|
[1] Baken, N. H. G, M. B. J. Diemeer, J. M. V. Splunter and H. Blok, “Computational modeling of diffused channel waveguides using a domain integral equation,” J. Lightwave Technol., vol. 8, pp. 576–586, 1990. [2] Berenger, J.-P., “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys., vol. 114, pp. 185–200, 1994. [3] Bierwirth, K., N. Schulz, and F. Arndt, “Finite-difference analysis of rectangular dielectric waveguides structures,” IEEE Trand. Microwave Theory Tech., vol. 34, pp. 1104–1113, 1986. [4] Boyd, P. J., Chebyshev and Fourier Spectral Methods. New York, NY: Dover Publications, 1999. [5] Cendes, Z.J., and P. Silvester, “Numerical solution of dielectric loaded waveguides: Finite-Element Analysis,” IEEE Trans. Microwave Theory Tech., vol. MTT-18, pp. 1124–1131, 1970. [6] Chiang, P.J., Development of Multidomain Pseudospectral Mode Solvers for Optical Waveguides and Photonic Crystals, M. S. Thesis, Graduate Institute of Electro-Optical Engineering, National Taiwan University, Taipei, Taiwan, January 2007. [7] Collin, R., Field Theory of Guided Waves. New York: McGraw-Hill, 1960. [8] Doncker, Ph. De, “The use of transfinite elements in the methods of moments applied to electromagnetic scattering by dielectric cylinders,” Progress In Electromagnetics Research, PIER 25, pp. 77–94, 2000. [9] Funaro, D., and D. Gottlieb, “A new method of imposing boundary conditions in pseudospectral approximations of hyperbolic equations,” Math. Comp., vol. 51, pp. 599–613, 1988. [10] Hadley, G. R., “Low-truncation-error finite difference equations for photonics simulation I: Beam propagation,” J. Lightwave Technol., vol. 16, pp. 134–141, 1998. [11] Hadley, G. Ronald, “High-accuracy finite-difference equations for dielectric waveguide analysis: II. Dielectric corners,” J. Lightwave Technol., vol. 20, pp. 1219–1231, 2002. [12] Hadley, G. R., and R. E. Smith, “Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditons,” J. Lightwave Technol., vol. 13, pp. 465–469, 1999. [13] Hesthaven, J. S., and D. Gottlieb, “A stable penalty method for the compressible Navier-Stokes equations. I. Open boundary conditions,” SIAM J Sci. Comput., vol. 17, pp. 579–612, 1996. [14] Hesthaven, J. S., P. G. Dinesen, and J. P. Lynov, “Spectral collocation time-domain modeling of diffractive optical elements,” J. Comput. Phys., vol. 155, pp. 287–306, 1999. [15] Hesthaven, J., S. Gottlieb, and D. Gottlieb, Spectral Methods for Time-dependent Problems. Cambridge University Press, 2007. [16] Johnson, S. G., and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express, vol. 8, pp. 173–190, 2001. [17] Lee, J. F., D. K. Sun, and Z. J. Cendes, “Full-wave analysis of dielectric waveguides using tangential vector finite elements,” IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1262–1271, 1991. [18] L ̈sse, P., P. Stuwe, J. Sch ̈le, and H.-G. Unger, “Analysis of vectorial mode fields in optical waveguides by an new finite difference method,” J. Lightwave Technol., vol. 12, pp. 487–493, 1994. [19] Orszag, S. A., and G. S. Patterson, “Numerical simulation of three-dimensional homogeneous isotropic turbulence,” Phys. Rev. Lett., vol. 28, pp. 76–79, 1972. [20] Rahman, B. M. A., and J. B. Davis, “Finite-element analysis of optical and microwave waveguides problems,” IEEE Trans. Microwave Theory Tech., vol. MTT-32, pp. 20–28, 1984. [21] Sphicopoulos, T., V. Teodoridis, and F. E. Gardiol, “Dyadic Green function for the eletromagnetic field in multilayered isotropic media: an operator approach,” Inst. Elec. Eng. Proc., vol. 132, pp. 392–335, 1985. [22] Stern, M. S., P. C. Kendall, and P. W. A. Mcllroy, “Analysis of the aspectral index method for vector modes of rib waveguides,” Inst. Elec. Eng. Proc. -J., vol. 137, pp. 21–26, 1990. [23] Sudbo, A. S., “Why are accurate computations of mode fields in rectangular dielectric waveguides difficult?,” J. Lightw. Technol., vol. 10, pp. 418–419, 1992. [24] Teng, C. H., B. Y. Lin, H. C. Chang, H. C. Hsu, C. N. Lin, and K. A. Feng, “A Legendre pseudospectral penalty scheme for solving time-domain Maxwell’s equations,” J. Sci. Comput., 2008. (in press) [25] Thomas, N., P. Sewell, and T. M. Benson, “A new full-vectorial higher order finite-difference scheme for the modal analysis of rectangular dielectric waveguides,” J. Lightwave Technol., vol. 25, pp. 2563–2570, 2007. [26] Wu, J. L., Development of Multidomain Pseudospectral Mode Solvers for Optical Waveguides and Photonic Crystals, M. S. Thesis, Graduate Institute of Communication Engineering, National Taiwan University, Taipei, Taiwan, June 2003. [27] Yang, B., and J. S. Hesthaven, “A pseudospectral method for time-domain computation of electromagnetic scattering by bodies of revolution,” IEEE Trans. Antennas Propagat., vol. 47, pp. 132–141, 1999. [28] Yu, C. P., and H. C. Chang, “A compact finite-difference frequency-domain method for the analysis of two-dimensional photonic crystals,” Opt. Express, vol. 12, pp. 1397–1408, 2004.
|