跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/10 17:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐家祥
研究生(外文):Chia-Hsiang Hsu
論文名稱:生長週期性區域極化反轉鉭酸鋰晶體光纖的監控電流研究
論文名稱(外文):Study of Poling Current Monitoring for Growth of Periodically Poled Lithium Tantalate Crystal Fiber
指導教授:黃升龍
指導教授(外文):Sheng-Lung Huang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:88
中文關鍵詞:鉭酸鋰鈮酸鋰非線性光學波長轉換頻率轉換極化反轉
外文關鍵詞:PPLTPPLNNonlinear-opticspoling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於鉭酸鋰具有較佳的非線性係數,且可承受較大的入射光功率,以及在短波長區段有較高的穿透率,因此被廣泛的應用於雷射與光通訊系統的光波長轉換元件。

本論文探討以雷射加熱基座生長法(LHPG)研製出鉭酸鋰晶體光纖,外加以週期性變換之高壓電場,製作週期性區域極化反轉之鉭酸鋰晶體光纖。在製作的過程中,可觀察到鋰原子受到高溫高壓電場影響而游離並產生氧化鋰,我們並可由實驗結果合理的解釋氧化鋰會影響量測電流以及改變電場分佈,並提出等效電路模型,電流模擬之結果與實驗值接近。最後提出電偶極模型進行感應電流的估算及解釋實驗成果。

在倍頻光學實驗上,可得到基頻光為1542.1 nm有最高的倍頻輸出功率,與理論值1550 nm僅有0.51%的誤差;而以平均功率120 mW,波長1524.2 nm之基頻光入射時,可量測到16.6μW的倍頻輸出,其倍頻轉換效率較以往進展10倍以上。
As a result of larger nonlinear coefficients, high damage threshold, and high transmission for short wavelength, LiTaO3 is broadly used as the nonlinear crystal in laser system and wavelength converter in optical communication systems.

In this thesis, we discuss the growth of periodically poled LiTaO3 crystal fibers without metallic patterns by the use of laser heated pedestal growth (LHPG) method. We observed lithium atoms were ionized by the high temperature and voltage, and they became Li2O during the growth. It can reasonably be explained that the produce of Li2O affects the measurement current and change distribution of the electric field. An equivalent circuit model is established to simulate the experiment data, with good agreement between each other . Finally, a dipole model to estimate the induced current for explaining the experiment result is also obtained.

In the optical experiment, the second harmonic(SH) signal was measured to be peaked at 1542.07-nm fundamental wavelength, and the error is only 0.51% compared with the theoretical value of 1550-nm. And the SH signal was measured to be 16.6μW at 1524.2-nm fundamental wavelength with an 120-mW pump power. The conversion efficiency is ten times more than that in the past.
口試委員審定書 i
致謝 ii
中文摘要 iv
Abstract v
目錄 vi
圖目錄 ix
表目錄 xiii
第一章 緒論 1
第二章 相位匹配原理與週期性區域極化反轉機制 5
2.1 非線性頻率轉換與相位匹配 5
2.2雙折射相位匹配法 14
2.3準相位匹配法 21
2.4 鉭酸鋰晶體結構與特性 25
2.4.1 非線性材料比較 25
2.4.2 鉭酸鋰歷史回顧 26
2.4.3 鉭酸鋰晶體結構 27
2.4.4 鉭酸鋰晶體特性 27
2.5極化反轉機制 31
第三章 準相位匹配晶體光纖之研製 34
3.1 晶纖生長方式 34
3.2 LHPG生長系統架構 38
3.3 外加電場系統架構 41
3.3.1 電場導致極化反轉 41
3.3.2 電極的架設 42
3.3.3 極化反轉週期設計 43
3.4生長系統之控制 44
第四章 電流即時監控實驗 47
4.1極化反轉與感應電流 47
4.2電流量測架構 50
4.3 氧化鋰析出物的影響 51
4.3.1氧化鋰析出物對量測電流的影響 51
4.3.2氧化鋰析出物對電場的影響 53
4.4電極位置對量測電流的影響 55
4.5 電流成份探討與模擬 58
4.5.1 析出物等效電路模型 58
4.5.2 電流模擬與探討 67
4.6 極化反轉感應電流的估算 71
4.6.1有效極化反轉區域長度的估算 71
4.6.2 電偶極極化反轉模型 73
第五章 光學特性量測與結果探討 77
第六章 結論 83
6.1 總結 83
6.2 未來展望 84
參考文獻 85
[1]T. H. Maiman, “Stimulated optical radiation in Ruby,” Nature, Vol. 187, p. 493, 1960.

[2]P. A. Franken, A. E. Hill, C. W. Peter, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett., Vol. 7, p. 118, 1961.

[3]J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interaction between light waves in a nonlinear dielectric,” Phys. Rev., Vol. 127, p. 1918, 1962.

[4]S. Somekh and A. Yariv, “Phase matching by periodic modulation of the nonlinear optical properties,” Opt. Comm., Vol. 6, p. 301, 1972.

[5]A. Yariv and P. Yeh, “Photonics: Optical Electronics in Modern Communications,” 6th ed., Oxford University Press, 2007.

[6]P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett., Vol. 8, p. 21, 1962.

[7]蔡孟璋, “週期性區域極化反轉鈮酸鋰晶體光纖之研製,” 國立中山大學光電工程研究所碩士論文, 2006.

[8]X. Zhu, “Theoretical model of fiber coupling diode end-pumped intra-cavity frequency-doubling laser,” Journal of the GCPD e.V. 6, p. 18, 2000.

[9]I. Shoji, T. Kondo, A. Kitamoto, M. Shirane, and R. Ito, “Absolute scale of second-order nonlinear-optical coefficients,” J. Opt. Soc. Am. B, Vol. 14, p. 2269, 1997.

[10]孫得皓, “週期性區域極化反轉鉭酸鋰晶體光纖之研製,” 國立台灣大學光電工程研究所碩士論文, 2007.

[11]J. P. Meyn and M. M. Fejer, “Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate,” Opt. Lett., Vol. 22, p. 1214, 1997.

[12]陳威霖, “鎳擴散式鉭酸鋰光波導之研製,” 國立台灣大學電機工程研究所博士論文, 1995.

[13]B. T. Matthias and J. P. Remeika, “Ferroelectricity in the illmenite structure,” Phys. Rev., Vol. 76, p. 1886, 1949.

[14]K. Nassau, H. J. Levinstein, and G.. M. Loiacono, “Ferroelectric lithium niobate. 1. Growth, domain structure, dislocations and etching,” J. Phys. Chem. Solids, Vol. 27, p. 983, 1966.

[15]A. A. Ballman, “Growth of piezoelectric and ferroelectric materials by the Czochralski technique,” J. Am. Ceram. Soc., Vol. 48, p. 112, 1965.

[16]王聖懿, “藉由倍頻顯微術研究鐵電晶纖材料週期性極化反轉” 國立中山大學光電工程研究所碩士論文,” 2007.

[17]A. Prokhorov and Y. Kuz’minov, “Physics and chemistry of crystalline lithium niobate,” The Adam Hilger, 1990.

[18]J. F. Shackelford and R. L. Holman, “Nonstoichiometry in ABO3 compounds similar to PbTiO3,” J. Appl. Phys., Vol. 46, p. 1429, 1975.

[19]L. Tian, V. Gopalana, and L. Galambos, “Domain reversal in stoichiometric LiTaO3 prepared by vapor transport equilibration,” Appl. Phys. Lett., Vol. 85, p. 4445, 2004.

[20]A. Brunera, D. Eger, and S. Ruschin, “Second-harmonic generation of green light in periodically poled stoichiometric LiTaO3 doped with MgO,” J. Appl. Phys., Vol. 96, p. 7445, 2004.

[21]T. Hatanaka, K. Nakamura, T. Taniuchi, H. Ito, Y. Furukawa, and K. Kitamura, “Quasi-phase-matched optical parametric oscillation with periodically poled stoichiometric LiTaO3,” Opt. Lett., Vol. 25, p. 651, 2000.

[22]J. R. Carruthers, G. E. Peteson, and M. Grasso, “Nonstoichiometry and crystal growth of lithium niobate,” J. Appl. Phys., Vol. 42, pp. 1846-1851, 1971.

[23]C. S. Lau, P. K. Wei, C. W. Su, and W. S. Warry, “Fabrication of magnesium-oxide-induced lithium out-diffusion waveguides,” IEEE Photon. Technol. Lett., Vol. 4, pp. 872-875 , 1992.

[24]Y. Y. Zhi, S. N. Zhu, and J. F. Hong, “Domain inversion in LiNbO3 by proton exchange and quick heat treatment,” Appl. Phys. Lett., Vol. 65, pp. 558-560, 1994.

[25]塗時雨,“掺鉻釔鋁石榴石晶體光纖雷射之研製,” 國立中山大學光電工程研究所碩士論文, 2003.

[26]C. A. Burrus and J. Stone, “Sigle-crystal fiber optical devices: a Nd:YAG fiber laser,“ Appl. Phys. Lett., Vol. 26, p.318, 1975.

[27]翁德欽, “鉭酸鋰鐵電域電場反轉特性分析,” 國立清華大學電機工程學系碩士班固態組碩士論文, 1997.

[28]S. Chao, W. Davis, D. D. Tuschel, R. Nichols, M. Gupta, and H. C. Cheng, “Time dependence of ferroelectric coercive field after domain inversion for lithium-tantalate crystal,” Appl. Phys., Vol. 67, p.1066, 1995.

[29]S. Chao, and C. C. Hung, “Large photoinduced ferroelectric coercive field increase and photodefined domain pattern in lithium-tantalate crystal,” Appl. Phys. Lett., Vol. 69, p. 3803, 1996.

[30]L. Huang and N. A. F. Jaeger, “Discussion of domain inversion in LiNbO3,” Appl. Phys. Lett., Vol. 65, pp. 1763-1765, 1994

[31]M. Houe and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D: Appl. Phys., Vol. 28, p. 1747, 1995.

[32]R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Byer, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett., Vol. 75, pp. 1673-1675, 1999

[32]D. S. Hum, R. K. Route, G. D. Miller, V. Kondilenko, A. Alexandrovski, J. Huang,K. Urbanek, R. L. Byer, and M. M. Fejer“Optical properties and ferroelectric engineeringof vapor-transport-equilibrated, near-stoichiometric lithium tantalate for frequency conversion” J. Appl. Phys., Vol. 101, 093108, 2007.

[33]陳准義, “鉭酸鋰晶體週期性極化反轉之研究,” 華梵大學電子工程學系碩士班固態組碩士論文, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊