跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/04 12:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張淵菘
研究生(外文):Yuan-Sung Chang
論文名稱:針對熱休克蛋白與熱傷害表現最適化雷射治療設計
論文名稱(外文):Optimizing Laser Therapy Design for Heat Shock Protein and Injury Expression
指導教授:陳誠亮陳誠亮引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:85
中文關鍵詞:熱休克蛋白雷射治療最適化
外文關鍵詞:heat shock proteinlaser therapyoptimizing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
雷射熱治療是一種藉由雷射產生高溫來破壞腫瘤細胞的癌症治療方式,但其治療效果卻會因為熱休克蛋白(heat shock protein,簡稱HSP)的形成而受到影響。HSP為生物體受熱時,由體內細胞所合成的一種保護性蛋白質,具有幫助生物體恢復已變性之蛋白質以及增加細胞之耐熱性等功能。一般來說,健康細胞與腫瘤細胞在受熱後皆會產生HSP,因此,若能透過適當的模型來探討生物體內之HSP表現情況,將有助於雷射熱治療在臨床上的應用。
  本研究分別以單點雷射與多點雷射的方式進行三個不同樣本之模擬。經由最適化的過程找出符合該樣本之最佳治療模式,不僅有效抑制腫瘤細胞之HSP表現使其受到預期的熱傷害,而且盡可能地促進健康細胞之HSP表現以減低其損傷。樣本一為外部雷射治療規則形狀之腫瘤,樣本二為內部雷射治療規則形狀之腫瘤,樣本三則為外部雷射治療不規則形狀之腫瘤。三個樣本的治療結果均顯示出腫瘤細胞已確實破壞,然而健康細胞所受到的熱傷害與其HSP表現則會因為不同的雷射操作方式而有所差異。在大部分的情況下,多點雷射的治療效果要比單點雷射來得好,尤其是對於不規則形狀之腫瘤時,使用多點雷射的方式較容易掌握溫度分佈進而控制熱傷害程度以及細胞之HSP表現。
Hyperthermia therapy is a type of cancer treatment on the use of laser to generate high temperature to damage and kill the tumor cells. Nevertheless, the curative effect of such therapy is influenced by the formation of heat shock proteins (HSP). HSP are a group of protective proteins produced by cells while the body is exposed to elevated temperatures, which have the functions to restore the denatured proteins and enhance the heat resistance of cells. Generally speaking, both healthy cells and tumor cells will synthesis HSP under heat, and therefore it is contributive to the clinical application of hyperthermia therapy to investigate and analyze the expression of HSP in body tissues by an adequate model.
This work presents the simulations for three different examples by means of single laser and multi-laser, respectively. Through the procedure of optimization, the optimal treatments for corresponding examples are found, which not only restrain the expression of HSP in tumor cells to cause them the anticipant thermal damage, but also encourage the expression of HSP in healthy cells to mitigate their injury. The first two examples are about the external and internal laser treatments for a regular-shaped tumor, whereas the third example involves the external laser treatment for an irregular -shaped tumor. Results of those three examples have all shown that the tumor cells are effectively damaged while the thermal damage to healthy cells is varied with different operating modes of laser treatment. In the main, the curative effect of multi-laser is better than that of single laser, especially for the irregular-shaped tumors. It is because the use of multi-laser is easier to govern the temperature distribution as well as the damage degree and the expression of HSP in body cells.
口試委員會審定書........................................ i
誌謝.................................................... iii
摘要.................................................... v
Abstract................................................ vii
附圖目錄................................................xiii
附表目錄................................................xvii

1 緒論 1
1.1 前言.............................................. 1
1.2 雷射與雷射熱效應.................................. 2
1.3 熱休克蛋白HSP..................................... 4
1.4 文獻回顧.......................................... 8
1.5 研究動機與目的.................................... 8
1.6 組織章節.......................................... 9

2 雷射熱治療最佳化模組建構 11
2.1 模擬流程介紹...................................... 11
2.2 雷射操作參數...................................... 12
2.3 光學模型(Optical Model)........................... 13
2.4 熱傳模型(Thermal Model)........................... 14
2.5 熱傷害模型(Damage Model).......................... 18
2.6 HSP模型(HSP Expression Model)..................... 20
2.7 最佳化模型(Optimization Model).................... 24

3 模型之樣本模擬暨模擬結果分析與討論(一) 29
3.1 模擬與最佳化軟體介紹.............................. 29
3.2 例一之單點雷射設計模擬............................ 30
3.2.1 例一模型之單點雷射設計模擬結果分析與討論.... 33
3.3 例一之多點雷射設計模擬............................ 35
3.3.1 例一模型之多點雷射設計模擬結果分析與討論.... 37

4 模型之樣本模擬暨模擬結果分析與討論(二) 43
4.1 例二之單點雷射設計模擬............................ 43
4.1.1 例二模型之單點雷射設計模擬結果分析與討論.... 47
4.2 例二之多點雷射設計模擬............................ 50
4.2.1 例二模型之多點雷射設計模擬結果分析與討論.... 51

5 放寬限制式模擬暨模擬結果分析與討論 57
5.1 放寬限制式之情境模擬.............................. 57
5.2 例一模型之放寬限制式模擬結果分析與討論............ 58
5.3 例二模型之放寬限制式模擬結果分析與討論............ 61

6 模型之樣本模擬暨模擬結果分析與討論(三) 65
6.1 例三之單點雷射設計模擬............................ 65
6.1.1 例三模型之單點雷射設計模擬結果分析與討論.... 66
6.2 例三之多點雷射設計模擬............................ 69
6.2.1 例三模型之多點雷射設計模擬結果分析與討論.... 70

7 結論與未來展望 77
7.1 結論.............................................. 77
7.2 未來展望.......................................... 79

參考文獻................................................ 81
作者簡歷................................................ 85
[1] Anvari, B., Rastegar, S., Motamedi, M. Modeling of intraluminal heating of biological
tissue: implications for treatment of benign prostatic hyperplasia," IEEE
Trans. Biomed. Eng., no. 41, pp. 854{864, 1994.
[2] Denmeade, S.R., Issacs, J.T. Development of prostate cancer treatment: The good
news," Prostate, vol. 58, pp. 211{224, 2004.
[3] Diller, K.R., Valvano, J.W., Pearce, J.A. CRC handbook of thermal engineering,
Boca Raton: CRC Press, 2000.
[4] Duderstadt, J., Hamilton, L. Nuclear reactor analysis, New York: Wiley, 1976.
[5] El-Samad, H., Kurata, H., Doyle, J.C., Gross, C.A., Khammash, M. Surviving heat
shock: control strategies for robustness and performance.," Proc. Natl. Acad. Sci.,
vol. 102, pp. 2736{2741, 2005.
[6] Garnick, M.B. Prostate cancer: screening diagnosis, and management," Ann. Intern
Med., vol. 118, pp. 804{818, 1993.
[7] Gibbons, N.B., Watson, R.W.G., Coffey, R., Brady, H.P., Fritzpatrick, J.M. Heat
shock proteins inhibit induction of prostate cancer cell apoptosis," Prostate, vol. 45,
pp. 58{65, 2000.
[8] Henriques, F.C., Studies of thermal injury, the predictability and the signi cance
of thermally induced rate processes leading to irreversible epidermal injury," Arch.
Pathol., no. 43, pp. 489{502, 1947.
[9] Iizuka, M.N., Vitkin, I.A., Kolios, M.C., Sherar, M.D. The effects of dynamic optical
properties during interstitial laser photocoagulation," Phys. Med. Biol., vol. 5,
no. 45, pp. 1335{1357, 2000.
[10] Khammash, M., El-Samad, H. Systems biology: from physiology to gene regulation,"
IEEE Control Systems, pp. 62{76, 2004.
[11] Kiang, J.G., Tsokos, G.C. Heat shock protein 70 kDa: Molecular biology, biochemistry,
and physiology," Pharmacol Ther, vol. 80, pp. 183{201, 1998.
[12] Kim, B., Jacques, S.L., Rastegar, S., Thomsen, S., Motamedi, M. Nonlinear niteelement
analysis of the role of dynamic changes in blood perfusion and optical properties
in laser coagulation of tissue," IEEE J Select Top Quantum Electron, vol. 2,
pp. 922{933, 1996.
[13] Lucassen, G.W., Verkruysse, W., Keijzer, M., van Gemert, M.J. Light distriutions
in a port wine stain model containing multiple cylindrical and curved blook vessels,"
Lasers Surg Med., vol. 18, no. 4, pp. 345{357, 1996.
[14] Madersabacher, S., Grobl, M., Kramer, G., Dirnhofer, S., Steiner, G., Marberger,
M. Regulation of heat shock protein 27 expression of prostatic cells in response to
heat treatment," Prostate, vol. 37, pp. 174{181, 1998.
[15] Martin, J., Horwich, A., Hartl, F.U. Prevention of protein denaturation under heat
stress by the chaperonin hsp60," Science, vol. 258, pp. 995{998, 1992.
[16] Mester, E., Szende, B., Tota, J.G. Effect of laser on hair growth of mice," Kiserl
Orvostud, vol. 19, pp. 628{631, 1967.
[17] Miller, I.D., Veitch, A.R. Optical modeling of light distributions in skin tissue,"
Lasers Surg Med., vol. 13, no. 5, pp. 565{571, 1993.
[18] Pennes H.H. Analysis of tissue and arterial blood temperatures in the resting forearm,"
J. Appl. Physiol., no. 1, pp. 93{122, 1948.
[19] Rieger, T.R., Morimoto, R.I., Hatzimanikatis V. Mathematical modeling of the
eukaryotic heat-shock response: dynamics of the hsp70 promoter," J. Biophysi.,
vol. 88, pp. 1646{1658, 2005.
[20] Roigas, J., Wallen, E.S., Loening, S.A., Moseley, P.L. Effects of combined treatment
of chemotherapeutics and hyperthermia on survival and the regulation of heat
shock proteins in Dunning R3327 prostate carcinoma cells," Prostate, vol. 34,
pp. 195{202, 1998.
[21] Rylander, M.N., Feng, Y., Bass, J., Diller, K.R. Thermally induced injury and
heat-shock protein expression in cells and tissues," Ann. N. Y. Acad. Sci., vol. 1066,
pp. 222{242, 2005.
[22] Rylander, M.N., Feng, Y., Zhang, J., Bass, J. Optimizing heat shock protein expression
induced by prostate cancer laser therapy through predictive computational
models," J. Biomed. Optics., vol. 11, no. 4, pp. 04111131{16, 2006.
[23] Schlesinger, M.J. Heat shock proteins," J. Biol. Chem., vol. 265, no. 21, pp. 12111{
12114, 1990.
[24] Takata, A.N., Zaneveld, L., Richter,W. Laser induced thermal damage in skin," In
USAF School Aerospace Med, Brooks AFB, TX. Rep. SAM-TR-77-38 (1977).
[25] Weich, H., Buchner, J., Zimmermann, R., Jakob, U. HSP90 chaperones protein
folding in vitro," Nature, vol. 358, pp. 169{170, 1992.
[26] Welch, A.J. Laser irradiation of tissue," In Heat Transfer in Medicine and Biology.
New York: Plenum, 1985.
[27] Wissler, E.H. Pennes paper revisited," J. Appl. Physiol., no. 85, pp. 35{41, 1998.
[28] Zhu, D., Luo, Q., Zhu, G., Liu, W. Kinetic thermal response and damage in laser
coagulation of tissue," Lasers Surg., no. 31, pp. 313{321, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top