跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/15 05:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:余立偉
研究生(外文):Li-Wei Yu
論文名稱:帶電高分子通過微孔洞行為之研究
論文名稱(外文):Electrophoresis of a Charged Polymer in a Nanopore
指導教授:諶玉真
指導教授(外文):Yu-Jane Sheng
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:57
中文關鍵詞:微孔洞帶電高分子電泳
外文關鍵詞:nanoporecharged polymerelectrophoresis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:326
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本文的研究中我們利用了布朗動力學(Brownian Dynamics)法來模擬帶電高分子的電泳運動行為,其研究方向主要分為兩個部分:第一部分是利用DNA在具有孔洞且加入鹽類離子水溶液的系統,在施加電場進行電泳時,DNA在通過孔洞的過程中會阻礙鹽類離子的移動,藉由偵測阻礙電流的方式,來分析DNA的結構與長度;第二部分則是模擬帶電高分子在油滴底下窄通道內的運動行為,藉由模擬的方法來解釋實驗中所觀察到的現象。
我們在第一部分的研究當中,針對不同的帶電高分子的結構、長度以及鹽類離子濃度模擬,從模擬的結果發現上述這三個因素會明顯的影響到阻礙電流以及阻礙時間。在固定長度的情況下,圈狀的帶電高分子阻礙電流會大於線性高分子,且長度越長的帶電高分子的阻礙時間也會隨之增加,除此之外鹽類離子濃度增加,阻礙電流明顯加大;第二部分我們模擬油滴下方帶電高分子的運動情形,在模擬過程中我們發現在電場梯度大的時候,長、短鏈段的帶電高分子皆易被拉伸,但隨著電場梯度降低,短鏈段的帶電高分子由於電場作用力變小的關係,亂度的重要性增加,故不會呈現被拉伸的狀態。而較長鏈段的帶電高分子由於電場的作用大於亂度的效應,故會較易被拉伸。不同長度的帶電高分子具有不同的臨界電場梯度,也符合實驗中所觀察到的現象。
在這一系列的研究中我們利用布朗動力學法,可以確切的觀察帶電高分子的長度、形狀以及鹽類離子濃度對阻礙電流的影響,並藉由觀察帶電高分子實際運動的軌跡以及如何阻礙鹽類離子的移動,除了和實驗的文獻比對外並可以提出實驗所觀察不到的現象。而另一部分模擬帶電高分子在油滴底下運動的情形,我們提出了電場梯度的概念,也成功地解釋了實驗所作出的現象。
A DNA molecule’s conformation and configuration as well as its number of bases and sequence are important characteristics that affects its functional properties. A simple method that can simultaneously determine DNA conformation and base number would be advantageous. Fologea and his coworkers proposed a method in which a nucleic acid polymer translocates through a pore in a voltage biased silicon nitride membrane. The ionic conductivity is partially blocked. Analyses of blockage amplitudes and blockage durations can reveal information about polymer length and conformation.
In this work, Brown Dynamics was used to study the behavior of polyelectrolytes electrophoresed through a nanopore. It was found that the measured time integral of blocked ionic current, also known as the event-charge-deficit, ecd, for each translocation event was the same regardless of whether the molecules were in a linear or circular form. However, when polyelectrolytes containing different number of monomers were electrophoresed through a nanopore, the ecd depended strongly on the total length. Simulation results also showed that the magnitude of the current blockages was strongly affected by a molecule’s form. Circular polyelectrolytes blocked more ionic currents than linear ones did. Yet, the blockage duration times of circular polyelectrolytes were consistently shorter than those of the linear ones with identical chain length. Our simulation confirmed that it is possible to simultaneously determine both DNA conformation and base number by using a single nanopore assay.
致謝 I
摘要 II
Abstract III
目錄 IV
第一章 緒論 1
1.1研究動機 1
1.2文獻回顧 3
1.3 DNA結構與帶電原理 9
1.4 電泳機制與電泳率 11
第二章 實驗方法 13
2.1 分子模擬 13
2.2 初始位置 15
2.3 能量模型 17
2.4 布朗動力學簡介(Brownian Dynamics,BD) 20
2.5 布朗動力學原理 21
第三章 帶電高分子通過奈米孔洞之研究 25
3.1 阻礙電流之影響 25
3.2模擬設定 26
3.3結果與討論 28
3.3.1 不同長度的線性帶電高分子 30
3.3.2 不同形狀 37
3.3.3濃度效應 43
第四章 帶電高分子在油滴下方之薄膜內運動之研究 46
4.1 油滴實驗現象 46
4.2 模擬設定 47
4.3 結果與討論 47
第五章 結論 53
參考文獻 55
[1]F. Collins and D. Galas, "A NEW 5-YEAR PLAN FOR THE UNITED-STATES HUMAN GENOME PROJECT," Science, vol. 262, pp. 43-46, Oct 1993.
[2]F. Sanger and A. R. Coulson, "A RAPID METHOD FOR DETERMINING SEQUENCES IN DNA BY PRIMED SYNTHESIS WITH DNA POLYMERASE," in Brenner, S. Molecular Biology: A Selection of Papers. Ix+622p. Harcourt Brace Jovanovich Ltd.: London, England, Uk; Academic Press: San Diego, California, USA. Illus. Paper, 1989, pp. 595-604.
[3]F. Sanger, S. Nicklen, and A. R. Coulson, "DNA SEQUENCING WITH CHAIN-TERMINATING INHIBITORS," Proceedings of the National Academy of Sciences of the United States of America, vol. 74, pp. 5463-5467, 1977.
[4]A. Tiselius, "A new apparatus for electrophoretic analysis of colloidal mixtures," Transactions of the Faraday Society, vol. 33, pp. 0524-0530, 1937.
[5]S. Raymond and L. Weintraub, "ACRYLAMIDE GEL AS A SUPPORTING MEDIUM FOR ZONE ELECTROPHORESIS," Science, vol. 130, pp. 711-711, 1959.
[6]S. Hjerten, "ZONE ELECTROPHORESIS IN COLUMNS OF AGAROSE SUSPENSIONS," Journal of Chromatography, vol. 12, pp. 510-&, 1963.
[7]R. Virtanen, "ZONE ELECTROPHORESIS IN A NARROW-BORE TUBE EMPLOYING POTENTIOMETRIC DETECTION - THEORETICAL AND EXPERIMENTAL STUDY," Acta Polytechnica Scandinavica-Chemical Technology Series, pp. 1-67, 1974.
[8]J. W. Jorgenson and K. D. Lukacs, "HIGH-RESOLUTION SEPARATIONS BASED ON ELECTROPHORESIS AND ELECTROOSMOSIS," Journal of Chromatography, vol. 218, pp. 209-216, 1981.
[9]J. W. Jorgenson and K. D. Lukacs, "ZONE ELECTROPHORESIS IN OPEN-TUBULAR GLASS-CAPILLARIES," Analytical Chemistry, vol. 53, pp. 1298-1302, 1981.
[10]A. S. Cohen and B. L. Karger, "HIGH-PERFORMANCE SODIUM DODECYL-SULFATE POLYACRYLAMIDE-GEL CAPILLARY ELECTROPHORESIS OF PEPTIDES AND PROTEINS," Journal of Chromatography, vol. 397, pp. 409-417, Jun 1987.
[11]A. S. Cohen, A. Paulus, and B. L. Karger, "HIGH-PERFORMANCE CAPILLARY ELECTROPHORESIS USING OPEN TUBES AND GELS," Chromatographia, vol. 24, pp. 15-24, 1987.
[12]J. Han and H. G. Craighead, "Separation of long DNA molecules in a microfabricated entropic trap array," Science, vol. 288, pp. 1026-1029, May 2000.
[13]J. Han, S. W. Turner, and H. G. Craighead, "Entropic trapping and escape of long DNA molecules at submicron size constriction (vol 83, pg 1688, 1999)," Physical Review Letters, vol. 86, pp. 1394-1394, Feb 2001.
[14]A. J. Storm, J. H. Chen, H. W. Zandbergen, and C. Dekker, "Translocation of double-strand DNA through a silicon oxide nanopore," Physical Review E, vol. 71, May 2005.
[15]D. Fologea, E. Brandin, J. Uplinger, D. Branton, and J. Li, "DNA conformation and base number simultaneously determined in a nanopore," Electrophoresis, vol. 28, pp. 3186-3192, Sep 2007.
[16]D. Fologea, M. Gershow, B. Ledden, D. S. McNabb, J. A. Golovchenko, and J. L. Li, "Detecting single stranded DNA with a solid state nanopore," Nano Letters, vol. 5, pp. 1905-1909, Oct 2005.
[17]D. Fologea, J. Uplinger, B. Thomas, D. S. McNabb, and J. L. Li, "Slowing DNA translocation in a solid-state nanopore," Nano Letters, vol. 5, pp. 1734-1737, Sep 2005.
[18]J. D. Watson and F. H. C. Crick, "THE STRUCTURE OF DNA," Cold Spring Harbor Symposia on Quantitative Biology, vol. 18, pp. 123-131, 1953.
[19]D. J. T. M. P. Allen, Computer simulation of liquids: Oxford University Press, 1987.
[20]D. L. Ermak, "COMPUTER-SIMULATION OF CHARGED-PARTICLES IN SOLUTION .2. POLYION DIFFUSION-COEFFICIENT," Journal of Chemical Physics, vol. 62, pp. 4197-4203, 1975.
[21]D. L. Ermak, "COMPUTER-SIMULATION OF CHARGED-PARTICLES IN SOLUTION .1. TECHNIQUE AND EQUILIBRIUM PROPERTIES," Journal of Chemical Physics, vol. 62, pp. 4189-4196, 1975.
[22]王子瑜 and 曹恆光, "布朗運動、朗之萬方程式、與布朗動力學," 物理雙月刊, vol. 27, pp. 456-460, 2005.
[23]J. L. Li, M. Gershow, D. Stein, E. Brandin, and J. A. Golovchenko, "DNA molecules and configurations in a solid-state nanopore microscope," Nature Materials, vol. 2, pp. 611-615, Sep 2003.
[24]R. Hogg, T. W. Healy, and Fuersten.Dw, "MUTUAL COAGULATION OF COLLOIDAL DISPERSIONS," Transactions of the Faraday Society, vol. 62, pp. 1638-&, 1966.
[25]M. Streek, F. Schmid, T. T. Duong, and A. Ros, "Mechanisms of DNA separation in entropic trap arrays: a Brownian dynamics simulation," Journal of Biotechnology, vol. 112, pp. 79-89, Aug 2004.
[26]N. Laachi, C. Declet, C. Matson, and K. D. Dorfman, "Nonequilibrium transport of rigid macromolecules in periodically constricted geometries," Physical Review Letters, vol. 98, Mar 2007.
[27]E. Yariv and H. Brenner, "Near-contact electrophoretic motion of a sphere parallel to a planar wall," Journal of Fluid Mechanics, vol. 484, pp. 85-111, Jun 2003.
[28]H. J. Keh and J. L. Anderson, "BOUNDARY EFFECTS ON ELECTROPHORETIC MOTION OF COLLOIDAL SPHERES," Journal of Fluid Mechanics, vol. 153, pp. 417-439, 1985.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top