|
[1]D. Abraham, R. Nagar, M. N. Ruberto, G. Eisenstein, U. Koren, J. L. Zyskind, and D. J. Digiovanni, “Frequency tuning and pulse generation in a fiber laser with an intracavity semiconductor active filter,” IEEE Photonic Technology Letters, vol. 5, pp. 377 -379, April 1993. [2]P. G. J. Wigley, A. V. Babushkin, J. I. Vukusic, and J. R. Taylor,” Active mode locking of an erbium-doped fiber laser using an intracavity laser diode device,” IEEE Photonic Technology Letters. vol. 2, pp. 543-545 August 1990. [3]M. J. Guy, J. R. Taylor and K. Wakita, “10 GHz 1.9 ps actively modelocked fibre integrated laser at 1.3 m,” Electronics Letters, vol. 33, pp. 1630-1632, September 1997. [4]N. V. Pedersen, K. B. Jakobsen, and M. Vaa, “Mode-locked 1.5 μm semiconductor optical amplifier fiber ring,” J. Lightwave Technology Letters, vol. 14, pp. 833-838 May 1996. [5]T. Papakyriakopoulos, K. Vlachos, A. Hatziefremidis, and H. Avramopoulos, “20-GHz broadly tunable and stable mode-locked semiconductor amplifier fiber ring laser,” Optics Letters, vol. 24, pp. 1209-1211, September 1999. [6]E. J. Greer, Y. Kimura, K. Suzuki, E. Yoshida, and M. Nakazawa,” Generation of 1.2 ps, 10 GHz pulse train from all-optically mode locked, erbium fibre ring laser with active nonlinear polarization rotation,” Electronics Letters. vol. 30, pp. 1764-1765, October 1994. [7]W. H. Cao and K. T. Chan,” Generation of bright and dark soliton trains from continuous-wave light using cross-phase modulation in a nonlinear-optical loop mirror,” IEEE Quantum Electronics, vol. 37, pp. 725-732, May 2001. [8]J. He and K. T. Chan, “All-optical actively mode locked fibre ring laser based on cross-gain modulation in SOA,” Electronics Letters. vol. 38, pp. 1504-1505, November 2002. [9]M. W. K. Mak, H. K. Tsang, and H. F. Liu, “Wavelength-tunable 40 GHz pulse-train generation using 10 GHz gain-switched Fabry-Perot laser and semiconductor optical amplifier,” Electronics Letters, vol. 36, pp. 1580-1581, August 2000. [10]L. Schares, L. Occhi, and G. Guekos, “Picosecond wavelength tunable SOA-based laser sources at 10-40 GHz repetition rates,” Conference on Lasers and Electro-Optics, Technical Digest, (Optical Society of America, Long Beach MD, 2002), CML3, 56-57. [11]L. Duan, J. K. Richardson, and J. Goldhar, “A Stable Smoothly Wavelength-Tunable Picosecond Pulse Generator,” IEEE Photonics Technology Letters, vol. 14, pp. 840- 842, June 2002. [12]E. Yoshida, Y. Kimura, and M. Nakawa, “20 GHz, 1.8 ps pulse generation from a regeneratively modelocked erbium-doped fibre laser and its femtosecond pulse compression,” Electronics Letters, vol. 31, pp. 377-378, May 1995. [13]M. Nakazawa, and E. Yoshida, “A 40-GHz 850-fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laser,” IEEE Photonics Technology Letters, vol. 12, pp. 1613-1615, December 2000. [14]D. M. Patrick, “Modelocked ring laser using nonlinearity in a semiconductor laser amplifier,” Electronics Letters, vol. 30, pp. 43-44, January 1994. [15]D. H. Kim, S. H. Kim, Y. M. Jhon, S. Y. Ko, J. C. Jo, and S. S. Choi, “Relaxation-Free Harmonically Mode-Locked Semiconductor-Fiber Ring Laser,” IEEE Photonics Technology Letters, vol. 11, pp. 521-523, May 1999. [16]L. Schares, R. Paschotta, L. Occhi, And Guekos, “40-GHz Mode-Locked Fiber-Ring Laser Using a Mach-Zehnder Interferometer With Integrated SOAs,” Lightwave Technology Letters, vol. 22, pp. 859-873, March 2004. [17]Kyriakos Vlahos, Chris Bintjas, Nikos Pleros, and Hercules Avramopoulos, “Ultrafast semiconductor-based fiber laser sources,” IEEE Selected Topics in Quantum Electronics, vol. 10, pp. 147-153, January-February 2004. [18]D. Pudo, L. R. Chen, D. Giannone, et al, “Actively mode-locked tunable dual-wavelength erbium-doped fiber laser,” IEEE Photon. Technol. Lett. 14, 143-145(2002) [19]J. N. Maran, S. LaRochelle, P. Besnard, “Erbium-doped fiber laser simultaneously mode locked on more than 24 wavelengths at room temperature,” Opt. Lett. 28, 2082-2084 (2003) [20]J. Yao, J. P. Yao, Z. C. Deng, “Multiwavelength actively mode-locked fiber ring laser with suppressed homogeneous line broadening and reduced supermode noise,” Opt. Express. 12, 4529-4534 (2004) [21]D. S. Moon, U. C. Paek, Y Chung, “Multi-wavelength lasing oscillations in an erbium-doped fiber laser using few-mode fiber Bragg grating,” Opt Express. 12, 6147-6152 (2004) [22]K. Vlachos, K. Zoiros, T. Houbavlis, and H. Avramopoulos, “10 × 30 GHz Pulse Train Generation from Semiconductor Amplifier Fiber Ring Laser,” IEEE Photon. Technol. Lett. Vol. 12, pp. 25-27 (2000) [23]T. M. Liu, H. H. Chang, S. W. Chu, and C. K. Sun, “Locked Multichannel Generation and Management by Use of a Fabry–Perot Etalon in a Mode-Locked Cr:Forsterite Laser Cavity,” IEEE J. Quantum Electron. Vol. 38, pp. 458-463 (2002) [24]C. G. Lee, and C. S. Park, “Suppression of Pulse Shape Distortion Caused by Frequency Drift in a Harmonic Mode-Locked Semiconductor Ring Laser”, IEEE Photon. Technol. Lett. Vol. 15, pp. 658-660 (2003) [25]K. Vlachos, C. Bintjas, N. Pleros, and H. Avramopoulos, “Ultrafast Semiconductor-Based Fiber Laser Sources”, IEEE J. Sel. Top. Quantum Electron. Vol. 10, pp. 147-154 (2004) [26]W. W. Tang, M. P. Fok, and Chester Shu, ”10 GHz pulses generated across a ~100 nm tuning range using a gain-shifted mode-locked SOA ring laser,” Opt. Express. Vol. 14 pp.2158-2163 (2006) [27]J. Vasseur, M. Hanna, J. Dudley, J-P. Goedgebuer, J. Yu, G-K. Chang, and J. R. Barry, “Alternate Multiwavelength Picosecond Pulse Generation by Use of an Unbalanced Mach–Zehnder Interferometer in a Mode-locked Fiber Ring Laser” IEEE J. Quantum Electron., Vol. 43, pp 85-96 (2007) [28]W. Zhang, J. Sun, J. Wang, and L. Liu,“Multiwavelength Mode-Locked Fiber-Ring Laser Based on Reflective Semiconductor Optical Amplifiers”, IEEE Photon. Technol. Lett. Vol. 19, pp. 1418-1420 (2007) [29]J. Yang, S. C. Tjin, N. Q. Ngo, “Multiwavelength actively mode-locked fiber laser with a double-ring configuration and integrated cascaded sampled fiber Bragg gratings,” Opt. Fiber Technol. Vol.13, pp. 267–270 (2007) [30]L. F. Mollenauer, R. H. Stolen and J. P. Gordon, “Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers,” Phys. Rev. Lett. 45, 1095 (1980). [31]J. T. Ong, R. Takahashi, M. Tsuchiya, S. H. Wong, R. T. Shara, Y. Ogawa and T. Kamiya, “Subpicosecond soliton compression of gain switched diode laser pulses using an erbium-doped fiber amplifier,” IEEE J. Quantum Electron. 29, 1701 (1993) [32]K. A. Ahmed, K. C. Chan and H. F. Liu, “Femtosecond pulse generation from semiconductor lasers using the. soliton-effect compression technique,” IEEE J. Quantum Electron. 1, 592 (1995). [33]S. V. Chernikov and P. V. Mamyshev, “Femtosecond soliton propagation in fibers with slowly decreasing dispersion,” J. Opt. Soc. Am. B 8, 1633 (1991) [34]S. V. Chernikov, D. J. Richardson, E. M. Dianov and D. N. Payne, “Picosecond soliton pulse compressor based on dispersion decreasing fibre,” Electron. Lett. 28, 1842 (1992) [35]S. V. Chernikov, E. M. Dianov, D. J. Richardson and D. N. Payne, “Soliton pulse compression in dispersion-decreasing fiber,” Opt. Lett. 18, 476 (1993). [36]P. V. Mamyshev, P. G. J. Wigley, J. Wilson and G. I. Stegeman, “Adiabatic compression of Schrödinger solitons due to the combined perturbations of higher-order dispersion and delayed nonlinear response,” Phys. Rev. Lett. 71, 73 (1993). [37]B. S. Azimov, Izv. Akad. Nauk, “self compression of ultra-short optical pulses in a fiber-amplifier system,” lzv. Akad. Nauk. ser. fiz. 50, 2268 (1986) [38]K. J. Blow, N. J. Doran and D. Wood, “Suppression of the soliton self-frequency shift by bandwidth-limited amplification,” J. Opt. Soc. Am. B 5, 1301 (1988) [39]G-R. Lin, K. C. Yu, Y. C. Chang “10 Gbit/s all-optical non-return to zero-return-to-zero data format conversion based on a backward dark-optical-comb injected semiconductor optical amplifier,” Optics Letters, vol. 31, pp. 1376-1378, May 2006. [40]G-R. Lin, I. H. Chiu, M. C. Wu, “1.2-ps mode-locked semiconductor optical amplifier fiber laser pulses generated by 60-ps backward dark-optical comb injection and soliton compression,” Optics Express, vol. 13, pp. 1008-1014, February 2005. [41]G-R. Lin, Y. S. Liao, G. Q. Xia, “Dynamics of optical backward-injection-induced gain-depletion modulation and mode locking in semiconductor optical amplifier fiber lasers,” Optics Express, vol. 12, pp. 2017-2026, May 2004. [42]Joseph T. Verdeyen, Laser Electronic second ed., (Prentice-Hall, Inc., USA, 1994), Chap. 9. [43]M. J. Connelly, “Wideband semiconductor optical amplifier steady-state numericalmodel,” IEEE Quantum Electronics, vol. 37, pp. 439-447, 2001. [44]F. W. Tong, W. Lin, D. N. Wang and P. K. A. Wai, “Multiwavelength fibre laser with wavelength selectable from 1590 to 1645 nm,” Electronics Letters. vol. 40, pp. 594-595, May 2004. [45]I. D. Henning, M. J. Adams, and J. V. Collins, “Performance prediction from a new optical amplifier model,” IEEE Quantum Electronics Letters, vol. 21, pp, 609-613, June 1985. [46]G. P. Agrawal, Nonlinear Fiber Optics. (Academic New York, 1989). [47]T. Keating, J. Minch, C. S. Chang, et al, ”Optical gain and refractive index of a laser amplifier in the presence of pump light for cross-gain and cross-phase modulation” IEEE Photon. Tech. Lett., Vol. 9, pp.1358-1360, OCT 1997 [48]Joergensen, C, Danielsen, SL, Stubkjaer, KE, et al, “All-optical wavelength conversion at bit rates above 10 Gb/s using semiconductor optical amplifiers”, IEEE J. Selected Topics in Quantum Electron., Vol. 3, pp. 1168-1180, OCT 1997 [49]Lee. H, Kim. Y, Jeong. J, “Frequency chirping characteristics of all optical wavelength converter based on cross-gain and cross-phase modulation in semiconductor optical amplifiers”, J. of The Korean Phy. Society, Vol. 34, pp. S577-S581, Jun 1999 [50]K. Inoue, ”Modulation characteristics of a directly modulated super luminescent diode followed by a gain-saturated semiconductor optical amplifier”, IEICE Transactions on Electron., Vol. E83C, pp. 520-522, MAR 2000 [51]G.-R. Lin, I.-H. Chiu, and M.-C. Wu, “1.2-ps mode-locked semiconductor optical amplifier fiber laser pulses generated by 60-ps backward dark-optical comb injection and soliton compression,” Opt. Express 13, 1008 (2005). [52]M. Horowitz, C. R. Menyuk, T. F. Carruthers, and I. N. Duling, “Theoretical and experimental study of harmonically modelocked fiber lasers for optical communication systems,” J. Lightwave Technol., vol. 18, pp. 1565–1574, Nov. 2000. [53]C. Wu and N. K. Dutta, “High repetition rate optical pulse generation using a rational harmonic mode-locked fiber laser,” IEEE J. Quantum Electron., vol. 36, no. 2, pp. 145–150, 2000. [54]H. F. Liu, Y. Ogawa, S. Oshiba, and T. Nonaka, “Relaxation-free harmonically mode-locked semiconductor-fiber ring laser,” IEEE J. Quantum Electron. 11, 1655 (1991). [55]K. Vlachos,C. Bintjas, N. Pleros, et al, “Ultrafast semiconductor-based fiber laser sources” IEEE J. Selected Topics in Quantum Electron. Vol. 10, pp. 147-154, JAN-FEB 2004. [56]H. Q. Lam, P. Shum, L. N. Binh, et al, “Polarization-dependent locking in SOA harmonic mode-locked fiber laser”, IEEE Photonics Tech. Lett., Vol. 18, pp. 2404-2406, NOV-DEC 2006 [57]K. A. Ahmed, K. C. Chan, and H. F. Liu, “Femtosecond pulse generation from semiconductor lasers using the soliton-effect compression techique,” IEEE J. Quantum Electron. 1, 592 (1995). [58]G-R. Lin and I-H. Chiu, “Femtosecond wavelength tunable semiconductor optical amplifier fiber laser mode-locked by backward dark-optical-comb injection at 10 GHz”, Opt. Express., Vol. 13, pp. 8772-8780, October 2005.
|