跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/11 01:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭國璿
研究生(外文):Guo-Hsuan Peng
論文名稱:弱共振腔法布里珀羅雷射二極體鎖模環光纖雷射之特性與脈衝壓縮之研究
論文名稱(外文):Characteristic Analysis and Pulse Compression of theWeak-Resonat-Cavity Fabry-Perot Laser Diode Mode-LockedFiber Ring
指導教授:林恭如
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:57
中文關鍵詞:弱共振腔Fabry-Perot 雷射二極體暗脈衝光頻率啁啾色散補償非線性光孤子效應
外文關鍵詞:weak-resonant-cavity Fabry-Perot laser diodedark-optical combfrequency chirpdispersion compensationnonlinear soliton compression effect.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:181
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:4
我們研究反向光注入弱共振腔Fabry-Perot雷射二極體光纖雷射系統輸出特性。藉由10GHz暗脈衝光注入的方式調變Fabry-Perot雷射二極體,使其光纖雷射產生10GHz鎖模脈衝。本文共分成三大方向探討:
首先,研究影響此脈衝特性的因數。光注入弱共振腔的Fabry-Perot雷射二極體達成環形光纖鎖模雷射,其環腔內的迴授能量大小控制了波長飄移、啁啾大小、脈衝寬度以及線寬。在強的光暗脈衝注入或是強的回授耦合比例時,我們可以觀察到輸出脈衝的波長峰值會產生波長紅移,飄移的範圍從1536奈米到1542奈米、脈衝寬度由27皮秒降低到19皮秒、頻譜線寬由10奈米降低到6奈米。除此之外,由於線寬的降低使得峰值對峰值的頻率啁啾由3.5G赫茲降低至1.8G赫茲。接著,研究色散補償光纖長度對脈衝壓縮之特性變化。在光注入10%反射率的弱共振腔Fabry-Perot雷射二極體而產生的環形光纖鎖模雷射的脈衝輸出來達成全新的光的分時多工載波和200GHz頻道(1.6奈米模間距)的分波多工的訊號源,而色適當長度(55公尺)的色散補償光纖可將啁啾由9.7GHz降低至4.3GHz和脈衝寬度由19微微秒減少至10.5微微秒,但是長度若超過最佳補償長度(55公尺)則脈衝就會劣化,理論與實驗的結果相符合。最後,我們試著利用高功率摻鉺光纖放大器產生非線性光孤子效應,將鎖模雷射壓縮至1.4皮秒等級的脈衝寬度,產生10GHz的超短脈衝訊號源。在光纖環腔內加入可調式頻段選擇器可以達到 12皮秒與重複率10GHz的脈衝輸出,而且進一步的被壓縮為1.4皮秒的脈衝寬度。而在沒有可調式頻段選擇器的情況下,脈衝寬度變寬至21皮秒,不過經由色散補償的線性壓縮後,也可達12皮秒的脈衝輸出。這個五階的非線性光孤子壓縮因素,最後可被非線性自我向位調變的壓縮方式壓縮至2.1皮秒等級。同時,鎖模線寬也從2.4奈米增加至3.8奈米
In this thesis, we discussed the characteristics of optical injection mode-locking of a weak-resonant-cavity Fabry-Perot laser diode based fiber ring. The 10 GHz mode-locking pulse was generated by using the 10 GHz dark-optical comb injection. The thesis has three mainly parts:
First, the optical injection mode-locking of a weak-resonant-cavity Fabry-Perot laser diode based fiber ring with an intra-cavity power controlled wavelength shift and a reducing chirp linewidth at high intra-cavity coupling ratio condition is demonstrated. Both the strong dark-optical comb and strong feedback coupling contribute to the wavelength spectrum shift toward longer wavelength, a wavelength shift from 1536 to 1542 nm of the weak-resonant-cavity FPLD based fiber ring associated with its pulsewidth and linewidth also reduced from 27 to 19 ps and from 10 to 6 nm, respectively, can be observed. Furthermore, the peak-to-peak frequency chirp reduced from 3.5 to 1.8 GHz was caused by the shrink of linewidth. Second, a novel optical TDM pulsed carrier from optically injection-mode-locked weak-resonant-cavity Fabry-Perot laser diode (FPLD) with 10%-end-facet reflectivity is demonstrated with tunable mode spacing matching ITU-T DWDM channels. The FPLD exhibits relatively weak cavity modes and a gain profile covering > 33.5 nm with intracavity mode spacing of 1.6 nm. The mode-spacing spacing was tunable by adjusting length of the fiber ring cavity. The least multiple between the longitudinal modes of ring cavity and FPLD result in 12 lasing modes with channel spacing of 200 GHz and a mode-locking pulsewidth up to 19 ps. The operating wavelength can further extend from 1520 to 1553.5 nm. After channel filtering, each selected longitudinal mode component give rises to shortened pulsewidth of 12 ps due to reduced group velocity dispersion. By linear dispersion compensating with 55 m long dispersion compensation fiber (DCF), the pulsewidth can be further compressed to 8.5 ps with corresponding chirp reducing from 9.7 to 4.3 GHz. Final, 1.4-picosecond nonlinear pulse compression of a backward dark-optical-comb injection harmonic-mode-locked semiconductor optical amplifier based fiber laser (SOAFL) is demonstrated. With the tunable bandpass filter (TBF) in the fiber ring, shortest mode-locked SOAFL pulsewidth of 12 ps at 10 GHz is generated, which can further be compressed to 1.4 ps after nonlinear soliton compression. A maximum pulsewidth compression ratio for the compressed fifth-order mode-locked SOAFL is reported. The fifth-order soliton can be obtained by injecting the amplified pulse with peak power of 10.8 W into a 400m-long single-mode fiber (SMF). The tolerance in SMF length is relatively large (400-700 m) for obtaining <2 ps mode-locked SOAFL pulsewidth. However, without the TBF in fiber ring, the mode-locked SOAFL linewidth can be broadened to 2.4 nm and the pulsewidth were broaden to 21 ps. It can be linear compensated to 12 ps by passing through the 70m-long dispersion compensation fiber (DCF). It can be further compressed to 2.1 ps after fifth-order soliton compression, at the same time, the linewidth of mode-locked SOAFL broadened from 2.4 to 3.8 nm.
口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES viii
Chapter 1 Introduction 1
1.1 Mode-locked SOAFL............... 1
1.2 Channel Spacing Generation for DWDM 2
1.3 Soliton Compression 4
1.4 The Organization of Thesis 5
Chapter 2 10 GHz Optically Injection Mode Locking Dynamics of a Weak-Resonant-Cavity Fabry-Perot Laser Diode Based Fiber Ring 6
2.1 Introduction 6
2.2 Experiments 7
2.2.1 Channel Spacing Generated by Dual Ring Technique 11
2.3 Results and Discussions 12
2.3.1 The Effect of Detuning Synthesizer Frequency 12
2.3.2 Feedback Ratio Controlled Pulsewidth and Output Spectrum 13
2.3.3 The Effect of Different Gain Depletion 17
2.54 Summary 19
Chapter 3 DWDM channel spacing tunable optical TDM carrier from a mode-locked weak-resonant-cavity Fabry-Perot laser diode based fiber ring 21
3.1 Introduction 21
3.2 Experiments 23
3.2.1 Single Channel Generation Using Typical SOA 23
3.2.2 Multi-Channel Generation Using FPLD 24
3.3 Results and Discussions 26
3.3.1 Multi-Channel vs Single Channel Pulse Characteristics 26
3.3.2 Wavelength Selectable by Tunable Filter and Detuning Frequency 29
3.3.3 Dispersion Compensation 30
3.4 Summary 34
Chapter 4 10 GHz Optically Injection Mode Locking Soliton Compression of a Semiconductor Optical Amplifier Based Fiber Ring 36
4.1 Introduction 36
4.2 Experiments 37
4.3 Results and Discussions 40
4.3.1 Soliton compression with TBF in the fiber ring cavity 40
4.3.2 Soliton compression without TBF in the fiber ring cavity 43
4.4 Summary 45
Chapter 5 Conclusions 46
Reference…... 49
[1]D. Abraham, R. Nagar, M. N. Ruberto, G. Eisenstein, U. Koren, J. L. Zyskind, and D. J. Digiovanni, “Frequency tuning and pulse generation in a fiber laser with an intracavity semiconductor active filter,” IEEE Photonic Technology Letters, vol. 5, pp. 377 -379, April 1993.
[2]P. G. J. Wigley, A. V. Babushkin, J. I. Vukusic, and J. R. Taylor,” Active mode locking of an erbium-doped fiber laser using an intracavity laser diode device,” IEEE Photonic Technology Letters. vol. 2, pp. 543-545 August 1990.
[3]M. J. Guy, J. R. Taylor and K. Wakita, “10 GHz 1.9 ps actively modelocked fibre integrated laser at 1.3 m,” Electronics Letters, vol. 33, pp. 1630-1632, September 1997.
[4]N. V. Pedersen, K. B. Jakobsen, and M. Vaa, “Mode-locked 1.5 μm semiconductor optical amplifier fiber ring,” J. Lightwave Technology Letters, vol. 14, pp. 833-838 May 1996.
[5]T. Papakyriakopoulos, K. Vlachos, A. Hatziefremidis, and H. Avramopoulos, “20-GHz broadly tunable and stable mode-locked semiconductor amplifier fiber ring laser,” Optics Letters, vol. 24, pp. 1209-1211, September 1999.
[6]E. J. Greer, Y. Kimura, K. Suzuki, E. Yoshida, and M. Nakazawa,” Generation of 1.2 ps, 10 GHz pulse train from all-optically mode locked, erbium fibre ring laser with active nonlinear polarization rotation,” Electronics Letters. vol. 30, pp. 1764-1765, October 1994.
[7]W. H. Cao and K. T. Chan,” Generation of bright and dark soliton trains from continuous-wave light using cross-phase modulation in a nonlinear-optical loop mirror,” IEEE Quantum Electronics, vol. 37, pp. 725-732, May 2001.
[8]J. He and K. T. Chan, “All-optical actively mode locked fibre ring laser based on cross-gain modulation in SOA,” Electronics Letters. vol. 38, pp. 1504-1505, November 2002.
[9]M. W. K. Mak, H. K. Tsang, and H. F. Liu, “Wavelength-tunable 40 GHz pulse-train generation using 10 GHz gain-switched Fabry-Perot laser and semiconductor optical amplifier,” Electronics Letters, vol. 36, pp. 1580-1581, August 2000.
[10]L. Schares, L. Occhi, and G. Guekos, “Picosecond wavelength tunable SOA-based laser sources at 10-40 GHz repetition rates,” Conference on Lasers and Electro-Optics, Technical Digest, (Optical Society of America, Long Beach MD, 2002), CML3, 56-57.
[11]L. Duan, J. K. Richardson, and J. Goldhar, “A Stable Smoothly Wavelength-Tunable Picosecond Pulse Generator,” IEEE Photonics Technology Letters, vol. 14, pp. 840- 842, June 2002.
[12]E. Yoshida, Y. Kimura, and M. Nakawa, “20 GHz, 1.8 ps pulse generation from a regeneratively modelocked erbium-doped fibre laser and its femtosecond pulse compression,” Electronics Letters, vol. 31, pp. 377-378, May 1995.
[13]M. Nakazawa, and E. Yoshida, “A 40-GHz 850-fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laser,” IEEE Photonics Technology Letters, vol. 12, pp. 1613-1615, December 2000.
[14]D. M. Patrick, “Modelocked ring laser using nonlinearity in a semiconductor laser amplifier,” Electronics Letters, vol. 30, pp. 43-44, January 1994.
[15]D. H. Kim, S. H. Kim, Y. M. Jhon, S. Y. Ko, J. C. Jo, and S. S. Choi, “Relaxation-Free Harmonically Mode-Locked Semiconductor-Fiber Ring Laser,” IEEE Photonics Technology Letters, vol. 11, pp. 521-523, May 1999.
[16]L. Schares, R. Paschotta, L. Occhi, And Guekos, “40-GHz Mode-Locked Fiber-Ring Laser Using a Mach-Zehnder Interferometer With Integrated SOAs,” Lightwave Technology Letters, vol. 22, pp. 859-873, March 2004.
[17]Kyriakos Vlahos, Chris Bintjas, Nikos Pleros, and Hercules Avramopoulos, “Ultrafast semiconductor-based fiber laser sources,” IEEE Selected Topics in Quantum Electronics, vol. 10, pp. 147-153, January-February 2004.
[18]D. Pudo, L. R. Chen, D. Giannone, et al, “Actively mode-locked tunable dual-wavelength erbium-doped fiber laser,” IEEE Photon. Technol. Lett. 14, 143-145(2002)
[19]J. N. Maran, S. LaRochelle, P. Besnard, “Erbium-doped fiber laser simultaneously mode locked on more than 24 wavelengths at room temperature,” Opt. Lett. 28, 2082-2084 (2003)
[20]J. Yao, J. P. Yao, Z. C. Deng, “Multiwavelength actively mode-locked fiber ring laser with suppressed homogeneous line broadening and reduced supermode noise,” Opt. Express. 12, 4529-4534 (2004)
[21]D. S. Moon, U. C. Paek, Y Chung, “Multi-wavelength lasing oscillations in an erbium-doped fiber laser using few-mode fiber Bragg grating,” Opt Express. 12, 6147-6152 (2004)
[22]K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos, “10 × 30 GHz Pulse Train Generation from Semiconductor Amplifier Fiber Ring Laser,” IEEE Photon. Technol. Lett. Vol. 12, pp. 25-27 (2000)
[23]T. M. Liu, H. H. Chang, S. W. Chu, and C. K. Sun, “Locked Multichannel Generation and Management by Use of a Fabry–Perot Etalon in a Mode-Locked Cr:Forsterite Laser Cavity,” IEEE J. Quantum Electron. Vol. 38, pp. 458-463 (2002)
[24]C. G. Lee, and C. S. Park, “Suppression of Pulse Shape Distortion Caused by Frequency Drift in a Harmonic Mode-Locked Semiconductor Ring Laser”, IEEE Photon. Technol. Lett. Vol. 15, pp. 658-660 (2003)
[25]K. Vlachos, C. Bintjas, N. Pleros, and H. Avramopoulos, “Ultrafast Semiconductor-Based Fiber Laser Sources”, IEEE J. Sel. Top. Quantum Electron. Vol. 10, pp. 147-154 (2004)
[26]W. W. Tang, M. P. Fok, and Chester Shu, ”10 GHz pulses generated across a ~100 nm tuning range using a gain-shifted mode-locked SOA ring laser,” Opt. Express. Vol. 14 pp.2158-2163 (2006)
[27]J. Vasseur, M. Hanna, J. Dudley, J-P. Goedgebuer, J. Yu, G-K. Chang, and J. R. Barry, “Alternate Multiwavelength Picosecond Pulse Generation by Use of an Unbalanced Mach–Zehnder Interferometer in a Mode-locked Fiber Ring Laser” IEEE J. Quantum Electron., Vol. 43, pp 85-96 (2007)
[28]W. Zhang, J. Sun, J. Wang, and L. Liu,“Multiwavelength Mode-Locked Fiber-Ring Laser Based on Reflective Semiconductor Optical Amplifiers”, IEEE Photon. Technol. Lett. Vol. 19, pp. 1418-1420 (2007)
[29]J. Yang, S. C. Tjin, N. Q. Ngo, “Multiwavelength actively mode-locked fiber laser with a double-ring configuration and integrated cascaded sampled fiber Bragg gratings,” Opt. Fiber Technol. Vol.13, pp. 267–270 (2007)
[30]L. F. Mollenauer, R. H. Stolen and J. P. Gordon, “Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers,” Phys. Rev. Lett. 45, 1095 (1980).
[31]J. T. Ong, R. Takahashi, M. Tsuchiya, S. H. Wong, R. T. Shara, Y. Ogawa and T. Kamiya, “Subpicosecond soliton compression of gain switched diode laser pulses using an erbium-doped fiber amplifier,” IEEE J. Quantum Electron. 29, 1701 (1993)
[32]K. A. Ahmed, K. C. Chan and H. F. Liu, “Femtosecond pulse generation from semiconductor lasers using the. soliton-effect compression technique,” IEEE J. Quantum Electron. 1, 592 (1995).
[33]S. V. Chernikov and P. V. Mamyshev, “Femtosecond soliton propagation in fibers with slowly decreasing dispersion,” J. Opt. Soc. Am. B 8, 1633 (1991)
[34]S. V. Chernikov, D. J. Richardson, E. M. Dianov and D. N. Payne, “Picosecond soliton pulse compressor based on dispersion decreasing fibre,” Electron. Lett. 28, 1842 (1992)
[35]S. V. Chernikov, E. M. Dianov, D. J. Richardson and D. N. Payne, “Soliton pulse compression in dispersion-decreasing fiber,” Opt. Lett. 18, 476 (1993).
[36]P. V. Mamyshev, P. G. J. Wigley, J. Wilson and G. I. Stegeman, “Adiabatic compression of Schrödinger solitons due to the combined perturbations of higher-order dispersion and delayed nonlinear response,” Phys. Rev. Lett. 71, 73 (1993).
[37]B. S. Azimov, Izv. Akad. Nauk, “self compression of ultra-short optical pulses in a fiber-amplifier system,” lzv. Akad. Nauk. ser. fiz. 50, 2268 (1986)
[38]K. J. Blow, N. J. Doran and D. Wood, “Suppression of the soliton self-frequency shift by bandwidth-limited amplification,” J. Opt. Soc. Am. B 5, 1301 (1988)
[39]G-R. Lin, K. C. Yu, Y. C. Chang “10 Gbit/s all-optical non-return to zero-return-to-zero data format conversion based on a backward dark-optical-comb injected semiconductor optical amplifier,” Optics Letters, vol. 31, pp. 1376-1378, May 2006.
[40]G-R. Lin, I. H. Chiu, M. C. Wu, “1.2-ps mode-locked semiconductor optical amplifier fiber laser pulses generated by 60-ps backward dark-optical comb injection and soliton compression,” Optics Express, vol. 13, pp. 1008-1014, February 2005.
[41]G-R. Lin, Y. S. Liao, G. Q. Xia, “Dynamics of optical backward-injection-induced gain-depletion modulation and mode locking in semiconductor optical amplifier fiber lasers,” Optics Express, vol. 12, pp. 2017-2026, May 2004.
[42]Joseph T. Verdeyen, Laser Electronic second ed., (Prentice-Hall, Inc., USA, 1994), Chap. 9.
[43]M. J. Connelly, “Wideband semiconductor optical amplifier steady-state numericalmodel,” IEEE Quantum Electronics, vol. 37, pp. 439-447, 2001.
[44]F. W. Tong, W. Lin, D. N. Wang and P. K. A. Wai, “Multiwavelength fibre laser with wavelength selectable from 1590 to 1645 nm,” Electronics Letters. vol. 40, pp. 594-595, May 2004.
[45]I. D. Henning, M. J. Adams, and J. V. Collins, “Performance prediction from a new optical amplifier model,” IEEE Quantum Electronics Letters, vol. 21, pp, 609-613, June 1985.
[46]G. P. Agrawal, Nonlinear Fiber Optics. (Academic New York, 1989).
[47]T. Keating, J. Minch, C. S. Chang, et al, ”Optical gain and refractive index of a laser amplifier in the presence of pump light for cross-gain and cross-phase modulation” IEEE Photon. Tech. Lett., Vol. 9, pp.1358-1360, OCT 1997
[48]Joergensen, C, Danielsen, SL, Stubkjaer, KE, et al, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers”, IEEE J. Selected Topics in Quantum Electron., Vol. 3, pp. 1168-1180, OCT 1997
[49]Lee. H, Kim. Y, Jeong. J, “Frequency chirping characteristics of all optical wavelength converter based on cross-gain and cross-phase modulation in semiconductor optical amplifiers”, J. of The Korean Phy. Society, Vol. 34, pp. S577-S581, Jun 1999
[50]K. Inoue, ”Modulation characteristics of a directly modulated super luminescent diode followed by a gain-saturated semiconductor optical amplifier”, IEICE Transactions on Electron., Vol. E83C, pp. 520-522, MAR 2000
[51]G.-R. Lin, I.-H. Chiu, and M.-C. Wu, “1.2-ps mode-locked semiconductor optical amplifier fiber laser pulses generated by 60-ps backward dark-optical comb injection and soliton compression,” Opt. Express 13, 1008 (2005).
[52]M. Horowitz, C. R. Menyuk, T. F. Carruthers, and I. N. Duling, “Theoretical and experimental study of harmonically modelocked fiber lasers for optical communication systems,” J. Lightwave Technol., vol. 18, pp. 1565–1574, Nov. 2000.
[53]C. Wu and N. K. Dutta, “High repetition rate optical pulse generation using a rational harmonic mode-locked fiber laser,” IEEE J. Quantum Electron., vol. 36, no. 2, pp. 145–150, 2000.
[54]H. F. Liu, Y. Ogawa, S. Oshiba, and T. Nonaka, “Relaxation-free harmonically mode-locked semiconductor-fiber ring laser,” IEEE J. Quantum Electron. 11, 1655 (1991).
[55]K. Vlachos,C. Bintjas, N. Pleros, et al, “Ultrafast semiconductor-based fiber laser sources” IEEE J. Selected Topics in Quantum Electron. Vol. 10, pp. 147-154, JAN-FEB 2004.
[56]H. Q. Lam, P. Shum, L. N. Binh, et al, “Polarization-dependent locking in SOA harmonic mode-locked fiber laser”, IEEE Photonics Tech. Lett., Vol. 18, pp. 2404-2406, NOV-DEC 2006
[57]K. A. Ahmed, K. C. Chan, and H. F. Liu, “Femtosecond pulse generation from semiconductor lasers using the soliton-effect compression techique,” IEEE J. Quantum Electron. 1, 592 (1995).
[58]G-R. Lin and I-H. Chiu, “Femtosecond wavelength tunable semiconductor optical amplifier fiber laser mode-locked by backward dark-optical-comb injection at 10 GHz”, Opt. Express., Vol. 13, pp. 8772-8780, October 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top