跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/14 15:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:溫承穎
研究生(外文):Cheng-Ying Wen
論文名稱:於氮化鎵上陽極氧化鋁技術之改善及產生表面電漿子奈米金屬顆粒之製備
論文名稱(外文):Improvement of Anodic Aluminum Oxide Technique on GaN and Fabrication of Metal Particles for Surface Plasmon Study
指導教授:楊志忠楊志忠引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:61
中文關鍵詞:表面電漿子陽極氧化鋁金屬奈米點
外文關鍵詞:Surface plasmonAnodic aluminum oxidemetal nano-particles
相關次數:
  • 被引用被引用:0
  • 點閱點閱:307
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
陽極氧化鋁是一種自組形成的奈米孔洞結構,相較於電子束蝕刻和聚焦離子束蝕刻技術,陽極氧化鋁有許多應用上之優勢。在此研究中,我們成功利用不同電解液,製作出含有不同大小及孔洞間距的陽極氧化鋁結構。我們也利用了陽極氧化鋁當作蝕刻遮罩,製作出具有孔洞結構的二氧化矽薄膜。此外,我們研究出如何在不破壞P型氮化鎵的原則下,於其上製作出陽極氧化鋁結構,我們也利用此種方法將發光二極體表面粗糙化,期能幫助發光二極體的汲光效率。最後,我們利用陽極氧化鋁當作蒸鍍遮罩,製作出金、銀、銅的奈米點,並觀察其在氮化鎵上的表面電漿子特性。
Anodic aluminum oxide (AAO) is a typical self-organized structure with nano-hole arrays. It has many application advantages, compared to e-beam lithography and focus ion-beam etching. In this thesis, we present the procedures for fabricatng AAO of different sizes and interpore distances using phosphoric acid and sulfuric acid as electrolytes. Then, the SiO¬2 nano-pore arrays of different interpore distances are fabricated using AAO as an etching mask. We discuss how to fabricate AAO on p-type GaN template. Then, we roughen the surface of a light-emitting diode (LED) using AAO as an etching mask. It is expected the light extraction of the LED can be enhanced. Next, the metal nano-particles are fabricated using AAO as an evaporation mask. The SP characteristics of Ag, Au, Cu nano-particles on undoped GaN templates are investigated from UV-visible transmission spectroscopy.
Chapter 1 Introduction…………………………………………………...1
1.1 Review of Anodic Aluminum Oxide Technique………………..1
1.2 Review on Surface Plasmon…………………………………....6
1.3 Research Motivations………………………………………….13
1.4 Thesis Organization……………………………………………14

Chapter 2 AAO with Different Electrolytes…………………………….15
2.1 Experiment Setup for the Fabrication of AAO…………….......15
2.2 Fabrication of AAO with Different Electrolytes………………17
2.3 Fabrication of SiO2 Nano-pore Arrays………………………21

Chapter 3 AAO on p-type GaN and Light-emitting Diodes……………26
3.1 AAO on p-type GaN…………………………………………..26
3.2 AAO on Light-emitting Diodes……………………………….28

Chapter 4 Fabrication of Metal Nano-particles and Their Surface Plasmon Characteristics………………………………………………………….38
4.1 Fabrication of Metal Nano-particles………………………….38
4.2 Surface Plasmon of Metal Nano-particles……………………45

Chapter 5 Conclusions…………………………………………………54

Reference………………………………………………………………55
[1] F. Keller, M. Hunter, and D. L. Robinson, “Structural features of oxide coating on aluminum,” J. Electrochem. Soc. 100, 411 (1953).
[2] J. P. O''Sullivan and G. C. Wood, “The morphology and mechanism of formation of porous anodic films on aluminium,” Proc. R. Soc. London, Ser. A 317, 511 (1970).
[3] G.E. Thompson, “Porous anodic alumina: fabrication, characterization and applications,” Thin Solid Films 297, 192 (1997).
[4] O. Jessensky, F. Müller, and U. Gösele, “Self-organized formation of hexagonal pore arrays in anodic alumina,” Appl. Phys. Lett. 72, 1173 (1998).
[5] F. Li, L. Zhang, and R. M. Metzger, “On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide,” Chem. Mater. 10, 2473 (1998).
[6] S.K. Thamida and H.C. Chang, “Nanoscale pore formation dynamics during aluminum anodization,” Chaos 2002, 12, 240 (2002).
[7] S. Shingubara, O. Okino, Y. Sayama, H. Sakaue and T. Takahagi, “Ordered Two-Dimensional Nanowire Array Formation Using Self-Organized Nanoholes of Anodically Oxidized Aluminum,” Jpn. J. Appl. Phys., Part 1 36, 7791 (1997).
[8] H. Masuda, F. Hasegawa, and S. Ono, “Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid soluiton,” J. Electrochem. Soc. 144, L127 (1997).
[9] H. Masuda, K. Yada, and A. Osaka, “Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution,” Jpn. J. Appl. Phys. 37, L1340 (1998).
[10] A. P. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys. 84, 6023 (1998).
[11] H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268, 1466 (1995).
[12] H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, “Highly ordered nanochannel-array architecture in anodic alumina,” Appl. Phys. Lett. 71, 2770 (1997).
[13] H. Masuda, M. Yotsuya, M. Asano, K. Nishio, M. Nakao, A. Yokoo, and T. Tamamura, “Self-repair of ordered pattern of nanometer dimensions based on self-compensation properties of anodic porous alumina,” Appl. Phys. Lett. 78, 826 (2001).
[14] H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, “Square and triangular nanohole array architectures in anodic alumina,” Adv. Mater. 13, 189 (2001).
[15] Y. D. Wang, S. J. Chua, M. S. Sander, P. Chen, S. Tripathy, and C. G. Fonstad, “Fabrication and properties of nanoporous GaN films,” Appl. Phys. Lett. 85, 816 (2004).
[16] Y. D. Wang, S. J. Chua, S. Tripathy, M. S. Sander, P. Chen, and C. G. Fonstad, “High optical quality GaN nanopillar arrays,” Appl. Phys. Lett. 86, 071917 (2005).
[17] K. Y. Zang, Y. D. Wang, S. J. Chua, and L. S. Wang, “Nanoscale lateral epitaxial overgrowth of GaN on Si (111),” Appl. Phys. Lett. 87, 193106 (2005).
[18] Y. D. Wang, K. Y. Zang, S. J. Chua, S. Tripathy, P. Chen, and C. G. Fonstad, “Nanoair-bridged lateral overgrowth of GaN on ordered nanoporous GaN template,” Appl. Phys. Lett. 87, 251915 (2005).
[19] Y. D. Wang, K. Y. Zang, and S. J. Chua, “Nonlithographic nanopatterning through anodic aluminum oxide template and selective growth of highly ordered GaN nanostructures,” J. Appl. Phys. 100, 054306 (2006).
[20] K. Y. Zang, Y. D. Wang, S. J. Chua, L. S. Wang, S. Tripathy, and C. V. Thompson, “Nanoheteroepitaxial lateral overgrowth of GaN on nanoporous Si (111),” Appl. Phys. Lett. 88, 141925 (2006).
[21] Y. D. Wang, K. Y. Zang, S. J. Chua, S. Tripathy, H. L. Zhou, and C. G. Fonstad, “Improvement of microstructural and optical properties of GaN layer on sapphire by nanoscale lateral epitaxial overgrowth,” Appl. Phys. Lett. 88, 211908 (2006).
[22] Y. D. Wang, K. Y. Zang, S. J. Chua, and C. G. Fonstad, “Template-nonlithographic nanopatterning for site control growth of InGaN nanodots,” Appl. Phys. Lett. 89, 241922 (2006).
[23] Y. Lei, and W.K. Chim, “Shape and size control of regularly arrayed nanodots fabricated using ultrathin alumina masks,” Chem. Mater. 17, 3, 580 (2005).
[24] H. Chik, J. Liang, S. G. Cloutier, N. Kouklin, and J. M. Xu, “Periodic array of uniform ZnO nanorods by second-order self-assembly,” Appl. Phys. Lett. 84, 3376 (2004).
[25] Mi Jung, Sun-il Mho, and Hong Lee Park, “Long-range-ordered CdTe/GaAs nanodot arrays grown as replicas of nanoporous alumina masks,” Appl. Phys. Lett. 88, 133121 (2006).
[26] G.S. Cheng, S.H. Chen, X.G. Zhu, Y.Q. Mao and L.D. Zhang, “Highly ordered nanostructures of single crystalline GaN nanowires in anodic alumina membranes,” Mater. Sci. & Eng. A 286, 165 (2000).
[27] G. Sauer, G. Brehm, S. Schneider, K. Nielsch, R. B. Wehrspohn, J. Choi, H. Hofmeister, and U. Gosele, “ Highly ordered monocrystalline silver nanowire arrays,” J. Appl. Phys. 91, 3243 (2002).
[28] H. Masuda, M. Ohya, H. Asoh, M. Nakao, M. Nohtomi, and T. Tamamura, “Photonic Crystal Using Anodic Porous Alumina,” Jpn. J. Appl. Phys., Part 2 38, L1403 (1999).
[29] J. Park, J.K. Oh, K.W. Kwon, Y.H. Kim, S.S. Jo, J.K. Lee, and S.W Ryu, “Improved light output of photonic crystal light-emitting diode fabricated by anodized aluminum oxide nano-patterns,” IEEE Photon. Technol. Lett. 20, 321 (2008).
[30] K. Kim, J. Choi, and T. S. Bae, “Anodic nanoclusters of GaN,” Appl. Phys. Lett. 90, 181912 (2007).
[31] T. Dai, B. Zhang, X. Kang, K. Bao, W. Zhao, D. Xu, and Z. Gan, “GaN-based light emitting diodes with large area surface nanostructures patterned by anodic aluminum oxide templates,” Proc. SPIE 6910, 69100P (2008).
[32] C. C. Wang, H. C. Lu, C. C. Liu, F. L. Jenq, Y. H. Wang, and M. P. Houng, “ Improved extraction efficiency of light-emitting diodes by modifying surface roughness with anodic aluminum oxide film,” IEEE Photon. Technol. Lett. 20, 428 (2008).
[33] L. M. Liz-Marzán, “Nanometals: Formation and color.” Materials Today, 7, 26 (2004).
[34] U. Kreibig and M. Vollmer, Optical properties of metal clusters (Springer, Berlin, 1995).
[35] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B, 107, 668-677 (2003).
[36] C. Sonnichsen, S. Geier, N. E. Hecker, G. von Plessen, J. Feldmann, H. Ditlbacher, B. Lamprecht, J. R. Krenn, F. R. Aussenegg, V. Z-H. Chan, J. P. Spatz, and M. Moller, “Spectroscopy of single metallic nanoparticles using total internal reflection microscopy,” Appl. Phys. Lett. 77, 2949 (2000).
[37] B.P. Rand, P.Peumans, and S. R. Forrest, “Long-range absorption enhancement in organic Tandem thin-film solar cells containing silver nanoclusters,” J. Appl. Phys. 96, 7519 (2004).
[38] M. Cortie, X. Xu, H. Chowdhury, H. Zareie, and G. Smith, “Plasmonic heating of gold nanoparticles and its exploitation,” Proc. SPIE 5649, 565 (2005).
[39] K. H. Su, Q. H. Wei, and X. Zhang, “Surface Plasmon Coupling Between Two Nano Au Particles,” IEEE-NANO 2, 279 (2003).
[40] P. Raveendran, J. Fu and S.L. Wallen, “A simple and ‘‘green’’ method for the synthesis of Au, Ag, and Au–Ag alloy,” Green Chem. 8, 34 (2006).
[41] M. J. Kim, H. J. Na, K.C. Lee, E.A. Yoo, and M.Y. Lee, “Preparation and characterization of Au–Ag and Au–Cu alloy nanoparticles in chloroform,” J. Mater. Chem. 13, 1789 (2003)
[42] S. Link, Z. L. Wang, and M. A. El-Sayed, “Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition,” J. Phys. Chem. B 103, 3529 (1999).
[43] K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface- plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601 (2004).
[44] K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87, 071102 (2005).
[45] D. M. Yeh, C. Y. Chen, Y. C. Lu, C. F. Huang, and C. C. Yang, “Formation of various metal nanostructures with thermal annealing to control the effective coupling energy between a surface plasmon and an InGaN/GaN quantum well,” Nanotechnology 18, 265402 (2007).
[46] S. A. Maier, Plasmonics: Fundamentals and applications.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊