跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/14 12:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:胡俊民
研究生(外文):Jun-Min Hu
論文名稱:酯解酵素基因可能參與金黃色葡萄球菌之生物膜形成
論文名稱(外文):A Putative Esterase Might Be Involved in Biofilm Development of Staphylococcus aureus
指導教授:鄧麗珍鄧麗珍引用關係
指導教授(外文):Lee-Jene Teng
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學檢驗暨生物技術學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:69
中文關鍵詞:金黃色葡萄球菌生物膜酯解酵素跳躍基因致突變
外文關鍵詞:Staphylococcus aureusbiofilmesterasetransposonmutagenesis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:388
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
金黃色葡萄球菌 (Staphylococcus aureus ) 是人類重要的致病菌,可引起多種臨床症狀如傷口感染、食物中毒,及嚴重的骨髓炎、菌血症、心內膜炎等。臨床上可發現金黃色葡萄球菌常以生物膜的型態引起疾病,特別在醫療器材如導管、人工瓣膜等相關的感染上。生物膜是細菌吸附於表面,被胞外基質包覆所組成的多細胞群體結構,處於生物膜的型態有利於細菌逃避宿主的免疫系統,及抵抗環境中各種壓力,包括增加細菌的抗藥性,導致生物膜的感染在治療上非常困難,而使生物膜相關的研究逐漸受到重視。

本論文中利用跳躍基因致突變法 (transposon mutagenesis) 建構突變株庫,以生物膜微量培養盤試驗,從中篩選到一株生物膜形成能力明顯降低的突變株,並作進一步的分析,希望藉此找出金黃色葡萄球菌中可能與生物膜形成相關的基因,並探討此基因參與生物膜形成的機制。此突變株先經Southern blot確認transposon 為單一嵌入其基因體中,再以反向PCR及 DNA定序找出 transopson所在位置,並與S. aureus NCTC8325全基因體序列做比對分析,結果發現被破壞的區域為一未知功能的基因,具有 α/β hydrolase的蛋白質功能區,預測的產物為酯解酵素。

比較突變株和野生型菌株的生長曲線,發現兩者在生長速率上無明顯的差異,顯示生物膜形成缺陷並非由於生長慢使菌體累積不足造成。進行初級吸附的實驗,突變株吸附至聚苯乙烯表面的能力比野生型菌株差;分析菌體的疏水性質,突變株的疏水性較野生型菌株低,結果顯示突變株在菌體吸附於表面的階段上具有缺陷。

透過基因補償實驗及建構基因刪除突變株,討論生物膜形成的缺陷是否因為此基因被破壞後造成的影響。並嘗試利用一維及二維電泳比較突變株與野生型菌株在蛋白質表現上的差異,找出可能與生物膜形成相關的蛋白質。
Staphylococcus aureus is an important human pathogen, which can cause a variety of diseases, for example, wound infection, food poison, life-threatening osteomyelitis, bacteremia and endocartidis. Biofilm infections associated with S. aureus account for serious clinical problems, especially in medical device-related infections. Biofilms are multi-cellular communities consist of surface-attached microorganisms encased by extracellular matrix. Bacteria living in biofilm mode can escape from host immune systems and resist to adverse stress in the environment. Biofilm cells are more tolerant to antimicrobial agents thus are notoriously difficult to treat.

In this study, a transposon mutant library was generated by transposon mutagenesis and the biofilm activity was screened by microtiter plate assay. One mutant strain with significantly reduced biofilm capacity has been selected. Further analysis was performed to identity the transposon disrupted gene and it’s role in S. aureus biofilm formation. Single transposon insertion was confirmed by Southern blot analysis. Comparison with S. aureus NCTC8325 whole genome sequence, the region disrupted by transposon encodes a putative esterase, which belongs to the α/β hydrolase family.

There was no significant difference in growth rate between wild type and the mutant, suggest that the reduced biofilm phenotype was not due to insufficient cell accumulation. In the initial attachment experiment, the mutant displayed weaker adherence to polystyrene surface than wild type. The mutant strain also exhibited lower hydrophobicity compared to wild type. These results implied that the surface attachment capacity of the mutant was impaired.

Gene complementation and deletion experiments were conducted to verify the altered biofilm phenotype resulted from est gene disruption. We used 2D electrophoresis to compare the protein expression profile between wild type and mutant, and attempted to identify proteins possibly involved in biofilm formation.
口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract v
目 錄 vii

第一章 緒論 1

第二章 材料與方法 9
2.1 實驗用菌株及質體 9
2.2 實驗所用之引子 10
2.3 建構突變株庫 (mutant library) 11
2.4 生物膜微量盤試驗 (biofilm microtiter plate assay) 12
2.5 金黃色葡萄球菌染色體核酸 (chromosomal DNA) 之萃取 13
2.6 南方墨點法 (Southern blot) 14
2.7 反向聚合酵素連鎖反應 (inverse PCR) 16
2.8 核酸定序 (DNA sequencing) 17
2.9 測定生長曲線 18
2.10 初級吸附 (initial adherence) 能力測試 19
2.11 菌體疏水性 (hydrophobicity) 測試 19
2.12 蛋白質一維電泳分析 20
2.13 Wall teichoic acid (WTA) 萃取及電泳分析 21
2.14 蛋白質二維電泳分析 23
2.15 測定est基因之表現 24
2.16 尋找est 基因之轉錄起點 (transcription start site ) 27
2.17 基因補償實驗 (complementation) 29
2.18 建構基因刪除突變株 (deletion mutant) 30

第三章 實驗結果 32
3.1 建構突變株庫 32
3.2 生物膜微量培養盤試驗 ( biofilm microtiter plate assay ) 32
3.3 Southern blot 確認 transposon insertion 33
3.4 反向聚合酵素連鎖反應 (inverse PCR) 33
3.5 序列比對結果 34
3.6 測定生長曲線 35
3.7 初級吸附能力 35
3.8 菌體疏水性 35
3.9 蛋白質一維電泳分析 36
3.10 WTA 分析 36
3.11 蛋白質二維電泳分析 36
3.12 est基因表現 37
3.13 est 基因轉錄起點 38
3.14 基因補償實驗 (complementation) 38

第四章 討論 39
4.1 突變株庫代表性 39
4.2 突變株之篩選方式 39
4.3 Mutant_1基因體與wild type之差異 40
4.4 探討mutant_1生物膜缺陷的發生階段 40
4.5 est基因序列分析 42
4.6 基因補償株 (complemented strain) 分析 43
4.7 二維電泳 44
4.8 結論與未來方向 45

第五章 實驗之附圖 46
圖 一. 生物膜微量培養盤試驗 (biofilm microtiter plate assay) 結果 46
圖 二. 96孔盤底部細胞吸附情形 (400X 放大) 47
圖 三. 生物膜累積 (biofilm accumulation) 實驗結果 48
圖 四. Southern blot:以ermB probe 確認Tn551 transposion 49
圖 五. Inverse PCR示意圖及電泳結果 50
圖 六. 生長曲線 51
圖 七. 初級吸附能力比較 52
圖 八. 菌體疏水性測試結果 53
圖 九. SDS-PAGE分析whole cell extract及 surface protein 54
圖 十. Wall teichoic acid (WTA) 分析. 54
圖 十一. 利用二維電泳比較wild type及mutant_1蛋白質表現之差異 57
圖 十二. 以RT-PCR偵測est基因之mRNA表現 58
圖 十三. est 基因上游DNA序列分析 59
圖 十四. est 基因 PCR產物電泳圖 60
圖 十五. 以est probe 進行Southern blot 偵測周圍DNA序列結構 61
圖 十六. est基因周圍1 Kb區域ORF組成情形 61
圖 十七. 基因補償株之生物膜形成能力與蛋白質分析 62

參考文獻 63
Arnaud, M., A. Chastanet & M. Debarbouille, (2004) New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, gram-positive bacteria. Appl Environ Microbiol 70: 6887-6891.

Bagge, N., M. Schuster, M. Hentzer, O. Ciofu, M. Givskov, E. P. Greenberg & N. Hoiby, (2004) Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production. Antimicrob Agents Chemother 48: 1175-1187.

Bayles, K. W., (2007) The biological role of death and lysis in biofilm development. Nat Rev Micro 5: 721-726.

Beenken, K. E., J. S. Blevins & M. S. Smeltzer, (2003) Mutation of sarA in Staphylococcus aureus limits biofilm formation. Infect Immun 71: 4206-4211.

Beenken, K. E., P. M. Dunman, F. McAleese, D. Macapagal, E. Murphy, S. J. Projan, J. S. Blevins & M. S. Smeltzer, (2004) Global gene expression in Staphylococcus aureus biofilms. J Bacteriol 186: 4665-4684.

Boucher, H. W. & G. R. Corey, (2008) Epidemiology of Methicillin-Resistant Staphylococcus aureus. Clinical Infectious Diseases 46: S344-S349.

Bowden, M. G., L. Visai, C. M. Longshaw, K. T. Holland, P. Speziale & M. Hook, (2002) Is the GehD lipase from Staphylococcus epidermidis a collagen binding adhesin? J Biol Chem 277: 43017-43023.

Bryers, J. D., (2008) Medical biofilms. Biotechnol Bioeng 100: 1-18.

Burne, R. A. & R. E. Marquis, (2000) Alkali production by oral bacteria and protection against dental caries. FEMS Microbiol Lett 193: 1-6.

Caubet, R., F. Pedarros-Caubet, M. Chu, E. Freye, M. de Belem Rodrigues, J. M. Moreau & W. J. Ellison, (2004) A radio frequency electric current enhances antibiotic efficacy against bacterial biofilms. Antimicrob. Agents Chemother. 48: 4662-4664.
Chen, X., S. Schauder, N. Potier, A. Van Dorsselaer, I. Pelczer, B. L. Bassler & F. M. Hughson, (2002) Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415: 545-549.

Cirioni, O., R. Ghiselli, D. Minardi, F. Orlando, F. Mocchegiani, C. Silvestri, G. Muzzonigro, V. Saba, G. Scalise, N. Balaban & A. Giacometti, (2007) RNAIII-Inhibiting Peptide Affects Biofilm Formation in a Rat Model of Staphylococcal Ureteral Stent Infection. Antimicrob. Agents Chemother. 51: 4518-4520.

Collins, F. S. & S. M. Weissman, (1984) Directional cloning of DNA fragments at a large distance from an initial probe: a circularization method. Proc Natl Acad Sci U S A 81: 6812-6816.

Cordwell, S. J., M. R. Larsen, R. T. Cole & B. J. Walsh, (2002) Comparative proteomics of Staphylococcus aureus and the response of methicillin-resistant and methicillin-sensitive strains to Triton X-100. Microbiology 148: 2765-2781.

Costerton, J. W., P. S. Stewart & E. P. Greenberg, (1999) Bacterial biofilms: a common cause of persistent infections. Science 284: 1318-1322.

Cucarella, C., C. Solano, J. Valle, B. Amorena, I. Lasa & J. R. Penades, (2001) Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 183: 2888-2896.

Cunin, R., N. Glansdorff, A. Pierard & V. Stalon, (1986) Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev 50: 314-352.

del Pozo, J. L. & R. Patel, (2007) The challenge of treating biofilm-associated bacterial infections. Clin Pharmacol Ther 82: 204-209.

Doherty, N., M. T. G. Holden, S. N. Qazi, P. Williams & K. Winzer, (2006) Functional Analysis of luxS in Staphylococcus aureus Reveals a Role in Metabolism but Not Quorum Sensing. J. Bacteriol. 188: 2885-2897.

Donlan, R. M. & J. W. Costerton, (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15: 167-193.

Dunman, P. M., E. Murphy, S. Haney, D. Palacios, G. Tucker-Kellogg, S. Wu, E. L. Brown, R. J. Zagursky, D. Shlaes & S. J. Projan, (2001) Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. J Bacteriol 183: 7341-7353.

Dunne, W. M., Jr., E. O. Mason, Jr. & S. L. Kaplan, (1993) Diffusion of rifampin and vancomycin through a Staphylococcus epidermidis biofilm. Antimicrob. Agents Chemother. 37: 2522-2526.

Gotz, F., (2002) Staphylococcus and biofilms. Mol Microbiol 43: 1367-1378.

Gross, M., S. E. Cramton, F. Gotz & A. Peschel, (2001) Key role of teichoic acid net charge in Staphylococcus aureus colonization of artificial surfaces. Infect Immun 69: 3423-3426.

Hall-Stoodley, L., J. W. Costerton & P. Stoodley, (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2: 95-108.

Hecker, M., S. Engelmann & S. J. Cordwell, (2003) Proteomics of Staphylococcus aureus--current state and future challenges. J Chromatogr B Analyt Technol Biomed Life Sci 787: 179-195.

Heilmann, C., M. Hussain, G. Peters & F. Gotz, (1997) Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24: 1013-1024.

Henze, U., T. Sidow, J. Wecke, H. Labischinski & B. Berger-Bachi, (1993) Influence of femB on methicillin resistance and peptidoglycan metabolism in Staphylococcus aureus. J Bacteriol 175: 1612-1620.

Hunt, S. M., E. M. Werner, B. Huang, M. A. Hamilton & P. S. Stewart, (2004) Hypothesis for the role of nutrient starvation in biofilm detachment. Appl Environ Microbiol 70: 7418-7425.

Hussain, M., M. Herrmann, C. von Eiff, F. Perdreau-Remington & G. Peters, (1997) A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces. Infect. Immun. 65: 519-524.

Izano, E. A., M. A. Amarante, W. B. Kher & J. B. Kaplan, (2008) Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl. Environ. Microbiol. 74: 470-476.

Kluytmans, J., A. van Belkum & H. Verbrugh, (1997) Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin. Microbiol. Rev. 10: 505-520.

Kong, K.-F., C. Vuong & M. Otto, (2006) Staphylococcus quorum sensing in biofilm formation and infection. International Journal of Medical Microbiology 296: 133-139.

Kreiswirth, B. N., S. Lofdahl, M. J. Betley, M. O''Reilly, P. M. Schlievert, M. S. Bergdoll & R. P. Novick, (1983) The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305: 709-712.

Lasa, I., (2006) Towards the identification of the common features of bacterial biofilm development. Int Microbiol 9: 21-28.

Lee, C. Y., S. L. Buranen & Z. H. Ye, (1991) Construction of single-copy integration vectors for Staphylococcus aureus. Gene 103: 101-105.

Lewis, K., (2001) Riddle of biofilm resistance. Antimicrob Agents Chemother 45: 999-1007.

Lewis, K., (2007) Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5: 48-56.

Lin, H.-Y., C.-T. Chen & C.-T. Huang, (2004) Use of merocyanine 540 for photodynamic inactivation of Staphylococcus aureus planktonic and biofilm cells. Appl. Environ. Microbiol. 70: 6453-6458.

Lowy, F. D., (1998) Staphylococcus aureus infections. N Engl J Med 339: 520-532.

Lynch, A. S. & G. T. Robertson, (2008) Bacterial and fungal biofilm infections. Annual Review of Medicine 59: 415-428.

McKenney, D., J. Hubner, E. Muller, Y. Wang, D. A. Goldmann & G. B. Pier, (1998) The ica locus of Staphylococcus epidermidis encodes production of the capsular polysaccharide/adhesin. Infect Immun 66: 4711-4720.

Meredith, T. C., J. G. Swoboda & S. Walker, (2008) Late-stage polyribitol phosphate wall teichoic acid biosynthesis in Staphylococcus aureus. J Bacteriol 190: 3046-3056.

Miller, M. B. & B. L. Bassler, (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55: 165-199.

Murphy, E. & R. P. Novick, (1980) Site-specific recombination between plasmids of Staphylococcus aureus. J. Bacteriol. 141: 316-326.

Nardini, M. & B. W. Dijkstra, (1999) Alpha/beta hydrolase fold enzymes: the family keeps growing. Curr Opin Struct Biol 9: 732-737.

O''Gara, J. P., (2007) ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol Lett 270: 179-188.

Palmer, J., S. Flint & J. Brooks, (2007) Bacterial cell attachment, the beginning of a biofilm. J Ind Microbiol Biotechnol 34: 577-588.

Pascual, A., A. Fleer, N. A. Westerdaal & J. Verhoef, (1986) Modulation of adherence of coagulase-negative staphylococci to Teflon catheters in vitro. Eur J Clin Microbiol 5: 518-522.

Rachid, S., K. Ohlsen, U. Wallner, J. Hacker, M. Hecker & W. Ziebuhr, (2000a) Alternative transcription factor sigma B is involved in regulation of biofilm expression in a Staphylococcus aureus mucosal isolate. J. Bacteriol. 182: 6824-6826.

Rachid, S., K. Ohlsen, W. Witte, J. Hacker & W. Ziebuhr, (2000b) Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis. Antimicrob Agents Chemother 44: 3357-3363.

Rediske, A. M., B. L. Roeder, J. L. Nelson, R. L. Robison, G. B. Schaalje, R. A. Robison & W. G. Pitt, (2000) Pulsed ultrasound enhances the killing of Escherichia coli biofilms by aminoglycoside antibiotics in vivo. Antimicrob. Agents Chemother. 44: 771-772.

Rice, K. C., E. E. Mann, J. L. Endres, E. C. Weiss, J. E. Cassat, M. S. Smeltzer & K. W. Bayles, (2007) The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc Natl Acad Sci U S A 104: 8113-8118.

Sharma, M., L. Visai, F. Bragheri, I. Cristiani, P. K. Gupta & P. Speziale, (2008) Toluidine blue-mediated photodynamic effects on Staphylococcal biofilms. Antimicrob. Agents Chemother. 52: 299-305.

Toledo-Arana, A., N. Merino, M. Vergara-Irigaray, M. Debarbouille, J. R. Penades & I. Lasa, (2005) Staphylococcus aureus develops an alternative, ica-independent biofilm in the absence of the arlRS two-component system. J Bacteriol 187: 5318-5329.

Tsuneda, S., H. Aikawa, H. Hayashi, A. Yuasa & A. Hirata, (2003) Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. FEMS Microbiol Lett 223: 287-292.

Vuong, C., S. Kocianova, J. M. Voyich, Y. Yao, E. R. Fischer, F. R. DeLeo & M. Otto, (2004) A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J Biol Chem 279: 54881-54886.

Vuong, C., H. L. Saenz, F. Gotz & M. Otto, (2000) Impact of the agr quorum-sensing system on adherence to polystyrene in Staphylococcus aureus. J Infect Dis 182: 1688-1693.

Walters, M. C., 3rd, F. Roe, A. Bugnicourt, M. J. Franklin & P. S. Stewart, (2003) Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 47: 317-323.

Weidenmaier, C., J. F. Kokai-Kun, S. A. Kristian, T. Chanturiya, H. Kalbacher, M. Gross, G. Nicholson, B. Neumeister, J. J. Mond & A. Peschel, (2004) Role of teichoic acids in Staphylococcus aureus nasal colonization, a major risk factor in nosocomial infections. Nat Med 10: 243-245.

Weidenmaier, C. & A. Peschel, (2008) Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nat Rev Microbiol 6: 276-287.

Wu, J. A., C. Kusuma, J. J. Mond & J. F. Kokai-Kun, (2003) Lysostaphin disrupts Staphylococcus aureus and Staphylococcus epidermidis biofilms on artificial surfaces. Antimicrob. Agents Chemother. 47: 3407-3414.

Xu, L., H. Li, C. Vuong, V. Vadyvaloo, J. Wang, Y. Yao, M. Otto & Q. Gao, (2006) Role of the luxS quorum-sensing system in biofilm formation and virulence of Staphylococcus epidermidis. Infect Immun 74: 488-496.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊