跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/24 10:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林均潔
研究生(外文):Chun-Chieh Lin
論文名稱:鋰離子電池多孔性矽負極材料製備與分析
論文名稱(外文):Synthesis and Characterization of Porous Silicon Anode Materials for Lithium-ion Batteries
指導教授:吳乃立
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:99
中文關鍵詞:鋰離子電池多孔結構蝕刻技術孔徑分佈
外文關鍵詞:Lithium-ion batteriessiliconporous structureetching technologypore size distribution
相關次數:
  • 被引用被引用:1
  • 點閱點閱:535
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在過去的十年當中,由於矽相較於石墨而言,具有有絕佳的比電容量(~3500 mAh/g),而受到重視。然而矽在充放電的過程當中,伴隨劇烈的體積膨脹收縮與本身所具有的低導電度特性,使得矽負極材料在商業化應用上受到了阻礙。
本論文之目的在於開發以矽為主體的鋰離子二次電子負極材料。根據前人的研究,我們可以知道矽碳複合材料的應用,可以改善上述矽應用在鋰離子電池所遭遇到的問題。本研究試圖進一步從矽本身作改善為出發點,藉由提高矽的表面積,在材料本身預留孔洞的方式,來緩衝矽在充放電過程時,所造成的體積劇烈變化。
我們應用半導體製成中蝕刻的技術,利用氧化劑以及氫氟酸水溶液來製備多孔矽,實驗結果顯示,此方法確實可以在矽表面上產生許多的孔洞。並且在定電容(1000mAh/g)充放電初步測試中,相較於矽(<8cycles)或碳矽複合材料(~80cycles)所組裝的電池,有碳層匹覆的多孔矽材料具有100圈以上的循環壽命,此結果對於理離子二次電池負極材料的開發,有明顯的進展。
In the last decade, silicon has attracted much attention because it has a high specific capacity (~3600 mAh/g) compared to graphite (372 mAh/g). However, silicon is known for its intrinsic low conductivity while possessing a dramatic volumetric variation during cycling, which results in structural instability and poor cyclability that hinders its commercial application.
The main objective of this research is to explore new materials based on silicon for the lithium-ion battery. According to past investigations, Si-C composite materials are developed to overcome the inherent problems of silicon. But now, intrinsic silicon is further improved, increasing the surface area on the silicon surface. The preset intra-particle voids have been shown to help in accommodating volume expansion arising from the Si.
The preparation of porous silicon applies etching technology used typically in semiconductor manufacturing as well as the use of an oxidizing agent and hydrofluoric acid solution. Results showed that this method produces many pores on the Silicon surface, and gave an outstanding performance of more than 100 cycles without fading under constant capacity (1000mAh/g) charge-discharge. This performance is a significant improvement over intrinsic Silicon and Carbon-coated intrinsic silicon in electrodes which only sustain less than 8 cycles and 80 cycles, respectively.
摘要 I
Abstract II
Table of Contents III
List of Figures V
List of Tables IX
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Introduction to Lithium-ion Batteries 3
2.2 Investigation on Si and Si-C Composite Anode Materials 8
2.3 Electroless Metal Deposition (EMD) on Silicon 16
2.4 Silver particles prepared by chemical reduction 22
Chapter 3 Experimental 25
3.1 Chemicals 25
3.2 Synthesis of Anode Materials 26
3.2-1 Preparation of Silicon Powder 26
3.2-2 Preparation of Porous Silicon Powder 27
3.2-3 Carbon Deposition by Fluidized-bed Chemical Vapor Deposition (FB-CVD) 30
3.3 Analysis and Characterization of Anode Materials 32
3.3-1 Phase Identification 32
3.3-2 Pore Size & Particle Size Distribution 33
3.3-3 Microstructure Characterizations 34
3.3-4 Thermo Gravimetric Analysis 35
3.3-5 Inductively Coupled Plasma Analysis 35
3.4 Electrode and Coin Cell Assembled (dismantlement) 37
3.5 Electrochemical Characterization 41
3.5-1 Charge and Discharge Strategies 41
3.5-2 Cyclic Voltammetry 41
3.6 The Reduction of Silver 43
Chapter 4 Results and Discussion 45
4.1 Physical and Structural Analysis of Pure Silicon 45
4.2 Investigation on Porous Silicon Prepared at 55 ℃ 47
4.2-1 The Porous Silicon with 0.1 M AgNO3 Solution at 55 ℃ 47
4.2-2 The Porous Silicon with 0.06 M AgNO3 Solution at 55 ℃ 56
4.2-3 The Porous Silicon with 0.15 M AgNO3 Solution at 55 ℃ 62
4.3 Investigation on Porous Silicon Prepared at Different Temperature 67
4.3-1 The Porous Silicon Prepared at 25 ℃ 67
4.3-2 The Physical Properties of Porous Si at Different Temperatures 74
4.4 Electrochemical Characterization of Porous Silicon 77
4.4-1 Physical Analysis of Carbon Coated Porous Silicon by Fluidized-bed Chemical Vapor Deposition 77
4.4-2 Electrochemical Analysis 84
4.5 Reduction of Silver 88
Chapter 5 Conclusion 92
References 94
1. J. M. Tarascon and M. Armand, "Issues and challenges facing rechargeable lithium batteries," Nature, 414, 359-367 (2001).
2. K. M. Abraham, D. M. Pasquariello and F. J. Martin, "Mixed Ether Electrolytes for Secondary Lithium Batteries with Improved Low Temperature Performance," Journal of The Electrochemical Society, 133, 661-666 (1986).
3. A. J. Jacobson, R. R. Chianelli and M. S. Whittingham, "Amorphous Molybdenum Disulfide Cathodes," Journal of The Electrochemical Society, 126, 2277-2278 (1979).
4. M. S. Whittingham and M. B. Dines, "n-Butyllithium - An Effective, General Cathode Screening Agent," Journal of The Electrochemical Society, 124, 1387-1388 (1977).
5. E. Peled, "The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems - The Solid Electrolyte Interphase Model," Journal of The Electrochemical Society, 126, 2047-2051 (1979).
6. V. R. Koch, J. L. Goldman, C. J. Mattos and M. Mulvaney, "Specular Lithium Deposits from Lithium Hexafluoroarsenate/Diethyl Ether Electrolytes," Journal of The Electrochemical Society, 129, 1-4 (1982).
7. D. Aurbach, Y. Gofer and J. Langzam, "The Correlation Between Surface Chemistry, Surface Morphology, and Cycling Efficiency of Lithium Electrodes in a Few Polar Aprotic Systems," Journal of The Electrochemical Society, 136, 3198-3205 (1989).
8. M. Lazzari and B. Scrosati, "A Cyclable Lithium Organic Electrolyte Cell Based on Two Intercalation Electrodes," Journal of The Electrochemical Society, 127, 773-774 (1980).
9. E. Plichta, M. Salomon, S. Slane, M. Uchiyama, D. Chua, W. B. Ebner and H. W. Lin, "A rechargeable Li/LixCoO2 Cell," Journal of Power Sources, 21, 25-31 (1987).
10. G. Pistoia, Lithium Batteries, Elsevier, New York (1994).
11. G. A. Nazri and G. Pistoia, "LITHIUM BATTERIES - Science and Technology," Kluwer Academic Publishers, Massachusetts, USA (2004).
12. D. R. Lide, Chemical Rubber Company Handbook of Chemistry and Physics, 77th ed., CRC Press, Florida, USA (1996).
13. C. R. Hubbard and H. E. Swanson, "Silicon Powder Diffraction Standard Reference Material," Journal of Applied Crystallography, 8, 45-48 (1975).
14. W. J. Weydanz, M. Wohlfahrt-Mehrens, R. A. Huggins, "A Room Temperature Study of the Binary Lithium–Silicon and the Ternary Lithium–Chromium–Silicon System for Use in Rechargeable Lithium Batteries," J. Power Sources, 81-82, 237-242. (1999)
15. C. J. Wen and R. A. Huggins, "Chemical diffusion in intermediate phases in the lithium-silicon system," Journal of Solid State Chemistry, 37, 271-278 (1981).
16. Binary Alloy Phase Diagrams, 2nd ed. Plus Updates, Windows version, ASM International, Materials Park, OH (1996)
17. T. D. Hatchard and J. R. Dahn, "In Situ XRD and Electrochemical Study of the Reaciton of Lithium with Amorphous Silicon," J. Electrochem. Soc., 151, A838-A842 (2004)
18. M. N. Obrovac and Leif Christensen, "Structural Changes in Silicon Anodes during Lithium Insertion/Extraction," Electrochem. Solid-State Lett., 7, A93-A96 (2004)
19. T. Umeno and K. Fukuda, T. Tsunawaki, T. Hiruta, Y. Yasumoto, Y. Hara, and O. Matsunaga, "Anode Material for Lithium Secondary Battery, Lithium Secondary Battery Using Said Anode Material, and Method for Charging of Said Secondary Battery," EP Patent 1024544 A2 (2000).
20. T. Umeno, K. Fukuda, H. Wang, N. dimov, T. Iwao, and M. Yoshio, "Novel Anode Material for Lithium-Ion Batteries: Carbon-coated Silicon Prepared by Thermal Vapor Decomposition," Chem. Lett., 11, 1186-1187 (2001).
21. M. Yoshio, H. Wang, K. Fukuda, T. Umeno, N. Dimov and Z. Ogumi, "Carbon-coated Si as a Lithium-Ion Battery Anode Material," J. Electrochem. Soc., 149, A1598-A1603 (2002).
22. N. Dimov, S. Kugino, and M. Yoshio, "Carbon-coated Silicon as Anode Material for Lithium Ion Batteries: Advantages and Limitations," Electrochim. Acta, 48, 1579-1587 (2003).
23. N. Dimov, K. Fukuda, T. Umeno, S. Kugino, and M. Yoshio, "Characterization of Carbon-coated Silicon Structural Evolution and Possible Limitations," J. Power Sources, 114, 88-95 (2003).
24. J. Yang, B. F. Wang, K. Wang, Y. Liu, J. Y. Xie, and Z. S. Wen, "Si/C composites for High Capacity Lithium Storage Materials," Electrochem. Solid-State Lett., 6, A154-A156 (2003).
25. G. X. Wang, J. H. Ann, J. Yao, S. Bewlay, and H. K. Liu, "Nanostructured Si-C Composite Anodes for Lithium-ion Batteries," Electrochem. Commun., 6, 689-692 (2004).
26. X. Yang, Z. Wen, X. Zhu, and S. Huang, "Preparation and Electrochemical Properties of Silicon/Carbon Composite Electrodes," Electrochem. Solid-State Lett., 8, A481-A483 (2005).
27. X. Yang, Z. Wen, X. Xu, B. Lin, and Z. Lin, "High-Performance Silicon/Carbon/ Graphite Composites as Anode Materials for Lithium Ion Batteries," J. Electrochem. Soc., 153, A1341-A1344 (2006).
28. N. Dimov, S. Kugino, and M. Yoshio, "Mixed silicon–graphite composites as anode material for lithim ion batteries Influence of Preparation conditions on the properties of the material," J. Power Sources, 136, 108-114 (2004).
29. M. Yoshio, T. Tsumura, and N. Dimov, "Electrochemical behaviors of silicon based anode material," J. Power Sources, 146, 10-14 (2005).
30. M. Yoshio, T. Tsumura, and N. Dimov, "Electrochemical behaviors of silicon based anode material," J. Power Sources, 153, 357-379 (2006).
31. J. H. Ryu, J. W. Kim, Y. E. Sung and S. M. Oh, "Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries," Electrochemical and Solid-State Letters, 7, A306-A309 (2004).
32. W. R. Liu, Z. Z. Guo, W. S. Young, D. T. Shieh, H. C. Wu, M. H. Yang and N. L. Wu, "Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive," Journal of Power Sources, 140, 139-144 (2005).
33. W. R. Liu, M. H. Yang, H. C. Wu, S. M. Chiao and N. L. Wu, "Enhanced Cycle Life of Si Anode for Li-Ion Batteries by Using Modified Elastomeric Binder," Electrochemical and Solid-State Letters, 8, A100-A103 (2005).
34. J. Li, R. B. Lewis and J. R. Dahn, "Sodium Carboxymethyl Cellulose," Electrochemical and Solid-State Letters, 10, A17-A20 (2007).
35. K. Q. Peng, Y. J. Yan, S. P. Gao and Z. Jing, "Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry," Advance Materials, 14, 1164-1167 (2002).
36. K. Q. Peng and Z. Jing, "Morphological selection of electroless metal deposits on silicon in aqueous fluoride solution," Electrochimica Acta, 49, 2563-2568 (2004)
37. K. Q. Peng and Z. Jing, "Simultaneous gold deposition and formation of silicon nanowire arrays," Journal of Electroanalytical Chemistry, 558, 35-39 (2003)
38. X. W. Du, Y. W. Lu, S. A. Kulinich, J. Sun and P. Yao, "Microporous silicon connected with silicon wires," Semiconductor Science and Technology, 21, 498-500 (2006)
39. K. Q. Peng, Y. J. Yan, S. P. Gao and Z. Jing, "Dendrite-assisted growth of silicon nanowires in electroless metal deposition," Advanced Functional Materials, 13, 127-132 (2003)
40. K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, et al. , "Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles," Advanced Functional Materials, 16, 387-394 (2006)
41. T. Qiu, X. L. Wu, Y. F. Mei, G. J. Wan and P. K. Chu, "From Si nanotubes to nanowires: Synthesis, characterization, and self-assembly," Journal of Crystal Growth, 277, 143-148 (2005)
42. H. Fang, Y. Wu, J. Zhao and J. Zhu, "Silver catalysis in the fabrication of silicon nanowire arrays," Nanotechnology, 17, 3768-3774 (2006)
43. C. Y. Ren, "Preparation and Characterization of nanosized ultrafine metal particles", Master Thesis of National Tsing Hua University (1999)
44. S. H. Chang, "Study on Chemical Synthesis and Application of Nanosized Silver Particles," Master Thesis of National Tsing Hua University (2002)
45. H. H. Nersisyan, J. H. Lee, H. T. Son, C. W. Won and D. Y. Maeng, "A new and effective chemical reduction method for preparation of nanosized silver powder and colloid dispersion," Materials Research Bulletin, 38, 949–956 (2003)
46. Y. C. Lu, "Study on Chemical Synthesis of Nanosized Silver by Dextrose Reduction and Its Reaction Kinetics," Master Thesis of National Tsing Hua University (2005)
47. A. Y. Wo, "Preparation and characterization of Ag-Cu bimetallic nanoparticles by chemical reduction method," Master Thesis of National Tsing Hua University (2006)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊