跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/12 03:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林鈺霖
研究生(外文):Yu-Lin Lin
論文名稱:新型多孔性幾丁聚醣微粒製備法
論文名稱(外文):A Novel Method for the Preparation of Porous Chitosan Microparticles
指導教授:謝學真
指導教授(外文):Hsyue-Jen Hsieh
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:155
中文關鍵詞:幾丁聚醣微粒多孔性材料牛血清白蛋白槲皮素吸附
外文關鍵詞:ChitosanMicroparticlesPorous materialsBovine serum albuminQuercetinAdsorption
相關次數:
  • 被引用被引用:1
  • 點閱點閱:272
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究建立一種新型多孔性幾丁聚醣微粒之製程,並將製成之微粒用於負載牛血清白蛋白(bovine serum albumin,簡稱BSA)與槲皮素(quercetin),最後將其負載能力與先前研究之結果相互比較。
本研究所製成之微粒依製程參數不同,其平均粒徑大小約為350 ~ 70 μm,且粒徑分佈在粒徑大時較為集中(變異係數(C.V.)值約為26.45 %),而在粒徑小時則較為寬廣(C.V.為53.89 %)。關於微粒吸附特性之探討,在相同BSA初始吸附濃度(3 mg/mL)時,本法所製成微粒之吸附量約為400 ~ 500 mg / g chitosan,約為本研究室先前研究所製成微粒吸附量之2 ~ 3倍。在槲皮素初始吸附濃度為10 μg/mL時,微粒之吸附量約為先前研究在相同初始吸附濃度下的10倍,而達平衡吸附量之90 % 時的平均吸附速率亦為先前研究之3 ~ 4倍。
本研究開發了在無添加任何界面活性劑之情況下,製備出球型多孔性幾丁聚醣微粒之技術。在微粒之吸附能力上,因其多孔結構之特性,亦有相當程度之提升。
In this research, a novel method for the preparation of porous chitosan microparticles was developed and the produced microparticles were used in the BSA and quercetin isothermal adsorption, and the results were compared with previous data.
In this study, the mean sizes of the microparticles were around 350 to 70 μm under different operation conditions, and the size distribution was concentrated (coefficient of variance (C.V.) = 26.45 %) for particles with large mean diameters, broad (C.V. = 53.89 %) for small particles. At the same initial concentration (3 mg/mL) of BSA, the amount of BSA adsorbed on the microparticles produced in this study was about 400 ~ 500 mg BSA/g chitosan, which was 2 to 3 times the data of the previous research in our lab. The amount of the quercetin adsorbed on the microparticles was about 10 times the data of the previous research and the average adsorption rate was also enhanced 3 to 4 times.
In this study, the spherical porous chitosan microparticles were successfully prepared without adding any surfactant. Also, the adsorption capability ability of the microparticles was improved due to the porous structure.
目錄
誌謝 I
中文摘要 III
Abstract V
目錄 VII
圖目錄 IX
表目錄 XVII
縮寫與符號說明 XIX
中英對照表 XXII
1. 緒論 1
1.1. 研究背景 1
1.2. 研究構想 3
2. 文獻回顧 7
2.1. 幾丁聚醣 7
2.2. 微粒的製備與應用 11
2.3. 多孔性幾丁聚醣基材之製備 30
2.4. 影響多孔性幾丁聚醣微粒形態的因素 32
3. 實驗藥品、儀器及方法 47
3.1. 實驗藥品 47
3.2. 實驗儀器 47
3.3. 實驗方法 50
4. 結果與討論 63
4.1. 各製程條件對微粒之影響 63
4.2. 微粒的產量 123
4.3. FTIR檢測 131
4.4. 多孔性幾丁聚醣微粒之應用 132
4.5. 多孔性幾丁聚醣微粒之牛血清白蛋白負載量 132
4.6. 多孔性幾丁聚醣微粒之槲皮素負載量 137
5. 結論 143
5.1. 結論 143
5.2. 未來研究方向 145
參考文獻 147


參考文獻
1.Rhoades, J., and Roller, S. (2000). Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods. Applied and Environmental Microbiology 66, 80-86.
2.Lee, K.Y., Ha, W.S., and Park, W.H. (1995). Blood Compatibility and Biodegradability of Partially N-Acylated Chitosan Derivatives. Biomaterials 16, 1211-1216.
3.Agnihotri, S.A., and Aminabhavi, T.M. (2004). Controlled release of clozapine through chitosan microparticles prepared by a novel method. Journal of Controlled Release 96, 245-259.
4.Sajeesh, S., and Sharma, C.P. (2006). Novel pH responsive polymethacrylic acid-chitosan-polyethylene glycol nanoparticles for oral peptide delivery. Journal of Biomedical Materials Research Part B-Applied Biomaterials 76B, 298-305.
5.Chen, X.G., Liu, C.S., Liu, C.G., Meng, X.H., Lee, C.M., and Park, H.J. (2006). Preparation and biocompatibility of chitosan microcarriers as biomaterial. Biochemical Engineering Journal 27, 269-274.
6.Kim, S.S., Gwak, S.J., Choi, C.Y., and Kim, B.S. (2005). Skin regeneration using keratinocytes and dermal fibroblasts cultured on biodegradable microspherical polymer scaffolds. Journal of Biomedical Materials Research Part B-Applied Biomaterials 75B, 369-377.
7.Liu, H., Mao, J., Yao, K., Yang, G., Cui, L., and Cao, Y. (2004). A study on a chitosan-gelatin-hyaluronic acid scaffold as artificial skin in vitro and its tissue engineering applications. Journal of Biomaterials Science, Polymer Edition 15, 25-40.
8.Kester, J.J., and Fennema, O.R. (1986). Edible Films and Coatings - a Review. Food Technology 44, 47-59.
9.Celik, O., and Akbuga, J. (2007). Preparation of superoxide dismutase loaded chitosan microspheres: characterization and release studies. European Journal of Pharmaceutics and Biopharmaceutics 66, 42-47.
10.Li, X.Y., Jin, L.J., McAllister, T.A., Stanford, K., Xu, J.Y., Lu, Y.N., Zhen, Y.H., Sun, Y.X., and Xu, Y.P. (2007). Chitosan-alginate microcapsules for oral delivery of egg yolk immunoglobulin (IgY). Journal of Agriculture and Food Chemistry 55, 2911-2917.
11.Ho, M.H., Kuo, P.Y., Hsieh, H.J., Hsien, T.Y., Hou, L.T., Lai, J.Y., and Wang, D.M. (2004). Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials 25, 129-138.
12.何明樺 (2005). 藉由胜肽接枝製備具細胞專一性之骨再生基材, 國立台灣大學化學工程研究所博士論文.
13.謝玠揚 (2005). 聚麩胺酸及幾丁聚醣複合生醫基材之製程探討、性質改良及制放應用, 國立台灣大學化學工程研究所博士論文.
14.洪偉翔 (2007). 多孔性幾丁聚醣微粒製備、分析及應用, 國立台灣大學化學工程研究所碩士論文.
15.謝承軒 (2006). 以乳化/冷凍凝膠法製備幾丁聚醣微粒及其特性分析與應用, 國立台灣大學化學工程研究所碩士論文.
16.Fu, Y.J., Mi, F.L., Wong, T.B., and Shyu, S.S. (2001). Characteristic and controlled release of anticancer drug loaded poly (D,L-lactide) microparticles prepared by spray drying technique. Journal of Microencapsulation 18, 733-747.
17.Snyder, H.E.; Senser, D.W.; Lefebvre, A.H.; Coutinho, R.S. (1989). Drop size measurements in electrostatic paint sprays. IEEE Transactions on Industry Applications 25, 720-727.
18.Lu, G.Y., Zhu, L.,Kong, L.J.,Zhang, L.,Gong, Y.D.,Zhao, N.M.,Zhang, X.F. (2006). Porous Chitosan Microcarriers for Large Scale Cultivation of Cells for Tissue Engineering: Fabrication and Evaluation. Tsinghua, Science and Technology 11, 427-432.
19.Petersen, F.J., Worts, O., Schaefer, T., and Sojka, P.E. (2004). Design and atomization properties for an inside-out type effervescent atomizer. Drug Development and Industrial Pharmacy 30, 319-326.
20.Yong-qing Xia, Mou-dao Song, Bang-hua Zhang, and Zhang, B.-l. (2006). Selective separation of quercetin by molecular imprinting using chitosan beads as functional matrix. Reactive & Functional Polymers 66, 1734–1740.
21.Yuying Zhang, Y.Y., Kai Tang, Xing Hu, Guolin Zou (2007). Physicochemical Characterization and Antioxidant Activity of Quercetin-Loaded Chitosan Nanoparticles. Journal of Applied Polymer Science 107, 891-897.
22.Casagrande, R., Georgetti, S.R., Verri, W.A., Jr., Borin, M.F., Lopez, R.F., and Fonseca, M.J. (2007). In vitro evaluation of quercetin cutaneous absorption from topical formulations and its functional stability by antioxidant activity. International Journal of Pharmaceutics 328, 183-190.
23.Madihally, S.V., and Matthew, H.W. (1999). Porous chitosan scaffolds for tissue engineering. Biomaterials 20, 1133-1142.
24.Kurkuri, M.D., Kulkarni, A.R., and Aminabhavi, T.M. (2002). Some physicochemical measurements of chitosan polymer in acetic acid-water mixtures at different temperatures. Journal of Applied Polymer Science 86, 526-529.
25.Illum, L. (1998). Chitosan and its use as a pharmaceutical excipient. Pharmaceutical Research 15, 1326-1331.
26.Amass, W., Amass, A., and Tighe, B. (1998). A review of biodegradable polymers: Uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polymer International 47, 89-144.
27.Kumar, M.N.V.R. (2000). A review of chitin and chitosan applications. Reactive & Functional Polymers 46, 1-27.
28.Sahoo, S.K., Panda, A.K., and Labhasetwar, V. (2005). Characterization of porous PLGA/PLA microparticles as a scaffold for three dimensional growth of breast cancer cells. Biomacromolecules 6, 1132-1139.
29.Ruardy, T.G., Schakenraad, J.M., vanderMei, H.C., and Busscher, H.J. (1997). Preparation and characterization of chemical gradient surfaces and their application for the study of cellular interaction phenomena. Surface Science Reports 29, 3-30.
30.蔡睿逸 (2005). 以醣類分子修飾幾丁聚醣生醫材料對其細胞相容性之影響, 國立台灣大學化學工程研究所碩士論文.
31.Sashiwa, H., Kawasaki, N., Nakayama, A., Muraki, E., Yajima, H., Yamamori, N., Ichinose, Y., Sunamoto, J., and Aiba, S. (2003). Chemical modification of chitosan. Part 15: synthesis of novel chitosan derivatives by substitution of hydrophilic amine using N-carboxyethylchitosan ethyl ester as an intermediate. Carbohydrate Research 338, 557-561.
32.Gan, Q., Wang, T., Cochrane, C., and McCarron, P. (2005). Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery. Colloids and Surfaces B: Biointerfaces 44, 65-73.
33.Amiji, M.M. (1996). Surface modification of chitosan membranes by complexation-interpenetration of anionic polysaccharides for improved blood compatibility in hemodialysis. Journal of Biomaterials Science, Polymer Edition 8, 281-298.
34.Kratz, G., Arnander, C., Swedenborg, J., Back, M., Falk, C., Gouda, I., and Larm, O. (1997). Heparin-chitosan complexes stimulate wound healing in human skin. Scandinavian journal of plastic and reconstructive surgery and hand surgery 31, 119-123.
35.Miyazaki, S., Ishii, K., and Nadai, T. (1981). The use of chitin and chitosan as drug carriers. Chemical and Pharmaceutical Bulletin (Tokyo) 29, 3067-3069.
36.Eser Elcin, A., Elcin, Y.M., and Pappas, G.D. (1998). Neural tissue engineering: adrenal chromaffin cell attachment and viability on chitosan scaffolds. Neurology Research 20, 648-654.
37.Anchisi, C., Meloni, M.C., Maccioni, A.M. (2007). Chitosan beads loaded with essential oils in cosmetic formulations. International Journal of Cosmetic Science 29, 485.
38.Kanauchi, O., Deuchi, K., Imasato, Y., Shizukuishi, M., and Kobayashi, E. (1995). Mechanism for the Inhibition of Fat Digestion by Chitosan and for the Synergistic Effect of Ascorbate. Bioscience Biotechnology and Biochemistry 59, 786-790.
39.Deuchi, K., Kanauchi, O., Imasato, Y., and Kobayashi, E. (1994). Decreasing Effect of Chitosan on the Apparent Fat Digestibility by Rats Fed on a High-Fat Diet. Bioscience Biotechnology and Biochemistry 58, 1613-1616.
40.Sugano, M., Fujikawa, T., Hiratsuji, Y., Nakashima, K., Fukuda, N., and Hasegawa, Y. (1980). A Novel Use of Chitosan as a Hypocholesterolemic Agent in Rats. American Journal of Clinical Nutrition 33, 787-793.
41.Weltrowski, M., Martel, B., and Morcellet, M. (1996). Chitosan N-benzyl sulfonate derivatives as sorbents for removal of metal ions in an acidic medium. Journal of Applied Polymer Science 59, 647-654.
42.No, H.K., and Meyers, S.P. (1989). Crawfish Chitosan as a Coagulant in Recovery of Organic-Compounds from Seafood Processing Streams. Journal of Agricultural and Food Chemistry 37, 580-583.
43.Senstad, C., and Mattiasson, B. (1989). Affinity-Precipitation Using Chitosan as Ligand Carrier. Biotechnology and Bioengineering 33, 216-220.
44.Bough, W.A., and Landes, D.R. (1976). Recovery and Nutritional-Evaluation of Proteinaceous Solids Separated from Whey by Coagulation with Chitosan. Journal of Dairy Science 59, 1874-1880.
45.Bough, W.A. (1976). Chitosan - Polymer from Seafood Waste, for Use in Treatment of Food-Processing Wastes and Activated-Sludge. Process Biochemistry 11, 13-16.
46.Bough, W.A. (1975). Reduction of Suspended Solids in Vegetable Canning Waste Effluents by Coagulation with Chitosan. Journal of Food Science 40, 297-301.
47.Yu, Z.S., Rogers, T.L., Hu, J.H., Johnston, K.P., and Williams, R.O. (2002). Preparation and characterization of microparticles containing peptide produced by a novel process: spray freezing into liquid. European Journal of Pharmaceutics and Biopharmaceutics 54, 221-228.
48.Huang, Y.C., Chiang, C.H., and Yeh, M.K. (2003). Optimizing formulation factors in preparing chitosan microparticles by spray-drying method. Journal of Microencapsulation 20, 247-260.
49.Huang, Y.C., Yeh, M.K., Cheng, S.N., and Chiang, C.H. (2003). The characteristics of betamethasone-loaded chitosan microparticles by spray-drying method. Journal of Microencapsulation 20, 459-472.
50.Gavini, E., Rassu, G., Sanna, V., Cossu, M., and Giunchedi, P. (2005). Mucoadhesive microspheres for nasal administration of an antiemetic drug, metoclopramide: in-vitro/ex-vivo studies. Journal of Pharmacy Pharmacology 57, 287-294.
51.Albertini, B., Passerini, N., Pattarino, F., and Rodriguez, L. (2008). New spray congealing atomizer for the microencapsulation of highly concentrated solid and liquid substances. European Journal of Pharmaceutics and Biopharmaceutics 69, 348-357.
52.Rodriguez, L., Passerini, N., Cavallari, C., Cini, M., Sancin, P., and Fini, A. (1999). Description and preliminary evaluation of a new ultrasonic atomizer for spray-congealing processes. International Journal of Pharmaceutics 183, 133-143.
53.Jaspart, S., Piel, G., Delattre, L., and Evrard, B. (2005). Solid lipid microparticles: formulation, preparation, characterisation, drug release and applications. Expert Opinion on Drug Delivery 2, 75-87.
54.Albertini, B., Passerini N., Pattarino, F., Rodriguez, L., (2007) New spray congealing atomizer for the microencapsulation of highly concentrated solid and liquid substances. European Journal of Pharmaceutics and Biopharmaceutics 69, 348–357.
55.Michelmore, R.W., and Franks, F. (1982). Nucleation rates of ice in undercooled water and aqueous solutions of polyethylene glycol. Cryobiology 19, 163-171.
56.Zasadzinski, J.A.N. (1988). A New Heat-Transfer Model to Predict Cooling Rates for Rapid Freezing Fixation. Journal of Microscopy-Oxford 150, 137-149.
57.Heller, M.C., Carpenter, J.F., and Randolph, T.W. (1999). Protein formulation and lyophilization cycle design: prevention of damage due to freeze-concentration induced phase separation. Biotechnoloy and Bioengineering 63, 166-174.
58.Hsu, C.C., Nguyen, H.M., Yeung, D.A., Brooks, D.A., Koe, G.S., Bewley, T.A., and Pearlman, R. (1995). Surface denaturation at solid-void interface--a possible pathway by which opalescent particulates form during the storage of lyophilized tissue-type plasminogen activator at high temperatures. Pharmaceutical Research 12, 69-77.
59.Chang, B.S., Kendrick, B.S., and Carpenter, J.F. (1996). Surface-induced denaturation of proteins during freezing and its inhibition by surfactants. Journal of Pharmaceutics Science 85, 1325-1330.
60.Juslin, L., Antikainen, O., Merkku, P., and Yliruusi, J. (1995). Droplet Size Measurement .1. Effect of 3 Independent Variables on Droplet Size Distribution and Spray Angle from a Pneumatic Nozzle. International Journal of Pharmaceutics 123, 247-256.
61.Masters, K. (1979). Spray Drying Handbook, 3rd Edition (London: George Godwin).
62.Bugamelli, F., Raggi, M.A., Orienti, I., and Zecchi, V. (1998). Controlled insulin release from chitosan microparticles. Arch Pharm (Weinheim) 331, 133-138.
63.Witschi, C., and Mrsny, R.J. (1999). In vitro evaluation of microparticles and polymer gels for use as nasal platforms for protein delivery. Pharmaceutical Reserch 16, 382-390.
64.Kockisch, S., Rees, G.D., Young, S.A., Tsibouklis, J., and Smart, J.D. (2003). Polymeric microspheres for drug delivery to the oral cavity: an in vitro evaluation of mucoadhesive potential. Journal of Pharmaceutical Science 92, 1614-1623.
65.Agnihotri, S.A., and Aminabhavi, T.M. (2004). Formulation and evaluation of novel tableted chitosan microparticles for the controlled release of clozapine. Journal Microencapsulation 21, 709-718.
66.Lameiro, M.H., Lopes, A., Martins, L.O., Alves, P.M., and Melo, E. (2006). Incorporation of a model protein into chitosan-bile salt microparticles. International Journal of Pharmaceutics 312, 119-130.
67.Wittaya-areekul, S., Kruenate, J., and Prahsarn, C. (2006). Preparation and in vitro evaluation of mucoadhesive properties of alginate/chitosan microparticles containing prednisolone. International Journal of Pharmaceutics 312, 113-118.
68.Ye, S., Wang, C., Liu, X., Tong, Z., Ren, B., and Zeng, F. (2006). New loading process and release properties of insulin from polysaccharide microcapsules fabricated through layer-by-layer assembly. Journal of Control Release 112, 79-87.
69.朱一民, 宮柔燕, 陳志賓, 甘霈 (2000). 乳化劑型藥物制放系統. 乳化程序專刊85-91.
70.Anya M. Hillery, A.W.L., James Swarbrick ed. (2001). Drug Delivery and Targeting for Pharmacists and Pharmaceutical Scientists (New York Taylor & Francis Inc).
71.Li, K., Wang, Y., Miao, Z., Xu, D., Tang, Y., and Feng, M. (2004). Chitosan/gelatin composite microcarrier for hepatocyte culture. Biotechnology Letters 26, 879-883.
72.Zhang, L.G., Pan, J.L., Li, J.L., and Yu, Y.T. (2003). The preparation of fructose-modified chitosan microcarrier and culture of primary rat hepatocyte. Sheng Wu Gong Cheng Xue Bao 19, 116-119.
73.Dunken, H. (1940). A simple serivation of the Langmuir absorption isotehrm. Zeitschrift Fur Physikalische Chemie-Abteilung a-Chemische Thermodynamik Kinetik Elektrochemie Eigenschaftslehre 187, 105-106.
74.Fitter, A.H., and Sutton, C.D. (1975). Use of Freundlich Isotherm for Soil Phosphate Sorption Data. Journal of Soil Science 26, 241-246.
75.(2008). Bovine serum albumin.
76.Beretz, A., Anton, R., and Stoclet, J.C. (1978). Flavonoid compounds are potent inhibitors of cyclic AMP phosphodiesterase. Experientia 34, 1054-1055.
77.Bowman, B.J., Mainzer, S.E., Allen, K.E., and Slayman, C.W. (1978). Effects of inhibitors on the plasma membrane and mitochondrial adenosine triphosphatases of Neurospora crassa. Biochimica et Biophysica Acta 512, 13-28.
78.Lamson, D.W., and Brignall, M.S. (2000). Antioxidants and cancer, part 3: quercetin. Alternative Medicine Review 5, 196-208.
79.Singhal, R.L., Yeh, Y.A., Praja, N., Olah, E., Sledge, G.W., Jr., and Weber, G. (1995). Quercetin down-regulates signal transduction in human breast carcinoma cells. Biochemical and Biophysical Research Communications 208, 425-431.
80.Yeh, Y.A., Herenyiova, M., and Weber, G. (1995). Quercetin: synergistic action with carboxyamidotriazole in human breast carcinoma cells. Life Science 57, 1285-1292.
81.Hsieh, C.Y., Hsieh, H.J., Liu, H.C., Wang, D.M., and Hou, L.T. (2006). Fabrication and release behavior of a novel freeze-gelled chitosan/gamma-PGA scaffold as a carrier for rhBMP-2. Dental Materials Journal 22, 622-629.
82.Hsieh, C.Y., Tsai, S.P., Wang, D.M., Chang, Y.N., and Hsieh, H.J. (2005). Preparation of gamma-PGA/chitosan composite tissue engineering matrices. Biomaterials 26, 5617-5623.
83.苑乃義 (2003). 多孔狀幾丁聚醣基材製備與酵素降解, 國立台灣大學化學工程研究所碩士論文.
84.Petersen, F.J., Worts, O., Schaefer, T., and Sojka, P.E. (2004). Design and atomization properties for an inside-out type effervescent atomizer. Drug Development and Industrial Pharmacy 30, 319-326.
85.Du, J., Sun, R., Zhang, S., Zhang, L.F., Xiong, C.D., and Peng, Y.X. (2005). Novel polyelectrolyte carboxymethyl konjac glucomannan-chitosan nanoparticles for drug delivery. I. Physicochemical characterization of the carboxymethyl konjac glucomannan-chitosan nanoparticles. Biopolymers 78, 1-8.
86.Harikarnpakdee, S., Lipipun, V., Sutanthavibul, N., and Ritthidej, G.C. (2006). Spray-dried mucoadhesive microspheres: Preparation and transport through nasal cell monolayer. American Association of Pharmaceutical Scientists Pharmscitech 7, -.
87.He, P., Davis, S.S., and Illum, L. (1999). Chitosan microspheres prepared by spray drying. International Journal of Pharmaceutics 187, 53-65.
88.Mun, S., Decker, E.A., and McClements, D.J. (2006). Effect of molecular weight and degree of deacetylation of chitosan on the formation of oil-in-water emulsions stabilized by surfactant-chitosan membranes. Journal of Colloid and Interface Science 296, 581-590.
89.Bala, I., Bhardwaj, V., Hariharan, S., Kharade, S.V., Roy, N., and Ravi Kumar, M.N. (2006). Sustained release nanoparticulate formulation containing antioxidant-ellagic acid as potential prophylaxis system for oral administration. Journal of Drug Target 14, 27-34.
90.Baudner, B.C., Verhoef, J.C., Giuliani, M.M., Peppoloni, S., Rappuoli, R., Del Giudice, G., and Junginger, H.E. (2005). Protective immune responses to meningococcal C conjugate vaccine after intranasal immunization of mice with the LTK63 mutant plus chitosan or trimethyl chitosan chloride as novel delivery platform. Journal of Drug Target 13, 489-498.
91.Bird, R.B., Stewart, W.E., Lightfoot, E.N. (2002). Transport Phenomena, 3 Edition (New York: John Wiley & Sons, Inc.).
92.McCabe, W.L., Smith, J.C., Harriott, P (2001). Unit Operations of Chemical Engineering, 6 Edition (McGraw Fill company).
93.Chryssakis, C.A., Assanis, D. N. (2005). A Secondary Atomization Model for Liquid Droplet Deformation and Breakup under High Weber Number Conditions. In 18th Annual Conference on Liquid Atomization and Spray Systems, ILASS Americas: Irvine, CA.
94.Kienzlesterzer, C.A., Rodriguezsanchez, D., and Rha, C.K. (1985). Flow Behavior of a Cationic Bio-Polymer - Chitosan. Polymer Bulletin 13, 1-6.
95.Desbrieres, J. (2002). Viscosity of semiflexible chitosan solutions: influence of concentration, temperature, and role of intermolecular interactions. Biomacromolecules 3, 342-349.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊