跳到主要內容

臺灣博碩士論文加值系統

(44.211.84.185) 您好!臺灣時間:2023/05/30 06:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉竟偉
研究生(外文):Ching-Wei Liu
論文名稱:可形變鏡面在反射光學系統的應用:自動對焦與光學變焦系統
論文名稱(外文):Applications of Deformable Mirrors in Reflective-type Optical Systems: Auto-focus and Zoom Systems
指導教授:蘇國棟
指導教授(外文):Guo-Dung Su
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:64
中文關鍵詞:可形變反射光學系統自動對焦光學變焦
外文關鍵詞:deformable mirrorsreflective opticsauto-focuszoom
相關次數:
  • 被引用被引用:0
  • 點閱點閱:464
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
對於一般市面上的可攜帶式電子產品例如手機、PDA、及筆記型電腦而言,微型化是目前發展的趨勢。因此,如何將其所組成的模組縮小便是首要任務。對於鏡頭模組而言,傳統上使用步進馬達來驅動的鏡頭模組在微型化的過程中已經遇到了瓶頸,因為這樣的系統無論是在自動對焦或是光學變焦的過程中,都需要空間來移動鏡子。一種解決的方式是結合反射式光學以及利用微機電系統技術所製造的可形變鏡面。反射式光學不但有低色散的特性,並且因為其原理是將光路在系統內反射數次後再成像於系統之外,整個系統的大小可以縮小許多;另一方面,由微機電系統技術所製造的可形變鏡面,不但適合大量製造,其光學上的等效焦距也是可調變的。結合這兩種技術,在本文中我們將討論如何設計並實現一個長約8.5毫米、寬約4.5毫米的自動對焦系統並討論其改進方法及可能性,以及如何運用這兩種技術來設計一個微型光學變焦系統。
Miniaturized imaging system is the modern trend in commercial products, especially for portable devices such as mobile phones, PDAs, and computer laptops. However, motor-driven lens modules in conventional cameras are difficult to be miniaturized since they require space to achieve auto-focusing and zooming function. One possible solution is to combine the reflective optics, which features low color dispersion, and MEMS deformable mirrors, which feature tunable focal length. What’s more, reflective optics is space-efficient by bending optical path several times within the system. Combining these two technologies, we present an optical design of an auto-focusing system with only 8.5 mm in length and 4.5 mm in thickness. Besides, we also discuss some possible ways to improve our auto-focusing system, and how reflective optics and MEMS deformable mirrors can be applied to compact zoom systems.
ABSTRACT i
中文摘要 ii
致謝 iii
LIST OF FIGURES vii
LIST OF TABLES x

CHPATER 1: INTRODUCTION 1

CHAPTER 2: MEMS-BASED ORGANIC DEFORMABLE MIRRORS 3
2.1 Adaptive Optics and Deformable Mirrors 3
2.2 Micro-electro-mechanical Systems (MEMS) 5
2.3 MEMS-based Organic Deformable Mirrors 7
2.3.1 Fabrication Process of MEMS-based Organic Deformable Mirrors 7
2.3.2 Optical Properties of MEMS-based Organic Deformable Mirrors 10

CHAPTER 3: AUTO-FOCUS SYSTEM AND ADAPTIVE OPTICS 13
3.1 Traditional Auto-focus System 13
3.1.1 Driving Power of Traditional Auto-focus Systems 13
3.1.2 Basic Theory of Traditional Auto-focus Systems 15
3.2 Auto-focus System with Adaptive Optics 16
3.3 Two Types of Adaptive-optical Components 17
3.3.1 Refractive-type Adaptive-optical Component 17
3.3.2 Reflective-type Adaptive-optical Component 19

CHAPTER 4: AUTO-FOCUS SYSTEM WITH DEFORMABLE MIRROR FOR PORTABLE DEVICES 22
4.1 Previous Works 22
4.2 Modified Auto-focus System 24
4.2.1 Simulation Results When MEMS Mirror Is Flat 26
4.2.2 Simulation Results When MEMS Mirror Is Actuated 28
4.2.3 System Packaging 29

CHAPTER 5: EXPERIMENTAL RESULTS AND DISCUSSION 31
5.1 Experiment Devices and Setup 31
5.1.1 Acrylic Solid Lenses 31
5.1.2 Lens Module Package 33
5.1.3 CMOS VGA Image Sensor 36
5.1.4 Miniature High Voltage Power Supply 37
5.2 Experiment and Results 38
5.3 Discussion 41

CHAPTER 6: ZOOM SYSTEM WITH DEFORMABLE MIRRORS FOR PORTABLE DEVICES 43
6.1 Traditional Zoom Theory for Moving Lenses 43
6.2 Zoom Theory for Stationary Components 44
6.2.1 Magnification According to “fm1” and “fm2” 45
6.2.2 Keeping The Distance Between Object and Image a Constant 47
6.3 An Example of Zoom Theory 48
6.4 Using The Zoom Theory 51
6.5 Conclusion of Zoom Theory 54

CHAPTER 7: CONCLUSION AND FUTURE WORK 56
7.1 Conclusion 56
7.2 Future Work 57

REFERENCES 59
Appendix 1: LIST OF PUBLICATIONS 61
Appendix 2: DETAILED AUTO-FOCUS SYSTEM DESCRIPTION 62
Appendix 3: EXCEL® OF ZOOM THEORY 63
1. W. J. Smith, Modern Optical Engineering: the design of optical systems, 2nd ed., McGraw-Hill, Inc., p. 436. (1990)

2. B. Ellerbroek and F. Rigaut, “Astronomy: Optics adapt to the whole sky,” Nature, volume 403, issue6765, pp. 25-26. (2000)

3. J. W. Hardy, Adaptive Optics for Astronomical Telescopes, Oxford Series in Optical and Imaging Sciences, pp. 26-32. (1998)

4. Subaru Telescope, “Subaru Telescope Improves Its Eyesight by a Factor of Ten,” Official Website of National Astronomical Observatory of Japan, November 20, 2006 Press Release (http://naoj.org/Pressrelease/2006/11/20/index.html, accessed on May 23th, 2008)

5. R. Pratap, “Some Issues in Mechanical Design of MEMS Transducers,” Proceedings of SPIE, vol. 5062, pp. 788-793. (2003)

6. M. A. Mignardi, “Digital Micromirror Array for Projection TV,” Solid State Technology, vol. 37, no. 7, pp. 4-10. (1994)

7. L. J. Hornbeck, “Digital Light Processing and MEMS: Timely Convergence for a Bright Future,” Proceedings of SPIE, vol. 2641, p. 2. (1995)

8. S. Menn, S. A. Cornelissen, and P. A. Bierden, “Advances in MEMS Deformable Mirror Technology for Laser Beam Shaping,” Proceedings of SPIE, vol. 6663, pp. 66630M-1 – 66630M-13. (2007)

9. G. D. Su, Y. Yeh, C. W. Chiu, C. H. Li, and T. Y. Chen, “Fabrication and Measurement of Low-stress Polyimide Membrane for High-resolution Variable Optical Attenuator,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 13, no. 2, pp. 312-315. (2007)

10. I. Kanno, T. Kunisawa, T. Suzuki, and H. Kotera, ”Development of Deformable Mirror Composed of Piezoelectric Thin Films for Adaptive Optics,” IEEE Journal of Selected Topics in Quantum Electronics vol.13 no.2 March/April 2007, pp.155-161. (2007)

11. T. Y. Chen, C. H. Li, J. L. Wang, C. W. Chiou, and G. D. Su, ”A MEMS-based Organic Deformable Mirror with Tunable Focal Length,” 2007 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics, Aug. 12 2007-July 16 2007, pp.103-104. (2007)

12. S. Tagami, N. Shinozaki, and K. Akimoto, “Automatic Focusing Device for Camera,” United States Patent, no. 5047796. (1989)

13. D. A. Henderson, “Micro Moves,” Machine Design Magazine, January 12th, 2006.

14. EKT Electronics’ website, (http://www.ekt2.com/_files/96%20STEPPER%20MOTOR%2057BYG.htm, accessed on May 28th, 2008)

15. S. Kuiper, B.H.W. Hendriks, J.F. Suijver, and S. Deladi. I. Helwegen, “Zoom Camera Based on Liquid Lenses,” Proceedings of SPIE, vol. 6466, pp. 64660F-1 – 64660F-7. (2007)

16. J. M. Geary, Introduction to Lens Design with Practical ZEMAX® Examples, Willmann-Bell, Inc., 2002, p. 263. (2002)

17. E. J. Tremblay, R. A. Stack, R. L. Morrison, and J. E. Ford, “Ultrathin Cameras Using Annular Folded Optics,” Applied Optics, vol.46, no.4, pp. 463-471, Feb. 2007. (2007)

18. J. L. Wang, T. Y. Chen, C. W. Liu, C. W. Chiu, and G. D. Su, “Polymer Deformable Mirror for Optical Auto Focusing,” ETRI Journal, vol. 29, no. 6, December 2007, pp. 817-819. (2007)

19. J. L. Wang, Master Thesis: Compact Imaging System with Deformable Mirror – Auto-focusing & Zoom, Graduate Institute of Electro-optical Engineering, National Taiwan University. (2007)

20. “PAS6311LT Specification,” PixArt Imaging Inc., p. 1.

21. Matsusada Precision Inc.’s website: http://www.matsusada.com/high-voltage/t/index.html, accessed on June 6th, 2008.

22. J. E. Schlag, A. C. Sanderson, C. P. Neumann, and E. C.Wimberly, Implementation of Automatic Focusing Algorithms for a Computer Vision System with Camera Control, Technical Report CMU-RI-TR-83- 14, Carnegie Mellon University, August, 1983.

23. J, M, Tenenbaum, Accommodation in Computer Vision, Ph.D. Dissertation, Stanford University. November, 1970.

24. W. J. Smith, Modern Optical Engineering: the design of optical systems, 2nd ed., McGraw-Hill, Inc., 1990, p. 274. (1990)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top