跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 23:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉瑋鑫
研究生(外文):Wei-Hsin Liu
論文名稱:吡唑特釕金屬錯合物和三苯胺衍生物為基底之染料敏化太陽能電池
論文名稱(外文):Dye-sensitized Solar Cell Based on Pyrazolate Ru(II) Complexes and Triphenylamine Derivatives
指導教授:周必泰
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:83
中文關鍵詞:染料敏化太陽能電池唑特釕金屬錯合物金屬到配位基電荷轉移分子內電荷轉移
外文關鍵詞:dye-sensitized solar cellstridentate bipyridine pyrazolate ligandmetal to ligand charge transferintramolecular charge transfer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
短摘
關鍵詞:染料敏化太陽能電池、吡唑特釕金屬錯合物、金屬到配位基電荷轉移、分子內電荷轉移
在一二章中,描述了一系列以增加吸光範圍為前提所合成的吡唑特釕金屬染料,由於這些染料是由三芽配位基所構成的,所以同時也增加了其熱穩定性。除了上述的優點外,再把其製成元件後,我們發現這些三芽釕金屬錯合物都擁有不錯的光轉換效率。
在第三章裡,在以增加染料吸光係數的前提下,合成了一系列的吡唑特釕金屬錯合物。在達成目標後,我們發現可利用這項優點降低二氧化鈦電極的厚度,進而減少暗電流的產生,而達到較高的開路電壓。在最佳化元件後,HYH060 得到8.07%的光轉換效率。
在第四章裡,為了降低金屬染料價格過高的問題,設計了一系列的三苯胺衍生物為基底的有機染料。在利用3,4-Ethylenedioxythio- phene (EDOT)連接起donor跟acceptor後,增加吸光的範圍,得到了15.5 mA/ cm2的短路電流及7.3%的光轉換效率。
Chapter 1~2. New Family of Ruthenium-Dye-Sensitized Nanocrystalline TiO2 Solar cell
A new series of ruthenium complexes with tridentate bipyridine-pyrazolate ancillary ligands has been synthesized in an attempt to elongate the π-conjugated system as well as to increase the optical extinction coefficient, possible dye uptake on TiO2 and photostability. As for the DSSC application, it was found that the complexes possess highly conversion efficiency under standard AM 1.5 irradiation (100 mW cm-2).

Chapter 3. Strategic Design and Synthesis of Novel Trident Bipyridine Pyrazolate Coupled Ru(II) Complexes to Achieve Superior Solar Conversion Efficiency
A new series of trident bipyridine pyrazolate coupled Ru(II) complexes CK7, CK9, HYH052 and HYH060 were strategically synthesized. In comparison to N719, CK7 and HYH060 achieved the original proposal of gaining absorption extinction coefficient ranging from 350 to ~550 nm, accompanied by lowering of the lowest lying energy gap. These advantages allow us to reduce the thickness of TiO2 layer, resulting in great suppress of dark current and hence increase of Voc. Upon optimization, HYH060 has attained η= 8.07, Jsc= 15.8 mA cm-2, Voc = 753 mV and FF = 0.678, the results of which are superior to that of N719 prepared in this study.

Chapter 4. Simple Organic Molecules Bearing 3,4-Ethylene dioxythiophene Linker for Efficient Dye-Sensitized Solar Cells
3,4-Ethylenedioxythiophene and bis[2-(2-methoxyethoxy) exthoxy]thiophene bridged donor-acceptor molecules LJ1 ~ LJ4 for dye-sensitized solar cells have been synthesized, among which LJ1 achieved a solar-to-energy conversion efficiency of 7.3%, compared to 7.7% optimized for N719 dye
Content
Acknowledgment…………………………………………………… iv

Chinese Abstract…………………………………………………… vi

Abstract…………………………………………………………….. vii

Scheme Captions…………………………………………………… ix

Figure Captions…………………………………………………….. x

Table Captions……………………………………………………… xiii


Chapter 1. New Family of Ruthenium-Dye-Sensitized Nanocrystalline TiO2 Solar Cells with a High Solar-Energy-Conversion Efficiency
Abstract…………………………………………………………………………. 1
Introduction…………………………………………………………………….. 2
Results………………………………………………………………………….... 3
Discussion………………………………………………………………………... 16
Conclusion………………………………………………………………………. 21
Experimental……………………………………………………………………. 21
References……………………………………………………………………….. 28
Chapter 2. Ruthenium-based Complexes Incorporating Tridentate Ancillary Ligands; Fine-tuning HOMO Rather than LUMO in DSSC Applications
Introduction…………………………………………………………………… 32
Experimental Sections………………………………………………………… 33
Results and discussion………………………………………………………… 39
Conclusion……………………………………………………………………… 48
References……………………………………………………………………… 48

Chapter 3. Strategic Design and Synthesis of Novel Trident Bipyridine Pyrazolate Coupled Ru(II) Complexes to Achieve Superior Solar Conversion Efficiency
Abstract………………………………………………………………………… 51
Introduction……………………………………………………………………. 52
Experimental Sections………………………………………………………… 53
Results and discussion………………………………………………………… 54
Conclusion……………………………………………………………………… 61
References……………………………………………………………………… 62

Chapter 4. Simple Organic Molecules Bearing 3,4-Ethylene dioxythiophene Linker for Efficient Dye-Sensitized Solar Cells
Abstract................................................................................................................ 64
Introduction……………………………………………………………………. 65
Results and discussion………………………………………………………… 66
Experimental Sections………………………………………………………… 72
References……………………………………………………………………… 81
Chapter 1. New Family of Ruthenium-Dye-Sensitized Nanocrystalline TiO2 Solar Cells with a High Solar-Energy-Conversion Efficiency
[1]M. K. Nazeeruddin, M. Grätzel, in Molecular and Supramolecular Photochemistry; Ramamurthy, V., Schanze, K., Vol. 10 (Ed.; Marcel-Dekker), New York, 2002, pp 301-343.
[2](a) M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos, M. Grätzel, J. Am. Chem. Soc. 1993, 115, 6382. (b) M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, J. Am. Chem. Soc. 2001, 123, 1613. (c) O. Kohle, S. Ruile, M. Grätzel, Inorg. Chem. 1996, 35, 4779.
[3](a) M. Yanagida, T. Yamaguchi, M. Kurashige, K. Hara, R. Katoh, H. Sugihara, H. Arakawa, Inorg. Chem. 2003, 42, 7921. (b) G. Sauve, M. E. Cass, S. J. Doig, I. Lauermann, K. Pomykal, N. S. Lewis, J. Phys. Chem. B 2000, 104, 3488. (c) R. Argazzi, C. A. Bignozzi, T. A. Heimer, F. N. Castellano, G. J. Meyer, Inorg. Chem. 1994, 33, 5741. (d) T. A. Heimer, E. J. Heilweil, C. A. Bignozzi, G. J. Meyer, J. Phys. Chem. A 2000, 104, 4256. (e) A.S. Polo, M. K. Itokazu, N. Y. Mä Iha, Coord. Chem. Rev. 2004, 248, 1343–1361. (f) N. Robertson, Angew. Chem. Int. Ed. 2006, 45, 2338. (g) A. Islam, F. A. Chowdhury, Y. Chiba, R. Komiya, N. Fuke, N. Ikeda, K. Nozaki, L. Han Chem. Mater., 2006, ASAP. (h) C.-Y. Chen, S.-J. Wu, C.-G. Wu, J.-G. Chen, K.-C. Ho, Angew. Chem. Int. Ed. 2006, 45, 5822.
[4](a) C.-C. Cheng, W.-S. Yu, P.-T. Chou, S.-M. Peng, G.-H. Lee, P.-C. Wu, Y.-H. Song, Y. Chi, Chem. Commun. 2003, 2628. (b) P.-T. Chou,Y. Chi, Eur. J. Inorg. Chem. 2006, 3319.
[5]A. Islam, H. Sugihara, M. Yanagida, K. Hara, G. Fujihashi, Y. Tachibana, R. Katoh, S. Murataa, H. Arakawa, New. J. Chem. 2002, 26, 966.
[6](a) K.-J. Jiang, N. Masaki, J.-B. Xia, S. Noda, S. Yanagida, Chem. Commun. 2006, 2460. (b) S.-R. Jang, R. Vittal, J. Lee, N. Jeong, K.-J. Kim, Chem. Commun. 2006, 103. (c) D. P. Hagberg, T. Edvinsson, T. Marinado, G. Boschloo, A. Hagfeldt, L. Sun, Chem. Commun. 2006, 2245.
[7]A. Hagfeldt, M. Grätzel, Acc. Chem. Res. 2000, 33, 269.
[8]E. C. Constable, F. Heirtzler, M. Neuburger, M. Zehnder, J. Am. Chem. Soc. 1997, 119, 5606.
[9]T. Kaminski, P. Gros, Y. Fort, Eur. J. Org. Chem. 2003, 3855.
[10](a) A. R. Oki, R. J. Morgan, Synth. Commun. 1995, 25, 4093. (b) M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Grätzel, J. Am. Chem. Soc. 2001, 123, 1613.
[11]D. P. Rillema, D. S. Jones, C. Woods, H. A. Levy, Inorg. Chem. 1992, 31, 2935.
[12]M. Abrahamsson, H. Wolpher, O. Johansson, J. Larsson, M. Kritikos, L. Eriksson, P.-O. Norrby, J. Bergquist, L. Sun, B. Åkermark, L. Hammarstroem, Inorg. Chem. 2005, 44, 3215.
[13]Y.-L. Tung, S.-W. Lee, Y. Chi, L.-S. Chen, C.-F. Shu, F.-I. Wu, A. J. Carty, P.-T. Chou, S.-M. Peng, G.-H. Lee, Adv. Mater. 2005, 17, 1059.
[14]Y.-L. Tung, L.-S. Chen, Y. Chi, P.-T. Chou, Y.-M. Cheng, E. Y. Li, G.-H. Lee, C.-F. Shu, F.-I. Wu, A. J. Carty, Adv. Funct. Mater. 2006, 16, 1615.
[15](a) M. L. Scudder, D. C. Craig, H. A. Goodwin, Cryst. Eng. Commun. 2005, 7, 642. (b) S. Pyo, E. Perez-Cordero, S. G. Bott, L. Echegoyen, Inorg.Chem. 1999, 38, 3337.
[16]M. K. Nazeeruddin, S. M. Zakeeruddin, J.-J. Lagref, P. Liska, P. Comte, C. Barolo, G. Viscardi, K. Schenk, M. Grätzel, Coord. Chem. Rev. 2004, 248, 1317.
[17]S. M. Zakeeruddin, M. K. Nazeeruddin, P. Pechy, F. P. Rotzinger, R. Humphry-Baker, K. Kalyanasundaram, M. Grätzel, V. Shklover, T. Haibach, Inorg. Chem. 1997, 36, 5937.
[18]R. H. Herber, G. Nan, J. A. Potenza, H. J. Schugar, A. Bino, Inorg. Chem. 1989, 28, 938.
[19]C. C. Cheng, J. G. Goll, G. A. Neyhart, T. W. Welch, P. Singh, H. H. Thorp, J. Am. Chem. Soc. 1995, 117, 2970.
[20]M. K. Nazeeruddin, Q. Wang, L. Cevey, V. Aranyos, P. Liska, E. Figgemeier, C. Klein, N. Hirata, S. Koops, S. A. Haque, J. R. Durrant, A. Hagfeldt, A. B. P. Lever, M. Grätzel, Inorg. Chem. 2006, 45, 787.
[21](a) A. V. Titov, N. S. Mosyagin, V. F. Ezhov, Phys. Rev. Lett. 1996, 77, 5346. (b) W. C. Ermler, M. M. Marino, J. Chem. Inf. Comput. Sci. 2001, 41, 77. (c) A. V. Titov, N. S. Mosyagin, Int. J. Quant. Chem. 1999, 71, 359. (d) A. V. Titov, Int. J. Quant. Chem. 1998, 57, 453 and reference therein.
[22](a) E. Duliere, M. Devillers, J. Marchand-Brynaert, Organometallics 2003, 22, 804. (b) M. A. Bennett, T. N. Huang, T. W. Matheson, A. K. Smith, Inorg. Synth. 1982, 21, 74.
[23]N. Papageorgiou, W. F. Maier, M. Grätzel J. Electrochem. Soc. 1997, 144, 876.
[24]C. Klein, M. K. Nazeeruddin, D. Di Censo, P. Liska, M. Grätzel, Inorg. Chem. 2004, 43, 4216.
[25]M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, Jr., J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian, Inc., Wallingford, CT, 2004, Gaussian 03 (Revision C.02)
[26]C. Alamo, G. E. Scuseria, V. Barone, J. Chem. Phys. 1999, 111, 2889.
[27]W.J. Stevens, M. Krauss, H. Basch, P.G. Jasien, Can. J. Chem. 1992, 70, 612.

Chapter 2. Ruthenium-based Complexes Incorporating Tridentate Ancillary Ligands; Fine-tuning HOMO Rather than LUMO in DSSC Applications
[1] (a) Grätzel, M. Nature 2001, 414, 338. (b) Nazeeruddin, M. K.; Grätzel, M. in Molecular and Supramolecular Photochemistry; Ramamurthy, V., Schanze, K., Eds.; Marcel-Dekker: New York, 2002; Vol. 10, pp 301-343. (c) Nakade, S.; Saito, Y.; Kubo, W.; Kitamura, T.; Wada, Y.; Yanagida, S. J. Phys. Chem. B 2003, 107, 8607.(d) Palomares, E.; Clifford, J. N.; Haque, S. A.; Lutz, T.; Durrant, J. R. J. Am. Ceram. Soc. 2003, 125, 475. (e) Hara, K.; Sato, T.; Katoh, R.; Furube, A.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama, K.; Sugihara, H.; Arakawa, H. J. Phys. Chem. B 2003, 107, 597.
[2] Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.;Muller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am. Chem. Soc. 1993, 115, 6382.
[3] (a) Wang, P.; Klein, C.; Humphry-Baker, R.; Zakeeruddin, S. M.; Grätzel, M. J. Am. Chem. Soc. 2005, 127, 808. (b) Kuang, D.; Klein, C.; Snaith, H. J. ; Moser, J. E. ; Humphry-Baker, R.; Comte, P.; Zakeeruddin, S. M. ; Grätzel, M. Nano. Lett. 2006, 6, 769. (c) Karthikeyan, C. S.; Wietasch, H.; Thelakkat, M. Adv.Mater. 2007, 19, 1095. (d) Kuang, D.; Klein, C.; Ito, S.; Moser, J. E. ; Humphry-Baker, R.; Evans, N.; Duriaux, F.; Grätzel, C.; Zakeeruddin, S. M. ; Grätzel, M. Adv.Mater. 2007, 19, 1133. (e) Chen, C.-Y.; Wu, S.-J.; Wu, C.-G.; Chen, J.-G.; Ho, K.-C. Angew. Chem. Int. Ed. 2006, 45, 5822. (f) Chen, C.-Y.; Wu, S.-J.; Li, J.-Y.; Wu, C.-G.; Chen, J.-G.; Ho, K.-C. Adv.Mater. 2007, 19, 3888.
[4](a) Nazeeruddin, M. K.; Péchy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Grätzel, M. J. Am. Chem. Soc. 2001, 123, 1613.(b) Islam, A.; Chowdhury, F. A.; Chiba, Y.; Komiya, R.; Fuke, N.; Ikeda, N.; Nozaki, K.; Han, L. Chem. Mater. 2006, 18, 5178.
[5] Islam, A.; Sugihara, H.; Yanagida, M.; Hara, K.; Fujihashi, G.; Tachibana, Y.; Katoh, R.; Murataa, S.; Arakawa, H. New J. Chem. 2002, 26, 966.
[6] M. A. Bennett, T. N. Huang, T. W. Matheson, A. K. Smith, Inorg. Synth. 1982, 21, 74.
[7] Md. K. Nazeeruddin, S. M. Zakeeruddin, J.-J. Lagref, P. Liska, P. Comte, C. Barolo, Viscardi, K. Schenk, M. Grätzel. Coord. Chem. Rev. 2004, 248, 1317
[8] F. R. Heirtzler, Synlett 1999, 8, 1203
[9] (a) Facchetti, A.; Abbotto, A.; Beverina, L.; Bradanante, S.; Mariani, P.; Stern, C. L.; Marks, T. J.; Vacca, A. Pagani, G. A. Chem. Commun. 2004, 15, 1770. (b) Song, Y.-H.; Chiu, Y.-C.; Chi, Y.; Chou, P.-T.; Cheng, Y.-M.; Lin, C.-W.; Lee, G.-H.; Carty, A. J. Organometallics 2008, 2141.
[10] P. G. Hoertz, A. Staniszewski, A. Marton, G. T. Higgins, C. D. Incarvito, A. L. Rheingold, G. J. Meyer, J. Am. Chem. Soc. , 2006, 128, 8234.
[11] Wang, P.; Zakeeruddin, S. M.; Comte, P.; Charvet, R.; Humphry-Baker, R.; Grätzel, M. J. Phys. Chem. B 2003, 107, 14336.
[12] Chen, K.-S.; Liu, W.-H.; Wang, Y.-H.; Lai, C.-H.; Chou, P.-T.; Lee, G.-H.; Chen, K.; Chen, H.-Y.; Chi, Y.; Tung F.-C. Adv. Funct. Mater. 2007, 17, 2964.
[13] (a) Yanagida, M.; Yamaguchi, T.; Kurashige, M.; Fujihashi, G.; Hara, K.; Katoh, R.; Sugihara, H.; Arakawa, H. Inorg. Chim. Acta 1999, 296, 250. (b) Yanagida, M.; Yamaguchi, T.; Kurashige, M.; Hara, K.; Katoh, R.; Sugihara, H.; Arakawa, H. Inorg. Chem. 2003, 42, 7921.
[14] (a) Alamo, C.; Scuseria, G. E.; Barone, V. J. Chem. Phys. 1999, 111, 2889. (b) Stevens, W. J.; Krauss, M.; Basch, H.; Jasien, P. G. Can. J. Chem. 1992, 70, 612.
[15] Dutoi, A. D.; Head-Gordon, M. Chem. Phys. Lett. 2006, 422, 230.
[16] (a) Vaswani, H. M.; Hsu, C.-P.; Head-Gordon, M.; Fleming, G. R. J. Phys. Chem. B 2003, 107, 7940. (b) Kurashige, Y.; Nakajima, T.; Kurashige, S.; Hirao, K.; Nishikitani, Y. J. Phys. Chem. A 2007, 111, 5544. (c) Yang, D.-Y.; You-Sheng Chen, Y.-S.; Pei-Yu Kuo, P.-Y.; Lai, J.-T.; Jiang, C.-M.; Lai, C.-H.; Liao, Y.-H.; Chou P.-T. Org. Lett. 2007, 5287.
[17] (a) Hagfeldt, A.; Grätzel, M. Chem. Rev. 1995, 95, 49. (b) Yanagida, M.; Islam, A.; Tachibana, Y.; Fujihashi, G.; Katoh, R.; Sugihara, H.; Arakawa, H. New J. Chem. 2002, 26, 963.
[18] (a) Sauvé, G.; Cass, M. E.; Coia, G.; Doig, S. J.; Lauermann, I.; Pomykal, K. E.; Lewis, N. S.; J. Phys. Chem. B 2000, 104, 6821. (b) Islam, A.; Sugihara, H.; Hara, K.; Singh, L. P.; Katoh, R.; Yanagida, M.; Takahashi, Y.; Murata, S.; Arakawa, H. J. Photochem. Photobiol. A 2001, 145, 135.
[19] Klein, C.; Nazeeruddin, M. K.; Censo, D. D.; Liska, P,; Grätzel, M. Inorg. Chem. 2004, 43, 4216.

Chapter 3. Strategic Design and Synthesis of Novel Trident Bipyridine Pyrazolate Coupled Ru(II) Complexes to Achieve Superior Solar Conversion Efficiency
1M. K. Nazeeruddin, M. Grätzel, in Molecular and Supramolecular Photochemistry (Eds: V. Ramamurthy, K. Schanze), Vol. 10, Marcel-Dekker, New York, NJ 2002, pp. 301–343.
2M. K. Nazeeruddin, A. Kay, I. Rodicio, R. H. Baker, E. Muller, P. Liska, N. Vlachopoulos and M. Grätzel, J. Am. Chem. Soc., 1993, 115, 6382.
3M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeeruddin, R. H. Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia,G. B.Deacon, C. A. Bignozzi and M. Grätzel, J. Am. Chem. Soc., 2001, 123, 1613.
4F. Gao, Y. Wang, J. Zhang, D. Shi, M. Wang, R. H. Baker, P. Wang, S. M. Zakeeruddin and M. Grätzel, Chem. Commun., 2008, 2635.
5D. Kuang, S. Ito, B. Wenger, C. Klein, J. Moser, R. H. Baker, S. M. Zakeeruddin and M. Grätzel, J. Am. Chem. Soc., 2006, 128, 4146.
6D. Kuang, C. Klein, S. Ito, J. Moser, R. H. Baker, S. M. Zakeeruddin and M. Grätzel, Adv. Funct. Mater. 2007, 17, 154.
7D. Kuang, C. Klein, S. Ito, J. Moser, R. H. Baker, N. Evans, F. Duriaux, C. Grätzel, S. M. Zakeeruddin and M. Grätzel, Adv. Mater. 2007, 19, 1133.
8C. –Y. Chen, J. –G. Chen, S. –J. Wu, J. –Y. Li, C. –G Wu and K. –C Ho, Angew. Chem. Int. Ed., 2008, 47, 7342.
9A. Islam, F. A. Chowdhury, Y. Chiba, R. Komiya, N. Fuke, N. Ikeda, K. Nozaki and L. Han, Chem. Mater. 2006, 18, 5178.
10 K. –S. Chen, W. -H. Liu, Y. –H. Wang, C. –H. Lai, P. –T. Chou, G. –H. Lee, K. Chen, H. –Y. Chen, Y. Chi and F. –C. Tung, Adv. Funct. Mater. 2007, 17, 2964.
11 A. Islam, H. Sugihara, M. Yanagida, K. Hara, G. Fujihashi, Y. Tachibana, R. Katoh, S. Murataa and H. Arakawa, New J. Chem. 2002, 26, 966.
12 P. Wang, S. M. Zakeeruddin, P. Comte,; R. Charvet, R. H. Baker and M. Grätzel, J. Phys. Chem. B. 2003, 107, 14336.
13S. Ito, M. K. Nazeeruddin, P. Liska, P. Comte, R. Charvet, P. Péchy, M. Jirousek, A. Kay, S. M. Zakeeruddin and M. Grätzel, Prog. Photovolt: Res. Appl.. 2006, 14, 589.
14 J. Nelson and R. E. Chandler, Coord. Chem. Rev. 2004, 248, 1181.
15 R. Kato, A. Furube, A. V. Barzykin, H. Arakawa and M. Tachiya, Coord. Chem. Rev. 2004, 248, 1195.
16 M. Grätzel, Inorg. Chem. 2005, 44, 6841.
17S. Ito, S. M. Zakeeruddin, R. H. Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida and M. Grätzel, Adv. Mater. 2006, 18, 1202.
18F. Matar, T. H. Ghaddar, K. Walley, T. DosSantos, J. R. Durrant and B. O’Regan, J. Mater. Chem., 2008, 18, 4246

Chapter 4. Simple Organic Molecules Bearing 3,4-Ethylene dioxythiophene Linker for Efficient Dye-Sensitized Solar Cells
1M. K. Nazeeruddin, M. Grätzel, in Molecular and Supramolecular Photochemistry (Eds: V. Ramamurthy, K. Schanze), Vol. 10, Marcel-Dekker, New York, NJ 2002, pp. 301–343.
2M. K. Nazeeruddin, A. Kay, I. Rodicio, R. H. Baker, E. Muller, P. Liska, N. Vlachopoulos and M. Grätzel, J. Am. Chem. Soc., 1993, 115, 6382.
3M. K. Nazeeruddin, P. Péchy, T. Renouard, S. M. Zakeeruddin, R. H. Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia,G. B.Deacon, C. A. Bignozzi and M. Grätzel, J. Am. Chem. Soc., 2001, 123, 1613.
4(a) F. Gao, Y. Wang, J. Zhang, D. Shi, M. Wang, R. H. Baker, P. Wang, S. M. Zakeeruddin and M. Grätzel, Chem. Commun., 2008, 2635. (b) F. Gao, Y. Wang, D. Shi, J. Zhang, M. Wang, X. Jing, R. H. Baker, P. Wang, S. M. Zakeeruddin and M. Grätzel, J. Am. Chem. Soc., 2008, A.S.A.P.
5(a) K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga and H. Arakawa, Chem. Commun., 2001, 569. (b) T. Horiuchi, H. Miura, and S. Uchida, Chem. Commun., 2003, 3036. (c) Y. S. Chen, C. Li, Z. H. Zeng, W. B. Wang, X. S. Wang, B. W. Zhang, J. Mater. Chem. 2005, 15, 1654. (d) K. Hara, Z.-S. Wang, T. Sato, A. Furube, R. Katoh, H. Sugihara, Y. Dan-oh, C. Kasada, A. Shinpo, and S. Suga, J. Phys. Chem. B, 2005, 109, 15476. (e) D. P. Hagberg, T. Edvinsson, T. Marinado, G. Boschloo, A. Hagfeldt, and L. Sun, Chem. Commun., 2006, 2245. (f) Z. S. Wang, Y. Cui, K. Hara, Y. Dan-oh, C. Kasada and A. Shinpo, Adv. Mater., 2007, 19, 1138. (g) S. Hwang, J. H. Lee, C. Park, H. Lee, C. Kim, C. Park, M.-H. Lee, W. Lee, J. Park, K. Kim, N.-G. Park, and C. Kim, Chem. Commun., 2007, 4887. (h) I. Jung, J. K. Lee, K. H. Song, K. Song, S. O. Kang, and J. Ko, J. Org. Chem., 2007, 72, 3652. (i) P. Qin, X. Yang, R. Chen, L. Sun, T. Marinado, T. Edvinsson, G. Boschloo, and A. Hagfeldt, J. Phys. Chem. C, 2007, 111, 1853. (j) M.-S. Tsai, Y.-C. Hsu, J. T. Lin, H.-C. Chen, and C.-P. Hsu, J. Phys. Chem. C, 2007, 111, 18785. (k) W. H. Howie, F. Claeyssens, H. Miura, and L. M. Peter, J. Am. Chem. Soc., 2008, 130, 1367. (l) D. Kuang, S. Uchida, R. Humphry-Baker, S. M. Zakeeruddin and M. Grätzel, Angew. Chem. Int. Ed., 2008, 47, 1923.
6Z. Chen, F. Li, and C. Huang, Curr. Org. Chem., 2007, 11, 1241.
7D. P. Hagberg, T. Marinado, K. M. Karlsson, K. Nonomura, P. Qin, G. Boschloo, T. Brinck, A. Hagfeldt and L. Sun, J. Org. Chem., 2007, 72, 9550.
8(a) K. R. J. Thomas, J. T. Lin, Y.-C. Hsu, and K.-C. Ho, Chem. Commun., 2005, 4098. (b) S.-L. Li, K.-J. Jiang, K.-F. Shao, and L.-M. Yang, Chem. Commun., 2006, 2792. (c) R. Chen, X. Yang, H. Tian, X. Wang, A. Hagfeldt, and L. Sun, Chem. Mater., 2007, 19, 4007. (d) Z. Ning, Q. Zhang, W. Wu, H. Pei, B. Liu, and H. Tian, J. Org. Chem., 2008, 73, 3791.
9(a) H. Choi, J. K. Lee, K. H. Song, K. Song, K. S. Ook, and J. Ko, Tetrahedron, 2007, 63, 1553. (b) Q. Peng, K. Park, T. Lin, M. Durstock, and L. Dai, J. Phys. Chem. B, 2008, 112, 2801. (c) J. Xia, N. Masaki, M. Lira-Cantu, Y. Kim, K. Jiang, and S. Yanagida, J. Am. Chem. Soc., 2008, 130, 1258.
10 (a) M. Velusamy, K. R. J. Thomas, J. T. Lin, Y.-C. Hsu and K.-C. Ho, Org. Lett., 2005, 7, 1899. (b) K. R. J. Thomas, Y.-C. Hsu, J. T. Lin, K.-M. Lee, K.-C. Ho, C.-H. Lai, Y.-M. Cheng, and P.-T. Chou, Chem. Mater., 2008, 20, 1830.
11 C. Klein, M. K. Nazeeruddin, D. D. Censo, P. Liska and M. Grätzel, Inorg. Chem., 2004, 43, 4216.
12 G. Boschloo, L. Häggman and A. Hagfeldt, J. Phys. Chem. B, 2006, 110, 13144.
13 W. Xu, B. Peng, J. Chen, M. Liang and F. Cai, J. Phys. Chem. C, 2008, 112, 874.
14(a) H. Tian, X. Yang, R. Chen, Y. Pan, L. Li, A. Hagfeldt, and L. Sun, Chem. Commun., 2007, 3741. (b) M. Liang, W. Xu, F. Cai, P. Chen, B. Peng, J. Chen and Z. Li, J. Phys. Chem. C., 2007, 111, 4465.
15 N. Koumura, Z.-S. Wang, S. Mori, M. Miyashita, E. Suzuki and K. Hara, J. Am. Chem. Soc., 2006, 128, 14256.
16 D. Kuang, C. Klein, S. Ito, J. Moser, R. H. Baker, S. M. Zakeeruddin and M. Grätzel, Adv. Funct. Mater. 2007, 17, 154.
17 P. Wang, S. M. Zakeeruddin, P. Comte,; R. Charvet, R. Humphry-Baker and M. Grätzel, J. Phys. Chem. B, 2003, 107, 14336.
18 K. R. J. Thomas, Y.-C. Hsu, J. T. Lin, K.-M. Lee, K.-C. Ho, C.-H. Lai, Y.-M. Cheng, and P.-T. Chou, Chem. Mater., 2008, 20, 1830.
19 M. Liang, W. Xu, F. Cai, P. Chen, B. Peng, J. Chen and Z. Li, J. Phys. Chem. C., 2007, 111, 4465.
20 S. Hwang, J. H. Lee, C. Park, H. Lee, C. Kim, C. Park, M.-H. Lee, W. Lee, J. Park, K. Kim, N.-G. Park, and C. Kim, Chem. Commun., 2007, 4887.
21 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M.Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M.Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, GAUSSIAN 03 (Revision C.02), Gaussian, Inc., Wallingford, CT, 2004.
22 (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648. (b) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785.
23 (a) R. Bauernschmitt and R. Ahlrichs, Chem. Phys. Lett., 1996, 256, 454. (b) M. E. Casida, C. Jamorski, K. C. Casida and D. R. Salahub, J. Chem. Phys., 1998, 108, 4439.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top