跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/03 23:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:闕帝強
研究生(外文):Ti-Chiang Chueh
論文名稱:石墨鍍銀/奈米銀複合導電膠製備與導電特性之研究
論文名稱(外文):The Study of Conductivity and Preparation for Silver-plated Graphite Particles/Silver Nanopowders Composite Conductive Adhesives
指導教授:顏溪成顏溪成引用關係
指導教授(外文):Shi-Chern Yen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:84
中文關鍵詞:導電膠無電鍍聚苯胺奈米銀
外文關鍵詞:Conductive adhesiveselectroless platingpolyanilinesilver nanopowders
相關次數:
  • 被引用被引用:2
  • 點閱點閱:760
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗共分成四大部分:第一部分為製備聚苯胺的研究;第二部分為製備導電粒子的研究;第三部份為製備導電膠的研究;第四部份則對導電顆粒組成進行改良,加入平均粒徑為100nm的奈米銀,發現導電度有明顯的提升。首先藉由UV-Vis以及GPC儀器測量聚苯胺的特徵峰與分子量;接著藉由粒徑分析儀與SEM觀察GS-75石墨顆粒尺寸與形貌;再經由XRD及ICP儀器觀察無電鍍銀後,銀是否有鍍著在微粒表面與銀鍍上去的量。最後則為製備導電膠以及改變導電顆粒組成對導電度影響的研究。
實驗結果發現在製備聚苯胺實驗方面,0˚C下化學合成的聚苯胺由GPC測量其平均分子量為3756;由UV-vis儀觀察去摻雜態聚苯胺,其UV-vis光譜波長在320nm及640nm左右有吸收,分別是由苯環的π-π*吸收及醌環的exciton吸收所造成的。製備得到的去摻雜態聚苯胺用不同的摻雜酸(HCl、HBr、HNO3、H3PO4、DBSA、CH3COOH、HOCH2COOH)摻雜,以DMSO做為溶劑,能得知硝酸摻雜態聚苯胺溶液擁有較高導電度,其值為231.4μs/cm;而以DBSA為摻雜酸的摻雜態聚苯胺在DMSO溶劑中有最大的溶解度6.25mg/ml。
製備導電粒子實驗方面先將平均粒徑為0.982 μm的扁平雪片狀石墨粉GS-75無電鍍銀,將無電鍍銀的程序分成兩組,一組有敏化活化,另一組不經敏化活化步驟;接著再由XRD觀察無電鍍銀後的微粒可知無論有敏化活化與否在鍍銀石墨粉GS-75/Ag表面皆產生Ag與幫助電性導通的Ag2O。由ICP觀察石墨粉無電鍍銀鍍上的量,可發現經敏化活化步驟的GS-75/Ag表面吸附銀的量明顯較未敏化活化步驟來的多。
在製備導電膠實驗方面發現石墨微粒經過無電鍍銀,且加入聚苯胺溶液和硫醇當分散劑之後,電阻係數ρ會下降,故GS-75在鍍銀且加入聚苯胺溶液後最低之電阻係數可達3 x 10-4ohm-cm。固化溫度在200°C之後,電阻係數便趨於穩定不再下降。接著我們再將部份GS75/Ag微米級導電粒子置換為平均粒徑為100nm的奈米銀,研究結果指出在GS75/Ag:Ag nanopowder 重量百分比為 8 :2時, 其電阻係數ρ測得為7.7 x 10-5ohm-cm,此值為本研究最佳結果。
The thesis was divided into four parts. The first part of study was preparing polyaniline. The second part of study was preparing conductive particles. The third part of study was preparing electrically conductive adhesives (ECAs). The fourth part was alternating some silver-plated conductive particles to Ag nanopowders which the average radius is 100nm. In the experiments, polyaniline was characterized by ultraviolet-visible spectroscopy and the molecular weight of polyaniline was measured by GPC. The particle size and surface morphology were developed by particle size instrument and SEM. We also analyzed whether silver was electroless plated on particles surface or not and plated weight by XRD and ICP. Finally, we prepared ECAs and investaged the effect of changing the compound of conductive particles on resistivity.
In the study, polyaniline was prepared and synthesized at 0°C. The molecular weight of polyaniline is 3756. UV–vis spectra of the emeraldine form of polyanoline shows two peaks, 320nm and 640nm. They are the characteristic peaks of the emeraldine form of PANI. After we synthesized the emeraldine form of polyaniline, we doped it by using different doping acids(HCl、HBr、HNO3、H3PO4、DBSA、CH3COOH、HOCH2COOH) and then we solved it in DMSO to measure its conductivity and solubility.
In our research of preparing conductive particles, we took the 0.982 μm flake graphite(GS-75) to plate silver electrolessly. We found that there are Ag and Ag2O on GS-75/Ag particles surface by XRD. ICP analysis shows that there are more silver coated on GS-75 surface by electroless plating process with sensitization and activation than the process without sensitization and activation.
In the study of preparing electrically conductive adhesives, we can find resistivity ρ decline to 3 x 10-4 ohm-cm after plating silver electrolessly and adding polyaniline solution. The best cruing temperature of ECAs was 200°C. Finally, GS-75/Ag particles were partly alternated to 100nm Ag nanopowders. As the ratio of GS-75/Ag to 100nm Ag is 8:2, and the filling of conductive particles is 60 wt%, the lowest resisticity ρ 7.7 x 10-5 ohm-cm is represented. This is the best resistivity in this thesis.
摘要 I
Abstract III
圖表目錄 VII
第一章 緒論 1
1-1 研究動機與目標 3
第二章 文獻回顧與導電機制 4
2-1 導電性高分子 4
2-2奈米導電粒子的合成 10
2-3 無電電鍍的介紹 13
2-4 聚苯胺 15
2-5 導電膠 20
2-6 導電膠的導電機構 29
2-7 影響導電膠導電度的因素 32
第三章 實驗內容 35
3-1 實驗藥品與材料 35
3-2 實驗設備與儀器 37
3-3實驗流程圖 43
3-4實驗方法 47
第四章 結果與討論 53
4-1 聚苯胺分析 53
Polyaniline之UV-Vis光譜 53
Polyaniline分子量 55
4-2聚苯胺溶液導電度及溶解度量測 56
4-3導電粒子分析 58
粒徑分析 58
SEM分析 59
奈米銀粒子與石墨表面鍍銀粒子之XRD分析 60
ICP分析鍍銀石墨粒子之銀含量 62
4-4導電膠分析 63
DSC分析 63
導電粒子敏化活化與否對導電膠電阻係數的影響 64
加入硫醇當分散劑與否對電阻係數的影響 68
聚苯胺溶液用量對電阻係數的影響 72
固化溫度對導電度的影響 74
改變導電粒子組成對導電度影響 75
第五章 結論 80
參考文獻 82
Bacon J. and Adams R. N., J. Am. Chem. Soc., 90, 6596.(1968)

Bolger,J. C. and Moraro, S. L., “Conductive adhesives: how and where they work”, Adhesives Age, 27, 17. (1984)

Craig E. Thomas and Balaraman Kalyanaraman, Oxygen radicals and the disease process, Harwood Academic Publishers, 1997

Kang SK, Rajinder SR, Purushothaman S. Development of high conductivity lead(Pb)-free conducting adhesives. IEEE Trans Component Packag Technol, 21(1), 18–22. (1998)

Kang, S. K. , Thomas, J., “Thermocompression Bonding of Aluminum Bumps in TAB Application”, Electronic Components & Technology Conference, 48th IEEE, New York, 1305-1310. (1998)

Kevin B., Four-Point Probe Operation. (2004)

Kim, H.K. and Shi, F.G., ” Electrical reliability of electrically conductive adhesive joints:dependence on curing condition and current density”, Microelectronics Journal , 32, 315 . (2001)

Lau, J. H., Flip Chip Technologies, New York , McGraw-Hill, pp.25-29. (1996)

Lau, J. H., Flip Chip Technologies, New York, McGraw-Hill, Chapter 1. (1995)

Lau, J. H., Handbook of Tape Automated Bonding, New York, Van Nostrand Reinhold, Chapter 17. (1992)

Lee H. H., Chou K. S., Shih Z. W., International Journal of Adhesion & Adhesives ,25, 437–441. (2005)

Leon C. A. and Drew R. A. L., Journal of Materials Science, 35, 4763-4768. (2000)

Loos, A. C. and Springer G. S., “Curing of Epoxy Matrix Composites”, Journal of Composite Materials, 17, 135-169.(1983)
Liang T. X., Guo W. L., Yan Y. H., Tang Chunhe, International Journal of Adhesion & Adhesives 28 (2007) 55–58.

Lovinger, A. J., “Development of Electrical Conduction in Silver-filled Epoxy Adhesives”, Journal of Adhesion, 10, 1-15.(1979)

Lu, D., Wong, C. P., “Effects of Shrinkage on Conductivity of Isotropic Conductive Adhesives,” International Journal of Adhesion & Adhesives,20, 189.(2000)

M. B., N. V., Chevrot C., Synthetic Metals, 102, 1428-1431. (1999)

MacDiarmid A.G., Epstein A. J., Faraday Discuss. Chem. Soc. 88, 317. (1989)

MacDiarmid A. G.,Current Applied Physics 1, 269-279.(2001)

MacDiarmid, A. G.; Chiang, J. H.; Huang, W.; Humphery, B. D.; Somasiri, N. L. Mol. Cryst. Liq. Cryst., 125, 309.(1985)

MacDiarmid A. G., Chiang J. C., Richter A. F., Somasiri N. L. D. and Epstein A. J., “polyaniline: Synthesis and Characterization of the Emeraldine Oxidation State by Elemental Analysis” in L.Alca’cer(ed.) “Conducting Polymer” D. Reidel Pub. Comp. Dordrecht, Holland, 105.(1987)

McLachlan, D. S., M. Blaszkiewics and R. E. Newnham, “Electrical Resistivity of Composites”, Journal of American Ceramic Society, 73, 8, 2187-2203.(1990)

Mohilner, D. M., Adams, R. N., Argersinger, W. J., J. Am. Chem., Soc. 84, 3618. (1962)

Mordechay S., and Milan P.,Modern Electroplating, John Wiley& Sons, INC., New York, 2000.

Patil A. O., Ikenoue Y., Would F. and Heeger A. J., J. Am. Chem. Soc., 109, 1858. (1987)


Novak. I., Krupa. I., Chodak. I., Investigation of the correlation between electrical conductivity and elongation at break in polyurethane-based adhesives, Synthetic Metals, 31, 93~98. (2002)

Rabindra N. D. , John M. Lauffer and Frank D. Egitto, Electrical Conductivity and Reliability of Nano- and Micro-Filled Conducting Adhesives for Z-axis Interconnections, Electronic Components and Technology Conference. (2006)

Schimid,G.,“ Clusters and Colloids,Theroy to Application”, New York . (1994)

Sevil, U. A., Guven O., Birer O., Suzer S., Synthetic Metals, 110, 175-179.(2000)

Seymour R. B., Plenum Press, Conductive polymers, New York 171-180, 1981.

Seymour R. B., Plenum Press, Conductive Polymers, New York 227-233, 1981.

Shirakawa, H.,Keda, S., Polym. J., 2, 231.(1971)

Stejskal J. and Kratochvil P., Polymer, 37 (2), 367-369.(1996)

Stejskal J., Riede A., Hlavata D., Prokes J., Helmstedt M., Holler P., Synth. Met., 96, 55. (1998)

Stejskal J., Polyaniline, Preparation of a conducting polymer, Pure Appl. Chem., 74, 857–867. (2002)

Tlarke T.C., Krounbi M. T., Lee V. Y., J. Chem. Soc. 384. (1981)

Uemura, S., and Teshima, K., Synth. Met., 101, 701-702.(1999)

Venancio E. C., Costa C. A. R., Machado S.A.S., Motheo A.J., Electrochemistry Communications, 3, 229-233.(2001)

Wessling B., Synth. Met. ,44, 119.(1991)

Wood A. S., “Tapping the power of intrinsic conductivity”, Modern Plastic Int., Aug, 33.(1991)

Wu H.P., Liu J.F., Wu X.J., Ge M.Y., Wang Y.W., Zhang G.Q., Jiang J.Z., International Journal of Adhesion & Adhesives, 26, 617–621(2006)

Ye L., Lai Z., Liu J.,” Effect of Ag Particle Size on Electrical Conductivity of Isotropically Conductive Adhesives”, IEEE Transactions on Electronics Packaging Manufacturing, 22.(1999)

神戶得藏著, 莊萬發譯(1989), “無電解鍍金 : 化學鍍金術” ,復漢出版社

陳偉亮(2000),”異方向性導電膠覆晶接合之研究”,成功大學碩士論文。

陳嘉崙(1996),"導電性聚苯胺高分子材料製造氯離子感測器之研究",成功大學化工碩士論文。

藍英正(2007),”聚苯胺對無電鍍銀微粒導電膠電阻效應之研究”,台灣大學高分子所碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊