跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.88) 您好!臺灣時間:2024/12/04 14:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李承道
研究生(外文):Cheng-Tao Lee
論文名稱:氧化錫螢光材料之製備與特性分析
論文名稱(外文):Preparation and Characterization of Tin Oxide Phosphors
指導教授:呂宗昕
指導教授(外文):Chung-Hsin Lu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:76
中文關鍵詞:氧化錫螢光粉微波水熱
外文關鍵詞:tin oxidephosphormicrowave-hydrothermal
相關次數:
  • 被引用被引用:0
  • 點閱點閱:275
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要

本研究成功利用微波水熱法製備氧化錫(SnO2)之螢光材料,並調整各種實驗參數來觀察其對螢光粉體所造成之影響。在本論文第一部份中,使用釤(Sm3+)作為激發中心並以微波水熱法合成出球形之螢光粉體。所得之前驅物經過煆燒後進行粉體型態與光譜之分析。在波長318 nm處觀察到一個由主體產生之寬廣吸收峰;而560-700 nm的放射峰則屬於釤離子之f-f能量傳遞。實驗中調整釤離子濃度,發現其發光強度隨著釤濃度上升而增加,但超過一定值後會因為雜項生成而降低發光強度。另外當使用之微波瓦數升高時,尿素分解速率增加導致成核數目上升,因此粉體粒徑減小;而螢光強度也會因表面缺陷增加而隨之下降。
在本研究的第二部分使用微波水熱法製備銪離子摻雜之氧化錫螢光粉體。首先探討使用不同溶劑對於粉體之型態及螢光強度所形成之影響,發現以乙醇為溶劑可合成出球型粉體,使用水或是混合溶劑所合成的粉體則成不規則狀。由於圓形粉體具有較低之光散射性,因此發光強度較高。氧化錫放射的橘紅色螢光,主要由銪離子價電子經過5Do-7F1之能傳遞造成。在本實驗中亦調整尿素濃度,發現當濃度增加時,由於溶液之pH值上升,因此銪離子可以較完整的沉澱,使發光強度提升。
Spherical Sn1-xO2: Sm phosphors were successfully synthesized via a microwave-assisted solvothermal route. A broad excitation band ascribed to the host absorption was observed at 318 nm. The prepared phosphors had several emission peaks at 560-700 nm assigned to f-f transition of Sm3+. The emission intensity of Sn1-xO2: Sm phosphors was increased with increasing the concentration of Sm3+ up to x = 0.9%. When the concentration of Sm3+ was further increased, the emission intensity was reduced due to the formation of an impurity phase. As the power of microwave increased, the particle size was reduced because of the increase in the number of nuclei. The luminescence intensity of the phosphors was slightly decreased with increasing the applied power due to an increase in surface defects.
SnO2: Eu3+ phosphors were successfully synthesized via a microwave -assisted solvothermal route. The solvents used were found to have significant effects on the morphology and the luminescent properties of the obtained phosphors. Using ethanol as a solvent resulted in the formation of spherical phosphors with enhanced luminescent intensity. SnO2: Eu3+ phosphors exhibited a reddish-orange emission under excitation at 314 nm, and displayed a broad excitation band in the range of 240-370 nm due to the host absorption. In the microwave irradiation process, increasing the concentration of urea resulted in complete precipitation of Eu3+ ions, thereby enhancing the luminescent intensity.
摘要 I
Abstract II
Contents IV
List of Figures VI
List of Tables VIII
Chapter 1 Introduction 1
1.1 Luminescent Materials 1
1.1.1 Classification of luminescence 1
1.1.2 Mechanisms of luminescence 2
1.1.3 Application of Phosphors 4
1.2 Luminescent Theory 4
1.2.1 Spin-Orbit Coupling and j-j Coupling 5
1.2.2 Radiative and Non-radiative Transitions 6
1.2.3 Hund’s Rules and Selection Rules 7
1.2.4 The Rare Earth Ions 9
1.3 Introduction to Microwave-assisted Route 10
1.3.1 Heating Mechanism of Microwave-assisted Route 11
1.4 Introduction to Tin Oxide 12
1.4.1 Structure of Tin Oxide 12
1.4.2 Method for Synthesizing Tin Oxide 13
1.4.3 Luminescent properties of Tin Oxide 15
1.5 Research Objective 16
Chapter 2 Investigation on Luminescence Properties of Sn1-xO2: Sm Phosphors 27
2.1 Experimental 27
2.1.1 Synthesis of Sn1-xO2: Sm Phosphors via a Microwave -assisted Solvothermal Route 27
2.1.2 Characterization of phosphors 28
2.2 Results and Discussions 29
2.2.1 Effects of the Sm3+ concentration on the microstructures of 29
Sn1-xO2: Sm phosphors 29
2.2.2 Effects of Sm3+ concentration on the photoluminescence properties of Sn1-xO2: Sm phosphors 31
2.2.3 Effects of the power of microwave irradiation on the microstructures and luminescent intensity of Sn1-xO2: Sm phosphors 33
Chapter 3 Investigation on Luminescence Properties of SnO2: Eu3+ Phosphors 49
3.1 Experimental 49
3.1.1 Synthesis of SnO2: Eu3+ phosphors via a microwave-assisted solvothermal route 49
3.1.2 Characterization of phosphors 50
3.2 Results and Discussion 51
3.2.1 Effects of the solvent on the microstructures of SnO2: Eu3+ phosphors 51
3.2.2 Effects of solvents on the photoluminescence properties of 55
SnO2: Eu3+ phosphors 55
3.2.3 Effects of the concentration of urea on SnO2: Eu3+ phosphors 57
Chapter 4 Conclusions 73
References 75
[1] G. Blasse, Luminescence Materials, ed. B. C. Grabmaire. Springer, Berlin, 1994.
[2] N. D. Abazovic, M. I. Comor, Opt. Mater., 30 (2008) 1139-1144.
[3] Y. Du, M. S. Zhang, J. Hong, Appl. Phys. A-Mater., 76 (2003) 171-176.
[4] T. Gao, T. H. Wang, Mater. Res. Bull., 43 (2008) 836-842.
[5] B. G. Yacobi, Cathodoluminescence Microscopy of Inorganic Solids, ed. D. B. Holt. Spiringer, New York (1990).
[6] S. Shionoya, Phosphor Handbook, ed. W. M. Yen, CRC Press, Washiongton D.C. (1998).
[7] Gary L. Miessler, Inorganic Chemistry, ed. Donald A. Tarr. Prentice-Hall, New Jersey (1994).
[8] G. Herzberg, Atomic Spectra and Atomic Structure, ed. J. W. Tranter Spinks. Dover, New York (1944).
[9] C. H. Lu, C. H. Wu, R. B. Kale, J. Hazard. Mater., 154 (2008) 649-654.
[10] Y. Wan, J. Y. Lee, J. Power Sources, 144 (2005) 220-225.
[11] C. H. Lu, C. H. Yeh, Mater. Lett., 33 (1997) 129-132.
[12] K. S. Tun, M. Gupta, Compos. Sci. Technol., 67 (2007) 2657-2664.
[13] S. Nakata, Sensor Actuat. B-Chem., 8 (1992) 187-189.
[14] W. M. Cranton, S. L. Wilson, Thin Solid Films, 515 (2007) 8534-8538.
[15] D. Maestre, A. Cremades, J. Appl. Phys., 103 (2008) 093531.
[16] A. Aoki and H. Sasakura, Jpn.J. Appl. Phys., 582 (1970) 1085-1090.
[17] L. Vayssieres, M. Graetzel, Angew. Chem., 116 (2004) 3752-3756.
[18] C. J. Martinez, B. Hockey, C. B. Montgomery, Langmuir, 21 (2005) 7937-7943.
[19] K. Y. Kim, S. B. Park, Mater. Chem. Phys., 86 (2004) 210-221.
[20] Z. Q. He, L. Z. Xiong, J. Cent. South. Univ. T., 15 (2008) 214-217.
[21] E. Michel, J. Colloid Interf. Sci., 257 (2003) 258-262.
[22] W. S. Dong, M. Y. Li, J. Colloid Interf. Sci., 319 (2008) 115-122.
[23] S. Y. Li, G. Ni, Synth. React Inorg. M. 9 (2005) 669-676.
[24] S. Das, S. Kar, J. Appl. Phys., 99 (2006) 114303-1-7.
[25] D. F. Crabtree, Ibid., 7 (1974) L17-L21.
[26] D. F. Crabtree, Ibid., 7 (1974) L22-L26.
[27] S. W. Kang, J. S. Yoo, J. Electrochem. Soc., 145 (1998) 648-651.
[28] T. Matsuoka, Y. Kasahar, J. Electrochem. Soc., 125 (1978) 102-106.
[29] X. Y. Fu, S. Y. Niu, H. W. Zhang, J. Lumin., 115 (2005) 7-12.
[30] X. Y. Fu, S. Y. Niu, H. W. Zhang, Mat. Sci. Eng. B-Solid 123 (2005) 45-49.
[31] J. T. Chen, J. Wang, F. Zhang, D. Yan, J. Phys. D: Appl. Phys. 41 (2008) 105306-1-5.
[32] E. A. Morais, LVA. Scalvi, A. Tabata, J. Mater. Sci. 43 (2008) 345-349.
[33] J. T. Chen, J. Wang, F. Zhang, D. Yan, J. Phys. D: Appl. Phys. 41 (2008) 105306-1-5.
[34] H. S. Roh, Y. C. Kang, C. H. Lee, H. D. Park, S. B. Park, Jpn. J. Appl. Phys., 42 (2003) 3429-3433.
[35] Z. G. Lu, Y. G. Tang, L. M. Chen, Y. D. Li, J. Cryst. Growth, 266 (2004) 539-544.
[36] L. Z. Yang, X. B. Yu, S. P. Yang, C. L. Zhou, Mater. Lett., 62 (2008) 907-910.
[37] C. H. Lu, W. T. Hsu, C. H. Hsu, H. C. Lu, B. M. Cheng, J. Alloy. Compd., 456 (2008) 57-63.
[38] J. X. Wan, Z. H. Wang, X. Y. Chen, J. Cryst. Growth, 284 (2005) 538-543.
[39] K. K. Lee, Y. C. Kang, K. Y. Jung, Electrochem. Solid State Lett., 5 (2002) H31-H34.
[40] H. L. Zhu, D. Yang, G. X. Yu, Nanotechnology, 17 (2006) 2386-2389.
[41] L. Y. Hu, H. W. Song, G. H. Pan, B. Yan, J. Lumin., 127 (2007) 371-376.
[42] S. Yin, S. Akita, M. Shinozaki, R. X. Li, T. Sato, J. Mater. Sci. 43 (2008) 2234-2239.
[43] S. Yin, S. Uchida, Y. Fujishiro, M. Aki, T. Sato, J. Mater. Chem. 9 (1999) 1191-1195.
[44] H. S. Yoo, H. S. Jang, W. B. Im, J. Matert. Res. 22 (2007) 2017-2024.
[45] A. Nayak, R. Sahoo, R. Debnath, J. Matert. Res. 22 (2007) 35-39.
[46] C. J. Brinker, The physical and chemistry of sol-gel processing. Sol-Gel Science, 1990.
[47] Z. G. Lu, Y. G. Tang, L. M. Chen, Y. D. Li, J. Cryst. Growth 266 (2004) 539-544.
[48] G. H. Lee, S. H. Kang, J. Electrochem. Soc. 153 (2006) H105-H109.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top