|
[1] F. Keller, M. Hunter, and D. L. Robinson, “Structural features of oxide coating on aluminum,” J. Electrochem. Soc. 100, 411 (1953). [2] J. P. O''Sullivan and G. C. Wood, “The morphology and mechanism of formation of porous anodic films on aluminium,” Proc. R. Soc. London, Ser. A 317, 511 (1970). [3] G.E. Thompson, “Porous anodic alumina: fabrication, characterization and applications,” Thin Solid Films 297, 192 (1997). [4] O. Jessensky, F. Müller, and U. Gösele, “Self-organized formation of hexagonal pore arrays in anodic alumina,” Appl. Phys. Lett. 72, 1173 (1998). [5] F. Li, L. Zhang, and R. M. Metzger, “On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide,” Chem. Mater. 10, 2473 (1998). [6] S.K. Thamida and H.C. Chang, “Nanoscale pore formation dynamics during aluminum anodization,” Chaos 2002, 12, 240 (2002). [7] S. Shingubara, O. Okino, Y. Sayama, H. Sakaue and T. Takahagi, “Ordered Two-Dimensional Nanowire Array Formation Using Self-Organized Nanoholes of Anodically Oxidized Aluminum,” Jpn. J. Appl. Phys., Part 1 36, 7791 (1997). [8] H. Masuda, F. Hasegawa, and S. Ono, “Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid soluiton,” J. Electrochem. Soc. 144, L127 (1997). [9] H. Masuda, K. Yada, and A. Osaka, “Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution,” Jpn. J. Appl. Phys. 37, L1340 (1998). [10] A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys. 84, 6023 (1998). [11] H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268, 1466 (1995). [12] H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, “Highly ordered nanochannel-array architecture in anodic alumina,” Appl. Phys. Lett. 71, 2770 (1997). [13] H. Masuda, M. Yotsuya, M. Asano, K. Nishio, M. Nakao, A. Yokoo, and T. Tamamura, “Self-repair of ordered pattern of nanometer dimensions based on self-compensation properties of anodic porous alumina,” Appl. Phys. Lett. 78, 826 (2001). [14] H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, “Square and triangular nanohole array architectures in anodic alumina,” Adv. Mater. 13, 189 (2001). [15] Y. D. Wang, S. J. Chua, M. S. Sander, P. Chen, S. Tripathy, and C. G. Fonstad, “Fabrication and properties of nanoporous GaN films,” Appl. Phys. Lett. 85, 816 (2004). [16] Y. D. Wang, S. J. Chua, S. Tripathy, M. S. Sander, P. Chen, and C. G. Fonstad, “High optical quality GaN nanopillar arrays,” Appl. Phys. Lett. 86, 071917 (2005). [17] K. Y. Zang, Y. D. Wang, S. J. Chua, and L. S. Wang, “Nanoscale lateral epitaxial overgrowth of GaN on Si (111),” Appl. Phys. Lett. 87, 193106 (2005). [18] Y. D. Wang, K. Y. Zang, S. J. Chua, S. Tripathy, P. Chen, and C. G. Fonstad, “Nanoair-bridged lateral overgrowth of GaN on ordered nanoporous GaN template,” Appl. Phys. Lett. 87, 251915 (2005). [19] Y. D. Wang, K. Y. Zang, and S. J. Chua, “Nonlithographic nanopatterning through anodic aluminum oxide template and selective growth of highly ordered GaN nanostructures,” J. Appl. Phys. 100, 054306 (2006). [20] K. Y. Zang, Y. D. Wang, S. J. Chua, L. S. Wang, S. Tripathy, and C. V. Thompson, “Nanoheteroepitaxial lateral overgrowth of GaN on nanoporous Si (111),” Appl. Phys. Lett. 88, 141925 (2006). [21] Y. D. Wang, K. Y. Zang, S. J. Chua, S. Tripathy, H. L. Zhou, and C. G. Fonstad, “Improvement of microstructural and optical properties of GaN layer on sapphire by nanoscale lateral epitaxial overgrowth,” Appl. Phys. Lett. 88, 211908 (2006). [22] Y. D. Wang, K. Y. Zang, S. J. Chua, and C. G. Fonstad, “Template-nonlithographic nanopatterning for site control growth of InGaN nanodots,” Appl. Phys. Lett. 89, 241922 (2006). [23] Y. Lei, and W.K. Chim, “Shape and size control of regularly arrayed nanodots fabricated using ultrathin alumina masks,” Chem. Mater. 17, 3, 580 (2005). [24] H. Chik, J. Liang, S. G. Cloutier, N. Kouklin, and J. M. Xu, “Periodic array of uniform ZnO nanorods by second-order self-assembly,” Appl. Phys. Lett. 84, 3376 (2004). [25] Mi Jung, Sun-il Mho, and Hong Lee Park, “Long-range-ordered CdTe/GaAs nanodot arrays grown as replicas of nanoporous alumina masks,” Appl. Phys. Lett. 88, 133121 (2006). [26] G.S. Cheng, S.H. Chen, X.G. Zhu, Y.Q. Mao and L.D. Zhang, “Highly ordered nanostructures of single crystalline GaN nanowires in anodic alumina membranes,” Mater. Sci. & Eng. A 286, 165 (2000). [27] G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gosele, “ Highly ordered monocrystalline silver nanowire arrays,” J. Appl. Phys. 91, 3243 (2002). [28] H. Masuda, M. Ohya, H. Asoh, M. Nakao, M. Nohtomi, and T. Tamamura, “Photonic Crystal Using Anodic Porous Alumina,” Jpn. J. Appl. Phys., Part 2 38, L1403 (1999). [29] J. Park, J.K. Oh, K.W. Kwon, Y.H. Kim, S.S. Jo, J.K. Lee, and S.W Ryu, “Improved light output of photonic crystal light-emitting diode fabricated by anodized aluminum oxide nano-patterns,” IEEE Photon. Technol. Lett. 20, 321 (2008). [30] K. Kim, J. Choi, and T. S. Bae, “Anodic nanoclusters of GaN,” Appl. Phys. Lett. 90, 181912 (2007). [31] T. Dai, B. Zhang, X. Kang, K. Bao, W. Zhao, D. Xu, and Z. Gan, “GaN-based light emitting diodes with large area surface nanostructures patterned by anodic aluminum oxide templates,” Proc. SPIE 6910, 69100P (2008). [32] C. C. Wang, H. C. Lu, C. C. Liu, F. L. Jenq, Y. H. Wang, and M. P. Houng, “ Improved extraction efficiency of light-emitting diodes by modifying surface roughness with anodic aluminum oxide film,” IEEE Photon. Technol. Lett. 20, 428 (2008). [33] L. M. Liz-Marzán, “Nanometals: Formation and color.” Materials Today, 7, 26 (2004). [34] U. Kreibig and M. Vollmer, Optical properties of metal clusters (Springer, Berlin, 1995). [35] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B, 107, 668-677 (2003). [36] C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949 (2000). [37] B.P. Rand, P.Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic Tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96, 7519 (2004). [38] M. Cortie, X. Xu, H. Chowdhury, H. Zareie, and G. Smith, “Plasmonic heating of gold nanoparticles and its exploitation,” Proc. SPIE 5649, 565 (2005). [39] K. H. Su, Q. H. Wei, and X. Zhang, “Surface Plasmon Coupling Between Two Nano Au Particles,” IEEE-NANO 2, 279 (2003). [40] P. Raveendran, J. Fu and S.L. Wallen, “A simple and ‘‘green’’ method for the synthesis of Au, Ag, and Au–Ag alloy,” Green Chem. 8, 34 (2006). [41] M. J. Kim, H. J. Na, K.C. Lee, E.A. Yoo, and M.Y. Lee, “Preparation and characterization of Au–Ag and Au–Cu alloy nanoparticles in chloroform,” J. Mater. Chem. 13, 1789 (2003) [42] S. Link, Z. L. Wang, and M. A. El-Sayed, “Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B 103, 3529 (1999). [43] K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface- plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601 (2004). [44] K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87, 071102 (2005). [45] D. M. Yeh, C. Y. Chen, Y. C. Lu, C. F. Huang, and C. C. Yang, “Formation of various metal nanostructures with thermal annealing to control the effective coupling energy between a surface plasmon and an InGaN/GaN quantum well,” Nanotechnology 18, 265402 (2007). [46] S. A. Maier, Plasmonics: Fundamentals and applications.
|