跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/14 11:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾振泓
研究生(外文):Cheng-Hung Chung
論文名稱:陽極負載複合氧化鈰電解質中溫固體氧化物燃料電池之製備與性能研究
論文名稱(外文):Fabrication and Investigation of Anode-supported Intermediate Temperature Solid Oxide Fuel Cells with Composite Ceria-based Electrolyte Films
指導教授:鄭淑芬鄭淑芬引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:172
中文關鍵詞:IT-SOFCCGO60wt%-NiO/CGOLSCF
外文關鍵詞:IT-SOFCCGO60wt%-NiO/CGOLSCF
相關次數:
  • 被引用被引用:0
  • 點閱點閱:315
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
以檸檬酸溶膠凝膠燃燒法合成Ce0.8Gd0.2O2-δ (CGO)粉末,摻雜少量金屬氧化物製備複合電解質(1mol% Bi2O3, GeO2, Nb2O5),結果顯示可以改進CGO基材緻密化,也改進其導電率,並且長時間(∼85h)在10% H2/N2還原氣氛下,也能維持材料的化學穩定性。由於台灣濕氣環境,以麵粉輔助式乾壓法製備陽極負載型中溫固態氧化物燃料電池(IT-SOFC),電解質材料使用低溫燃燒法( ~ 280℃)之CGO粉末,所製作的單電池陽極(60wt%-NiO/CGO),陰極(La0.8Sr0.2Co0.8Fe0.2O3-δ)與CGO電解質厚度分別為16 ± 2、493 ±7、153 ± 4 μm。採用自行架設裝置,測量單電池效能,以50ml/min 100% H2及150ml/min Air最佳化流速下,700℃最大功率密度(PPD)及開路電壓(OCV)約為450 mW/cm2及0.79V;以50ml/min 100% H2及90ml/min 100%O2最佳化流速下約為504 mW/cm2及0.82V,其速率決定步驟(RDS)在550℃以下時為氧分子還原反應控制,600℃以上時為歐姆極化控制。當電池改變電解質材料下,以1mol% GeO2複合CGO後,在最佳化流速下陰極端為空氣、100% O2時,700℃下其PPD約為462、521 mW/cm2,分別改進了約12、17 mW/cm2;當電池改變陰極材料下,以5.02wt% Pt複合LSCF後,相同的最佳化流速下陰極端為空氣、100% O2時,700℃下其PPD 約為526、582 mW/cm2分別改進約76、78mW/cm2。當電池改變陽極材料下,2.5wt%Mn-Ni/CGO複合陽極於700℃的氫氣、甲烷(5ml/min)下之電池功率,分別只有純Ni/CGO陽極的2/5、3/5倍,並且電池效能隨時間而持續老化。
建議原因如下:以1mol% GeO2複合CGO後,氧離子導電率(σi)增加,因此電池效能獲得改善,然而以 (≦1mol% Bi2O3, Nb2O5) 複合CGO後,反而導致電池嚴重內短路。複合Pt/LSCF陰極,由於Pt材料氧離子導電率低,且不同複合量Pt會引起陰極微結構的變化,因此複合量有極值。複合Mn-Ni/CGO陽極,由於陽極形貌產生緻密化現象而導致表面積減少,即陽極活性惡化,因此並沒有改進直接甲烷下的電池效能。
Ce0.8Gd0.2O2-δ (CGO) powder samples were synthesized using citrate sol-gel combustion method, and then the composite electrolyte materials were prepared by a small amount of 1mol% Bi2O3, GeO2, Nb2O5 to CGO.
The results show that the densification and conductivity of composite electrolyte were improved. In addition, undergoing 10% H2/N2 for ~ 85h, the conductivity at 700°C in air of the samples could be retained nearly at their starting conductivity.
The fabrication of anode-supported intermediate temperature solid oxide fuel cell (IT-SOFC) was carry out by using sandwiched dry-pressed technique with flour layers, because of humid environment in Taiwan, ultrafine CGO powder as electrolyte material. The single cell showed that electrolyte was 16 ± 2 μm in most thin thickness, anode (60wt%-NiO/CGO) and cathode (La0.8Sr0.2Co0.8Fe0.2O3-δ) were 493 ± 7 and 152 ± 4 μm in thickness, respectively. At our best knowledge to build the electrochemical testing device, and the performances of single cell were ~ 450 mW/cm2 (PPD) and ~ 0.79V (OCV), while 100%H2 and air with optimum flow rate of 50 and 150 mL/min at 700°C. On the other hand, under 100%H2 and 100%O2 with optimum flow rate of 50 and 90 mL/min, the the performances were ~ 504 mW/cm2 and ~ 0.82V.
The rate-determining step (RDS) was depended on operation temperature: Under 550°C, RDS was oxygen reduction reaction. Above 600°C, RDS was ohmic loss. To exchange of electrolyte material, the addition of 1mol% GeO2 to CGO film was made, under the optimum flow rate through air and 100%O2 in turn, the PPD of single cell were ~ 462 and ~ 521 mW/cm2, respectively, which were improving ~ 12 and ~ 17 mW/cm2, respectively.
To exchange of cathode material, the addition of 5.02wt% Pt to LSCF cathode was made, under the optimum flow rate through air and 100%O2 in turn, the PPD of single cell were ~ 526 and ~ 582 mW/cm2, respectively, which were improving ~ 76 and ~ 78 mA/cm2, respectively.
To exchange of anode material, the addition of 2.5wt% Mn to Ni/CGO anode was made, under flow rate of 5mL/min through 100%H2 and 100%CH4 at 700°C in turn, the sample displayed about one-third and three-fifth times of the performances of pure Ni/CGO anode, in addition, the performance decreased with long-time.
The primary reasons were suggested following: the addition of 1mol% GeO2 to CGO was improving oxide-ion conductivity of electrolyte, thus the influence improved the performance of single cell. However, a small amount of 1mol% Bi2O3 or Nb2O5 to CGO was deteriorating short-circuit short-circuit of electrolyte. For composite Pt/LSCF cathode, the adequate amount of Pt to LSCF was selected due to low oxide-ion conductivity and optimum microstructure surface of self. For composite Mn-Ni/CGO anode, the dense microstructure on surface was observed by the addition of Mn to Ni/CGO , thus the performance of single cell was deteriorating for the direct electrochemical oxidation of methane.
目錄

摘要 I
Abstract III
目錄 V
圖索引 IX
表索引 XVI
第一章 文獻回顧 1
1.1 固體氧化物燃料電池的特色及工作原理 1
1.1.1燃料電池的電化學基礎 2
1.1.2 CGO電解質導電機制 6
1.1.3陰極氧還原反應機制 7
1.1.4陰極導電機制 8
1.1.5燃料電池的效率 9
1.2 中溫固體氧化物燃料電池特性 11
1.3 中溫電解質材料 12
1.4 IT-SOFC陽極材料 14
1.5 IT-SOFC陰極材料 15
1.6 SOFC製備方法 16
1.6.1 氧化鉍的應用 17
1.6.2 GeO2的應用 18
1.6.3 Nb2O5的應用 18
1.6.4 CGO助燒劑的應用 19
1.6.5 複合電極的應用 20
1.7 甘氨酸-硝酸鹽法介紹 21
1.8 甘氨酸-硝酸鹽法在IT-SOFC的應用 23
1.9 其它sol-gel燃燒法生成粉末 24
1.10 交流阻抗在SOFC之電化學應用 24
1.11 SOFC效能之分析 26
1.12 文獻小結論 27
1.13 實驗動機 29
第二章 電解質製備及研究 31
2.1 前言 31
2.2 藥品 32
2.3 儀器設備 33
2.4 實驗流程 34
2.4.1 高溫燃燒法合成CGO粉末 34
2.4.2 低溫燃燒法合成CGO粉末 35
2.4.3電解質測試裝置及測試方法 36
2.5凝膠熱重熱差分析 37
2.6電解質原料粉末顆粒大小 39
2.7電解質分析 41
2.7.1電解質組成及結構鑑定 41
2.7.2電解質相對密度及顯微鏡觀察 42
2.7.3電解質導電率 46
2.7.4 CGO導電率與文獻比較 49
2.8複合電解質製備 50
2.8.1 製備Ce0.8Gd0.2-xBixO2-δ粉末 50
2.8.2 製備xGeO2/CGO粉末 50
2.8.3 製備xNb2O5/ CGO粉末 51
2.9複合電解質組成及結構鑑定 51
2.9.1 Ce0.8Gd0.2-xBixO2-δ組成及結構鑑定 52
2.9.2 xGeO2/CGO及xNb2O5/ CGO組成及結構鑑定 55
2.10複合電解質相對密度 58
2.11 複合電解質晶格常數變化 62
2.12 複合電解質導電率分析 65
2.12.1 coarse-powder, 730M Pa, 1500°C /14h煆燒之基材 65
2.12.2 fine-powder, 73M Pa, 1400°C /8h煆燒之基材 70
2.13化學穩定性 71
2.14 小結論 73
第三章 陽極負載CGO電解質中溫固體氧化物燃料電池之製備及性能研究 75
3.1 前言 75
3.2 實驗流程 76
3.2.1 製備陽極60wt%-NiO/CGO粉末 76
3.2.2 製備陰極LSCF粉末 76
3.2.3單電池製備及架設 77
3.2.4單電池之測試裝置及測試方法 79
3.2.5單電池三極法製備 81
3.3 電極原料粉末顆粒大小及組成鑑定 83
3.4電極/電解質界面極化分析 86
3.5 不同粉末性質之單電池效能 86
3.6 電池最佳化流速 92
3.7 電解質最小厚度之電池效能 94
3.8 電極結構鑑定及孔隙率 98
3.9 不同電解質厚度顯微鏡觀察 103
3.10 不同電解質厚度之單電池效能 106
3.11 電池過電位分析 109
3.12 純氧下電解質最小厚度之電池最佳化流速 111
3.13離子遷移數與速率決定步驟 115
3.14 電池效能與文獻比較 119
3.15 小結論 122
第四章 陽極負載複合電解質中溫固體氧化物燃料電池之性能研究 124
4.1 前言 124
4.2 製備複合電解質中溫固體氧化物燃料電池 125
4.3 複合電解質之單電池效能 126
4.4複合電解質之導電率、離子遷移數、極化電阻、PPD之分析影響 131
4.5小結論 137
第五章 複合電極於CGO電解質中溫固體氧化物燃料電池之性能研究 139
5.1 複合陰極前言 139
5.2 製備Pt/LSCF複合陰極於CGO電解質中溫固體氧化物燃料電池 140
5.3複合陰極之單電池效能 140
5.4複合陰極之電極活性、極化電阻、PPD之分析影響 146
5.5 複合陽極前言 150
5.6 製備Mn-Ni/CGO複合陽極於CGO電解質中溫固體氧化物燃料電池 151
5.7 Ni/CGO陽極通入甲烷之單電池效能 152
5.8 Mn-Ni/CGO複合陽極通入甲烷之單電池效能 155
5.9小結論 161
第六章 結論 164
第七章 參考文獻 168
第七章、參考文獻
[1] R.M. Ormerod, Chem. Soc. Rev. 32 (2003) 17
[2] J.Z. Tafel. Physik. Chem. 50 (1905) 641
[3] J. C. Boivin, G. Mairesse, Chem. Mater. 10 (1998) 2870
[4] J. Molenda, K. Świerczek, W. Zając, J. Power Sources 173 (2007) 657
[5] M. Mogensen, N.M. Sammes, G.A. Tompsett, Solid State Ionics 129 (2000) 63
[6] Y. Jung, S. Wang, Y. Zhang, J. Yan, W. Li, J. Electrochem. Soc.145 (1998) 373
[7] M. J. L.Østergård, C. Clausen, C. Bagger, M. Mogensen, Electrochem. Acta. 40 (1995) 1971
[8] H. Inaba, H. Tagawa, Solid State Ionics 83 (1996) 1
[9] J.B. Goodenough, Annu. Rev. Mater. Res. 33 (2003) 91
[10] V.A. Sadykov, T.G. Kuznetsova, G.M. Alikina, Catal. Today 93-95 (2004) 45
[11] L. Navarro, F. Marques, J. Frade, J. Electrochem. Soc. 144 (1997) 267
[12] T. Kolodiazhnyi, A. Petric, J. Electroceram, 15 (2005) 5
[13] J.T.S Irvine, D.I. Fagg, J. Labrincha, F.M.B. Marques, Catal. Today 38 (1997) 467
[14] C. Fu, K. Sun, N. Zhang, X. Chen, D. Zhou, Electrochim. Acta 52 (2007) 4589
[15] Y. Wang, S. Wang, Z. Wang, T. Wen, Z. Wen, J. Alloys Compd.428 (2007) 286
[16] J.P. Hee, M.C. Gyeong, J. Eur. Ceram. Soc. 24 (2004) 1313
[17] S.M. Haile, Acta Materialia 51 (2003) 5981
[18] Y.Q. Jia, J. Solid. State. Chem. 95 (1991) 184
[19] E. Ivers-Tiffee, A. Weber, D. Herbstritt, J. European Ceramic Soc. 21 (2001) 1805
[20] R. Doshi, V.L. Richards, J.D. Carter, X. P. Wang, M. K. Fueki, J. Electrochem. Soc. 146 (4)(1999) 1273
[21] G.M. Christie, F.P.F. van Berkel, Solid State Ionics 83 (1996) 17
[22] C. Milliken, S. Guruswamy, A. Khandkar, J. Electrochem. Soc. 146 (1999) 872
[23] K. Eguchi, T. Setoguchi, T. Inoue, H. Arai, Solid State Ionics 52 (1992) 165
[24] V.V. Kharton, F.M.B. Marques, A. Atkinson, Solid State Ionics 174 (2004) 135
[25] K. Yamaji, H. Negishi, T. Horita, N. Sakai, H. Yokokawa, Solid State Ionics 135 (2000) 389
[26] P.R. Slater, J.T.S. Irvine, Solid State Ionics 120 (1999) 125
[27] S. Hui, A. Petric, Solid State Ionics 143 (2001) 275
[28] D.W. Dees, T.D. Claar, T.E. Easler, D.C. Fee, F. C. Mrazek, J. Electrochem. Soc. 134 (1987) 2141
[29] E.I. Tiffee, W. Wersing, M. Schiebi, H. Greiner, B. Bunserrges, Phys. Chem. 94 (1990) 978
[30] H. Itoh, T. Yamamoto, M. Mori, T. Horita, N. Sakai, H. Yokokawa, M. Dokiya, J. Electrochem. Soc. 144 (1997) 641
[31] T. Iwata, J. Electrochem. Soc. 143 (1996) 1521
[32] A . Hammouch, E. Siebert, A. Hammou, Mater. Res. Bull. 24 (1989) 367
[33] J. Liu, A.C. Co, S. Paulson, V.I. Birss, Solid State Ionics 177 (2006) 377
[34] O. Yamamoto, Y. Takeda, R. Kanno, M. Noda, Solid State Ionics 22
(1987) 241
[35] H. Taimatsu, K. Wada, H. Kaneko, J. AM. Ceram. Soc. 75 (1992) 401
[36] J.M. Ralph, A.C. Schoeler, M. Krumpelt, J. Mater. Sci. 36 (2001) 1161
[37] C. Sun, U. Stimming, J. Power Sources (2007), doi:10.1016/j.jpowsour.2007.06.086
[38] J. Will, A. Mitterdorfer, C. Kleinlogel, Solid State Ionics 131 (2000) 79
[39] G. Schiller, R. H. Henne, M. Lang, Fuel Cell Bulletin 31 (2000) 7
[40] X. Xin, Z. Lü, X. Huang, X. Sha, Y. Zhang, W. Su, J. Power Sources 159 (2006)1158
[41] T. Misono, K. Murata, T. Fukui, J. Chaichanawong, K. Sato, H. Abe, M. Naito, J. Power Sources 157 (2006) 754
[42] R.J. Gorte, J.M. Vohs, J. Catal. 216 (2003) 477
[43] Y.J. Leng, S.H. Chan, S.P. Jiang, K.A. Khor, Solid State Ionics 170 (2004) 9
[44] N. Ai, Z. Lü, K. Chen, X. Huang, B. Wei, Y. Zhang, S. Li, X. Xin, X. Sha, W. Su, J. Power Sources 159 (2006) 637
[45] N. Ai, Z. Lü, K. Chen, X. Huang, Y. Liu, R. Wang, W. Su, J. Membr. Sci. 286 (2006) 255
[46] V.V. Khartona, F.M.B. Marquesa, A. Atkinsonb, Solid State Ionics 174 (2004) 135
[47] V. Gil, J. Tartaj, C. Moure, P. Duran, Solid State Ionics 178 (2007) 359
[48] V. Gil, J. Tartaj, C. Moure, P. Duran, J. Eur. Ceram. Soc. 27 (2007) 801
[49] V. Gil, J. Tartaj, C. Moure, P. Duran, J. Eur. Ceram. Soc. 26 (2006) 3161
[50] G. Li, Y. Mao, L. Li, S. Feng, M. Wang, X. Yao, Chem. Mater. 11 (1999) 1259
[51] Z. Zhong, Electrochem. Solid. State. Lett. 9 (4) (2006) A215
[52] L. León-Reina, E.R. Losilla, M. Martínez-Lara, M.C. Martín-Sedeňo, S. Bruque, P. Núňez, D.V. Sheptyakov, M.A.G. Aranda, Chem. Mater. 17 ( 2005) 596
[53] J.E.H. Sansom, A. Najib, P.R. Slater, Solid State Ionics 175 (2004) 353
[54] T. Ishihara, J. Yan, H. Matsumoto, Solid State Ionics 177 (2006) 1733
[55] N. Imanaka, S. Yoshikawa, M. Hiraiwa, S. Tamura, G. Adachi, Mater. Lett. 56 (2002) 856
[56] A. Lashtabeg, J.T.S. Irvine, A. Feighery, Ionics 9 (2003) 220
[57] E. Ramírez-Cabrera, N. Laosiripojana, A. Atkinson, D. Chadwick, Catal. Today 78 (2003) 433
[58] E. Ramírez-Cabrera, A. Atkinson, D. Chadwick, Applied Catalysis B 36 (2002) 193
[59] Y. Hasegawa, S. Tamura, N. Imanaka, G. Adachi, J. Alloys Compd. 379 (2004) 262
[60] J.T.S. Irvine, D.J.D. Corcorana, J. Canales-Vazquez, Solid State Ionics 152-153 (2002) 749
[61] D. Hassan, S. Janes, R. Clasen, J. Eur. Ceram. Soc. 23 (2003) 221
[62] X. Montero, T. Pauporté, A. Ringuedé, R. Vannier, M. Cassir, J. Power Sources 151 (2005) 85
[63] C. Kleinlogel, L.J. Gauckler, Adv. Mater. 13(14) (2001) 1081

[64] T.S. Zhang, J. Ma, S.H. Chan, J.A. Kilner, J. Electrochem. Soc. 151 (10) (2004) J84
[65] X. Xu, C. Xia, S. Huang, G. Meng, Mater. Sci. Forum 475-479 (2005) 1157
[66] S. Li, Z. Lü, B. Wei, X. Huang, J. Miao, Z. Liu, W. Su, J. Alloys Compd. (2006), doi:10.1016/j.jallcom.2006.10.032
[67] J. Zhang, Y. Ji, H. Gao, T. He, J. Liu, J. Alloys Compd. 395 (2005) 322
[68] S. Zha, A. Moore, H. Abernathy, M. Liu, J. Electrochem. Soc. 151(8) (2004) A1128
[69] L.A. Chick, L.R. Pederson, G.D. Maupin, J.L. Bates, L.E. Thomas, G.J. Exarhos,
Mater. Lett. 10 (1,2) (1990) 6
[70] Y. Yang, T. Wen, H. Tu, D. Wang, J. Yang, Solid State Ionics 135 (2000) 475
[71] Z. Xie, W. Zhu, B. Zhu, C. Xia. Electrochim. Acta 51 (2006) 3052
[72]G. Zhu, X. Fang, C. Xia, X. Liu, Ceramics Int. 31 (2005) 115
[73] B. Liu, Y. Zhang, J. Alloys Compd. (2006), doi:10.1016/j.jallcom.2006.11.142
[74] J. Gao, X. Liu, D. Peng, G. Meng, Catal. Today 82 (2003) 207
[75] C. Xia, M. Liu, Solid State Ionics 152-153 (2002) 423
[76] X. Fang, G. Zhu, C. Xia, X. Liu, G. Meng, Solid State Ionics 168 (2004) 31
[77] C. Jiang, J. Ma, X. Liu, G. Meng, J. Power Sources 165 (2007) 134
[78] T. Mahata, G. Das, R.K. Mishra, B.P. Sharma, J. Alloys Compd. 391 (2005) 129
[79] C. Peng, Z. Zhang, Ceramics Int. 33 (2007) 1133
[80]H.M. Xu, H.G. Yan, Z.H. Chen, Mater. Charact. (2007), doi:10.1016/j.matchar.2007.01.017
[81] Z. Zhang, Y. Zhang, Z. Mu, P. Yu, X. Ni, S. Wang, L. Zheng, Applied Catalysis B 76 (2007) 335
[82] S. Polizzi, S. Bucella, A. Speghini, F. Vetrone, R. Naccache, J.C. Boyer, J.A. Capobianco, Chem. Mater. 16 (2004) 1330
[83] S. Lee, Y. Lima, E. A. Lee, H. J. Hwang, J. Moon, J. Power Sources. 157 (2006) 848
[84] Q.A. Huang, R. Hui, B. Wang, J. Zhang, Electrochim. Acta 52 (2007) 8144
[85] K. Sadik, P. Anchasa, Y.Z. Xiang, Int. J. Hydrogen Energy 32 (2007) 761
[86] M.P. Pechini, US Patent 3, 330 (1967) 697
[87] B. Boukamp, Solid State Ionics 20 (1986) 31
[88] J. Jamnik, J. Maier, J. Electrochem. Soc. 146 (1999) 4183
[89] G. B. Balazs, R. S. Glass, Solid State Ionics 76 (1995) 155
[90] B.C.H. Steele, Solid State Ionics 129 (2000) 95
[91] N Q. Minh. J. Am. Ceram. Soc. 76(3)(1993) 563
[92] D. Simwonis, E. Tietz, D. Stover, Solid State Ionics, 132 (2000) 241
[93] T.S. Zhang, J. Ma, L.B. Kong, S.H. Chan, P. Hing, J.A. Kilner, Solid State Ionics 167 (2004) 203
[94] R. Gerhardt, A.S. Nowick, M.E. Mochel, I. Dumler, J. Am. Ceram. Soc. 69(1986) 641
[95] S. Bebelis, N. Kotsionopoulos, A. Mai, F. Tietz, J. Appl. Electrochem. 37 (2007) 15
[96] O. Costa-Nunes, R. J. Gorte, J.M. Vohs, Journal of Power Sources 141 (2005) 241
[97] Y. Huang, J. M. Vohs, R. J. Gorte, J. Electrochem. Soc. 151 (4) (2004) A646
[98] C. Xia, M. Liu, Solid State Ionics 144 (2001) 249
[99] C. Xia, M. Liu, J. Am. Ceram. Soc. 84 (2001) 1903.
[100] X. Zhang, M. Robertson, C. Deĉes-Petit, W. Qu, O. Kesler, R. Maric, D. Ghosh, J. Power Sources 164 (2007) 668
[101] C. Xia, W. Rauch, F. Chen, M. Liu, Solid State Ionics 149 (2002) 11
[102] S.W. Zha, C.R. Xia, G.Y. Meng, J. Appl. Electrochem.31 (2001)93
[103] T. Tsai, E. Perry, S. Barnett, J. Electrochem. Soc. 144(5) (1997) L130
[104] A. Tomita, S. Teranishi, M, Nagao, T. Hibino, M. Sano, J. Electrochem. Soc. 153(6) (2006) A956
[105] X. Zhang, M. Robertson, C. Deĉes-Petit, W. Qu, O. Kesler, R. Maric, D. Ghosh, J. Power Sources 164 (2007) 668
[106] J. Deseure, Y. Bultel, L. Dessemond, E. Siebert, Electrochim.Acta 50 (2005) 2037
[107] J. Kim, G. Kim, J. Moon, Y. Park,W. Lee, K. Kobayashi, M. Nagai, C. Kim,
Solid State Ionics 143 (2001) 379
[108] T. Suzuki, M. Awano, P. Jasinski, V. Petrovsky, H.U. Anderson, Solid State Ionics 177 (2006) 2071
[109] M. Sase, J. Suzuki, K. Yashiro, T. Otake, At. Kaimai, T. Kawada, J. Mizusaki, H. Yugami, Solid State Ionics 177 (2006) 1961
[110] A. Esquirol, N.P. Brandon, J.A. Kilner, M. Mogensenb, J. Electrochem. Soc. 151(11) (2004) A1847
[111] H. Kim, C. Lu, W.L. Worrell, J.M. Vohs, R.J. Gorte, J. Electrochem. Soc. 149(3) (2002) A247
[112] S. Park, R. J. Gorte, J.M. Vohsz, J. Electrochem. Soc. 148(5) (2001) A443
[113] S. McIntosh, J.M. Vohs, R.J. Gorte, Electrochem. Solid State lett. 6(11) (2003) A240
[114] A. Ovalle, J.C. Ruiz-Morales, J. Canales-Vázquez, D. Marrero-López, J.T.S. Irvine, Solid State Ionics 177 (2006) 1997
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top