167.Remzi Becer, C.; Paulus, R. M.; Hoogenboom, R.; Schubert, U. S. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, (21), 6202-6213.
168.Ohno, K.; Tsujii, Y.; Fukuda, T. Macromolecules 1997, 30, (8), 2503-2506.
169.Goto, A.; Fukuda, T. Macromolecules 1997, 30, (17), 5183-5186.
170.Boutevin, B. a. B., D.a Eur. Polym. J. 1999 35, (5), 815-825
171.Marque, S. J. Org. Chem. 2003, 68, (20), 7582-7590.
172.Marque, S.; Fischer, H.; Baier, E.; Studer, A. J. Org. Chem. 2001, 66, (4), 1146-1156.
173.Moad, G.; Rizzardo, E. Macromolecules 1995, 28, (26), 8722.
174.Beckwith, A. L. J.; Bowry, V. W.; Ingold, K. U. J. Am. Chem. Soc. 1992, 114, (13), 4983.
175.Zhang, M.; Ray, W. H. J. Appl. Polym. Sci. 2002, 86, (7), 1630-1662.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top