跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/14 13:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇富祥
研究生(外文):Fu-Hsiang Su
論文名稱:利用原子層沉積技術沉積氧化鋁與氧化鋅薄膜於矽奈米點與其光電元件之研究
論文名稱(外文):Characteristics of Si nanodots with Al2O3 and ZnO films deposited by atomic layer depositionand the applications on optoelectronic devices
指導教授:陳敏璋
指導教授(外文):Miin-Jang Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:100
中文關鍵詞:原子層沉積技術氧化鋁氧化鋅矽奈米點
外文關鍵詞:Si nanodotsAl2O3ZnOatomic layer depositionPLEL
相關次數:
  • 被引用被引用:0
  • 點閱點閱:342
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本論文研究矽奈米點的光電性質與其在光電元件上之應用,並利用原子層沉積技術沉積氧化鋁和氧化鋅薄膜於矽奈米點上,研究其光電性質之變化。本論文可分為五個主題,第一個主題研究矽奈米點內的載子陷阱,藉由光激發光(photoluminescence, PL)量測在不同溫度下,不同尺寸的奈米點與不同種類的矽基板的發光頻譜與強度。發現越大的矽奈米點,會有越多載子釋放的現象,而電洞是主要釋放出的載子。在低溫的情況下,電洞陷阱與電子電洞液體(electron-hole liquid)是相互競爭的機制。隨著溫度的上昇,電洞由矽奈米點中的電洞陷阱釋放出來,會顯著的影響PL的強度。
第二個主題為研究利用原子層沉積技術沉積氧化鋁薄膜於矽奈米點上的1表面鈍化效果。由原子層沉積技術沉積的氧化鋁薄膜可在矽奈米點上提供良好的表面鈍化效果以增加PL的發光強度。此外,矽奈米點中居多數的電洞陷阱與少量的電子陷阱對於不同種類的矽基板的試片會造成不同的PL特性。此外,我們發現利用Buffer-Oxide-Etch (BOE)去除二氧化矽的過程,會對電洞與電子陷阱造成不同的影響,進而影響不同種類的矽基板的PL性質。
第三主題是 n-type ZnO/SiO2-Si nanodots-SiO2/p-Si 異質接面在光偵測器上的應用。具有適當厚度的氧化鋅薄膜可以作為為抗反射層與透明導電層,使得光偵測器可達到152%的光電轉換效率。其原因為高能的電子在穿遂經過厚的氧化層後進入氧化鋅內產生impact ionization,進而碰撞出更多的電子電洞對以導致大於100%的量子效率。
第四主題是高效率n-type ZnO/SiO2-Si nanodots-SiO2/p-Si 異質接面矽發光二極體。由二氧化矽包圍的矽奈米點具有載子侷限(carrier localization)的效應,可以有效提高發光效率。此外,氧化鋅薄膜可以作為此異質接面的電子注入層,具有適當厚度的氧化鋅可以作為為抗反射層,不僅是降低矽基板與空氣間的反射率以提高光取出效率,更因其高電子濃度與高能隙能量,可以大幅的提升矽發光二極體的外部量子效率,其最佳的外部量子效率可達 3.3×10-4。
第五主題為研究在室溫及低溫下,矽奈米點的光學增益(optical gain)。由於矽奈米點產生的載子侷限的效應,提高了自發發光(spontaneous emission)的強度,進而造成光學增益。我們利用可變式光激發長度(variable stripe length, VSL)的量測方式,發現具有矽奈米點試片的光激發光強度會隨激發長度成指數型成長,成功的觀測到矽奈米點光學增益的現象。作為抗反射層的氧化鋅薄膜可以提高光學增益的大小。
Abstract
This thesis presents the optical characteristics of the Si nanodots together with of Al2O3 and ZnO thin films deposited by atomic layer deposition (ALD). This thesis is divided into five topics. The first topic investigated the carrier traps in Si nanodots. The Si nanodots with different sizes grown on n-type and p-type silicon substrates present various temperature-dependent photoluminescence (PL) characteristics. The hole traps and electron-hole liquid were two carrier competition mechanisms at low temperature, resulting in the significant change of PL intensity with the nanodot size and substrate type. The dominant hole traps in the Si nanodots capture large amount of minority carriers, and thus reduces the PL intensity of the n-type Si substrate at low temperature. As a result, the PL intensity at low temperature decreases dramatically with the size of the Si nanodots. The hole emission from Si nanodots into the n-type Si substrate leads to the significant increase in the PL intensity with temperature at the temperature greater than 40K.
The second topic is the surface passivation of Al2O3 thin films deposited by ALD on Si nanodots. The Al2O3 thin films deposited by ALD on Si nanodots causes the enhancement of PL intensity after the Buffer-Oxide-Etch (BOE) treatment, indicating the excellent surface passivation effect to suppress the nonradiative recombination. The BOE treatment results in the formation of surface defects and remove of a great amount of hole traps in the Si nanodots. For the thermal SiO2/Si nanodot/p-Si samples, the PL vs. temperature characteristics are sensitive to surface defects rather than the hole traps at low temperature. As for the thermal SiO2/Si nanodot/n-Si samples, the PL vs. temperature characteristics are very sensitive to the decrease in concentration of hole traps at low temperature.
The third topic is the efficient n- ZnO/SiO2-Si nanodots-SiO2/p-Si heterojunction photodetector. The n-type ZnO:Al layer acts as the transparent conductive oxide (TCO) and anti-reflection coating (ARC) layer to increase the quantum efficiency of the photodetectors. For samples with the smaller Si nanodots, the hot electrons tunneling through the thicker oxide into ZnO may cause impact ionization in ZnO, resulting in the quantum efficiency of the photodetector greater than 100%. Efficient n-ZnO/SiO2-Si nanodots-SiO2/p-Si heterojunction photodetector with quantum efficiency up to 152% was achieved.
The fourth topic is the efficient n-ZnO/SiO2-Si nanodots-SiO2/p-Si heterojunction light-emitting diodes (LEDs). The n-type ZnO:Al layer acts as the TCO, ARC, and electron injection layer to increase the external quantum efficiency of the Si LEDs. Because of the carrier confinement and surface passivation effects, the Si nanodots surrounded by SiO2 contributes to the increase in the light-emitting efficiency of Si LEDs. Efficient n-ZnO/SiO2-Si nanodots-SiO2/p-Si heterojunction LED with external quantum efficiency up to 3.32×10-4 was achieved at room temperature.
The fifth topic investigated the optical gain in the Si nanodots. Super-linear increase in the PL intensity and the spectral narrowing with the excitation length was observed at room temperature using the variable stripe length (VSL) measurement, which may be attributed to the amplified spontaneous emission in the Si nanodots. The ZnO:Al layer in the n-ZnO/SiO2-Si nanodots-SiO2/p-Si structure enhances the optical gain by decreasing the reflectance of pumping light. Optical gain at the wavelength corresponding to the Si bandgap energy was achieved in the Si nanodots embedded in the SiO2 matrix at room temperature. The optical gain results from the enhancement in spontaneous emission rate caused by carrier localization in Si nanodots as well as the population inversion at high excitation intensity.
Contents
Chapter 1 Introduction…………………………….………………………………...1
1.1 Motivation………………………………………………………………………....1
1.2 Outline of this thesis…………………………………………………………….....4
Chapter 2 Observation of carrier traps in Si nanodots using temperature-dependent photoluminescence measurements………...…5
2.1 Introduction………………………………………………………………………..5
2.2 Experiments and Results…. … …………………………………………………...6
2.3 Discussion………………………………………………………………………..16
2.4 Conclusion……………………………………………………………………….23
2.5 Reference…………………………………………………………………………23
Chapter 3 Surface passivation of Al2O3 thin films deposited by atomic layer deposition on Si nanodots……………………………………………....26
3.1 Introduction………………………………………………………………………26
3.2 Experiments………………………………………………………………………27
3.3 Results and Discussion…………………………………………………………...29
3.4 Model…………………………………………………………………………….44
3.5 Conclusion...……………………………………………………….……………..50
3.6 Reference…………………………………………………………………………51
Chapter 4 Characteristics of efficient n-ZnO/SiO2-Si nanodots-SiO2/p-Si heterojunction photodetectors……..………………………………….54
4.1 Introduction………………………………………………………………………54
4.2 Experiments……………………………………………………………………...55
4.3 Results and discussion…………………………………………………………...58
4.4 Conclusion….........................................................................................................66
4.5 Reference………………………………………………………………………...67
Chapter 5 Characteristics of efficient n-ZnO/SiO2-Si nanodots-SiO2/p-Si heterojunction light-emitting diodes.………………………………….70
5.1 Introduction……………………………………………………………………....70
5.2 Experiments..…………………………………………………………………….71
5.3 Results and Discussion...…………………………………………………...........72
5.4 Conclusion...……………………………………………………………………..81
5.5 Reference.…………………………………………………..................................81
Chapter 6 Amplified spontaneous emission at the Si bandgap energy from Si nanodots embedded in the SiO2 matrix ...………………………….....84
6.1 Introduction……………………………………………………………………...84
6.2 Experiments……………………………………………………………………...85
6.3 Results and discussion....………………………………………………………...86
6.4 Conclusion………………………………………………………………...……..98
6.5 Reference………………………………………………………………...………98
Chapter 7 Summary……………………………………………………………….102
2.6 References
[1] Sandip Tiwari, Farhan Rana, Hussein Hanafi, Allan Hartstein, Emmanuel F. Crabbe and Kevin Chan, “A silicon nanocrystals based memory”, Applied Physics Letters, Volume: 68, Issue: 10, Pages: 1377-1379 (1996)
[2] Jan De Blauwe, “Nanocrystal nonvolatile memory devices”, IEEE Transactions on Nanotechnology, Volume: 1, Issue: 1, Pages: 72-77 (2002)
[3] R. J. Walters, G. I. Bourianoff, H. A. Atwater, ”Field-effect electroluminescence in silicon nanocrystals”, Nature Materials, Volume: 4, Issue: 2, Pages: 143-146 (2005)
[4] M. A. Rafiq, Y. Tsuchiya, H. Mizuta, S. Oda, Shigeyasu Uno, Z. A. K. Durrani and W. I. Milne, “Charge injection and trapping in silicon nanocrystals”, Applied Physics Letters, Volume: 87, Issue: 18, Article Number: 182101 (2005)
[5] Yi Shi, Kenichi Saito, Hiroki Ishikuro, and Toshiro Hiramoto, “Effects of traps on charge storage characteristics in metal-oxide-semiconductor memory structures based on silicon nanocrystals”, Journal Of Applied Physics, Volume: 84, Issue: 4, Pages: 2358-2360 (1998)
[6]A. Souifi, P. Brounkov, S. Bernardini, C. Busseret, L. Militaru, G. Guillot, T. Baron, “Study of trap centers in silicon nanocrystal memories”, Materials Science and Engineering B, 102, 99 /107 (2003)
[7] P. Dimitrakis, E. Kapetanakis, D. Tsoukalas, D. Skarlatos, C. Bonafos, G. Ben Asssayag, A. Claverie, M. Perego, M. Fanciulli, V. Soncini, R. Sotgiu, A. Agarwal, M. Ameen, C. Sohl, P. Normand, “Silicon nanocrystal memory devices obtained by ultra-low-energy ion-beam synthesis”, Solid-State Electronics, Volume: 48, Issue: 9 , Pages: 1511-1517 (2004)
[8] Fabio Iacona, Giorgia Franzo, and Corrado Spinella, “Correlation between l uminescence and structural properties of Si nanocrystals”, Journal of Applied Physics, Volume: 87, Issue: 3, Pages: 1295-1303 (2000)
[9] Zhanhong Cen, Jun Xu,a Yansong Liu, Wei Li, Ling Xu, Zhongyuan Ma,
Xinfan Huang, and Kunji Chen, “Visible light emission from single layer Si nanodots fabricated by laser irradiation method”, Applied Physics Letters, Volume: 89, Issue: 16, Article Number: 163107 (2006)
[10] Keisuke Satoa and Kenji Hirakuri, “Three primary color luminescence from natively and thermally oxidized nanocrystalline silicon”, Journal of Vacuum Science & Technology B, Volume: 24, Issue: 2, Pages: 604-607 (2006)
[11] N. Peyghambarian, S. W. Koch, A. Mysyrowicz “Introduction to Semiconductor Optics”, pp. 300~309, ISBN 0-13-075029-8
[12] Jagdeep Shah, M. Combescot, A. H. Dayem, “Investigation of Exciton-Plasma Mott Transition in Si’, Physical Review Letters, Volume: 38, Issue: 25, Pages: 1497-1500 (1977)
[13] D. Cavalcoli, A. Cavallini, M. Rossi, and S. Pizzini “Micro- and Nano-Structures in Silicon Studied by DLTS and Scanning Probe Methods” Semiconductors, Volume: 41, Issue: 4, Pages: 421-426 (2007).
[14] S. Binetti, S. Pizzini, E. Leoni, and R. Somaschini, A. Castaldini and A. Cavallini “Optical properties of oxygen precipitates and dislocations in silicon” Journal of Applied Physics, Volume: 92, Issue: 5, Pages: 2437-2445 (2002)
[15] Richard S. Crandall “Deep electron traps in hydrogenated amorphous silicon”, Physical Review B, Volume: 24, Issue: 12, Pages: 7457-7459 (1981)
3.7 Reference
[1] F. A. S. Soliman, A. S. S. Al-Kabbani, K. A. A. Sharshar, “Characteristics and radiation effects of MOS capacitors with Al2O3 layers in p-type silicon”; Applied Radiation and Isotopes, Volume: 46, Issue: 5, Pages: 355-361 (1995)
[2] S. C. Ha, E. Choi, S. H. Kim, “Influence of oxidant source on the property of atomic layer deposited Al2O3 on hydrogen-terminated Si substrate”, Thin Solid Films, Volume: 476, Issue: 2, Pages: 252-257 (2005)
[3] H. Bartzsch; D. Gloss; B. Bocher, “Properties of SiO2 and Al2O3 films for electrical insulation applications deposited by reactive pulse magnetron sputtering”, Surface & Coatings Technology, Volume: 174, Pages: 774-778 (2003)
[4] Q. Wang , Z. T. Song , W. L. Liu , C. L. Lin , T. H. Wang ,“Synthesis and electron storage characteristics of isolated silver nanodots on-embedded in Al2O3 gate dielectric”, Applied Surface Science, Volume 230, Issues 1-4, Pages 8-11 (2004)
[5] M. Specht, H. Reisinger, F. Hofmann”Charge trapping memory structures with Al2O3 trapping dielectric for high-temperature applications”, Solid-State Electronics, Volume: 49, Issue: 5, Pages: 716-720 (2005)
[6] J. Toudert, S. Nunez-Sanchez, R. Serna ”Enhanced photoluminescence of nanostructured Er3+-doped a-Si_a-Al2O3 thin films prepared by PLD”, Materials Science And Engineering B-Solid State Materials For Advanced Technology, Volume: 146, Pages: 141-145 (2008)
[7] N. Koshizaki; H. Umehara; T. Oyama “XPS characterization and optical properties of Si-SiO2, Si-Al2O3 and Si-MgO co-sputtered films”, Thin Solid Films, Volume: 325, Issue: 1-2, Pages: 130-136 (1998)
[8] S. Tiwari, F. Rana, K. Chan, H. Hanafi, D. Wei Chan Buchanan, “Volatile and Non-Volatile Memories in Silicon with nanocrystal storage”, Electron Devices Meeting, International (1995)
[9] S. Tiwari; F. Rana; K. Chan, ”Single charge and confinement effects in nano-crystal memories”, Applied Physics Letters, Volume: 69, Issue: 9, Pages: 1232-1234 (1996)
[10] R. A. Rao, R. F. Steimle, M. Sadd , “Silicon nanocrystal based memory devices for NVM and DRAM applications”, Solid-State Electronics, Volume: 48, Issue: 9, Pages: 1463-1473 (2004)
[11] L. Bi; J. Y. Feng , “Nanocrystal and interface defects related photoluminescence in silicon-rich Al2O3 films”, Journal of Luminescence, Volume: 121, Pages: 95-101 (2006)
[12] A. Kovalev, D. Wainstein , D. Tetelbaum, “The electron and crystalline structure features of ion-synthesized nanocomposite of Si nanocrystals in Al2O3 matrix revealed by electron spectroscopy”, Journal of Physics: Conference Series, Volume 100, Issue 7, pp. 072012 (2008)
[13] T. Dekorsy; J. M. Sun, W. Skorupa, “Light emitting silicon pn diodes”, Applied Physics A-Materials Science & Processing, Volume: 78, Issue: 4, Pages: 471-475 (2004)
[14] M. Tajima, S. Ibuka, “Luminescence due to electron-hole condensation in silicon-on-insulator”, Journal of Applied Physics, Volume: 84, Issue: 4, Pages: 2224-2228 (1998)
4.5 Reference
[1] Y. Hirano, F. Sato, N. Saito, “Fabrication of nanometer sized Si dot multilayers and their photoluminescence properties”, Journal of Non-Crystalline Solids, Volume: 266, Pages: 1004-1008, Part: B (2000)
[2] K. Shiba, K. Nakagawa, M. Ikeda, “Optical Absorption and Photoluminescence of Self-Assembled Silicon Quantum Dots”, Japanese Journal of Applied Physics Part 2-Letters Volume: 36 Issue: 10A Pages: L1279-L1282 (1997)
[3] S. A. Ding, M. Ikeda, M. Fukuda, “Quantum confinement effect in self-assembled, nanometer silicon dots”, Applied Physics Letters, Volume: 73, Issue: 26, Pages: 3881-3883 (1998)
[4] X. L. Zheng, W. Wang, H. C. Chen, “Anomalous temperature dependencies of photoluminescence for visible light emitting porous Si”, Applied Physics Letters, Volume: 60, Issue: 8, Pages: 986-988 (1992)
[5] R. P. Vasquez, R. W. Fathauer, T. George, ”Electronic structure of light emitting porous Si”, Applied Physics Letters, Volume: 60, Issue: 8, Pages: 1004-1006 (1992)
[6] J. Linnros, N. Lalic, “High quantum efficiency for a porous silicon light emitting diode under pulsed operation”, Applied Physics Letters, Volume: 66, Issue: 22, Pages: 3048-3050 (1995)
[7] P. Schmuki, L. E. Erickson, D. J. Lockwood, “Light Emitting Micropatterns of Porous Si Created at Surface Defects”, Physical Review Letters, Volume: 80, Issue: 18, Pages: 4060-4063 (1998)
[8] RJ. Walters; GI. Bourianoff; HA. Atwater, “Field-effect electroluminescence in silicon nanocrystals”, Nature Materials, Volume: 4, Issue: 2, Pages: 143-146 (2005)
[9] N. Lalic, J. Linnros, “Light emitting diode structure based on Si nanocrystals formed by implantation into thermal oxide”, Journal of Luminescence, Volume: 80, Issue: 1-4, Pages: 263-267 (1998)
[10] K. S. Min, K. V. Shcheglov, C. M. Yang, “Defect-related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2”, Applied Physics Letters, Volume: 69, Issue: 14, Pages: 2033-2035 (1996)
[11] S. Fujita; N. Sugiyama, “Visible light-emitting devices with Schottky contacts on an ultrathin amorphous silicon layer containing silicon nanocrystals”, Applied Physics Letters, Volume: 74, Issue: 2, Pages: 308-310 (1999)
[12] J. M. Shieh, Y. F. Lai, W. X. Ni, “Enhanced photoresponse of a metal-oxide-semiconductor photodetector with silicon nanocrystals embedded in the oxide layer”, Applied Physics Letters, Volume: 90, Issue: 5, Article Number: 051105 (2007)
[13] W. J. Chiang, C. Y. Chen, C. J. Lin, “Silicon nanocrystal-based photosensor on low-temperature polycrystalline-silicon panels”, Applied Physics Letters, Volume: 91, Issue: 5, Article Number: 051120 (2007)
[14] O. M. Nayfeh, S. Rao, A. Smith, “Thin Film Silicon Nanoparticle UV Photodetector”, IEEE Photonics Technology Letters, Volume: 16, Issue: 8, Pages: 1927-1929 (2004)
[15] S.M. Sze, “Physics of Semiconductor Device”, pp. 288~318, ISBN 0-471-33372-7
[16] J. Yoo; J. Lee; S. Kim, “High transmittance and low resistive ZnO-Al films for thin film solar cells”, Thin Solid Films, Volume: 480, Special Issue: SI, Pages: 213-217 (2005)
[17] J. M. Lee; K. K. Kim; S. J. Park, “Low-resistance and nonalloyed ohmic contacts to plasma treated ZnO”, Applied Physics Letters, Volume: 78, Issue: 24, Pages: 3842-3844 (2001)
[18] Z. Y. Ning; S. H. Cheng; S. B. Ge, “Preparation and characterization of ZnO-Al films by pulsed laser deposition”, Thin Solid Films, Volume: 307, Issue: 1-2, Pages: 50-53 (1997)
[19] Y. S. Choi; J. Y. Lee; S. Im, “Photoresponse characteristics of n-ZnO+p-Si heterojunction photodiodes”, Journal of Vacuum Science & Technology B, Volume: 20, Issue: 6, Pages: 2384-2387 (2002)
[20] S. Mridha, M. Dutta, Durga Basak, “Photoresponse of n-ZnO/p-Si heterojunction towards ultraviolet visible lights- thickness dependent behavior”, Journal of Materials Science: Materials in Electronics
[21] S. Mridha, D. Basak, “Ultraviolet and visible photoresponse properties of n-ZnO/p-Si heterojunction”, Journal of Applied Physics, Volume: 101, Issue: 8, Article Number: 083102 (2007)
[22] J. Y. Lee; Y. S. Choi, W. H. Choi, “Characterization of films and interfaces in n-ZnO/p-Si photodiodes”, Thin Solid Films, Volume: 420, Pages: 112-116 (2002)
[23] H. Sun; Q. F. Zhang; J. L. Wu, “Electroluminescence from ZnO nanorods with an n-ZnO/p-Si heterojunction structure”, Nanotechnology, Volume: 17, Issue: 9, Pages: 2271-2274 (2006)
[24] J. D. Ye; S. L. Gu; S. M. Zhu, “Electroluminescent and transport mechanisms of n-ZnO/p-Si heterojunctions”, Applied Physics Letters, Volume: 88, Issue: 18, Article Number: 182112 (2006)
5.5 Reference
[1] M. Jo, K. Ishida, N. Yasuhara, “A Si-based quantum-dot light-emitting diode”, Applied Physics Letters, Volume: 86, Issue: 10, Article Number: 103509 (2005)
[2] N. M. Park, T. S. Kim, S. J. Park, “Band gap engineering of amorphous silicon quantum dots for light-emitting diodes”, Applied Physics Letters, Volume: 78, Issue: 17, Pages: 2575-2577 (2001)
[3] N. A. Sobolev, A. M. Emel’yanov, E. I. Shek, “Effect of the post implantation-annealing temperature on the properties of silicon light-emitting diodes fabricated through boron ion implantation into n-Si”, Physics of the Solid State, Volume 46, Number 1 (2004)
[4] R. J. Walters, G. I. Bourianoff, H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals”, Nature Materials, Volume: 4, Issue: 2, Pages: 143-146 (2005)
[5] N. Lalic, J. Linnros, “Light emitting diode structure based on Si nanocrystalsformed by implantation into thermal oxide”, Journal of Luminescence, Volume: 80, Issue: 1-4, Pages: 263-267 (1998)
[6] K. S. Min, K. V. Shcheglov, C. M. Yang, “Defect-related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2”, Applied Physics Letters, Volume: 69, Issue: 14, Pages: 2033-2035 (1996)
[7] S. Fujita; N. Sugiyama, “Visible light-emitting devices with Schottky contacts on an ultrathin amorphous silicon layer containing silicon nanocrystals”, Applied Physics Letters, Volume: 74, Issue: 2, Pages: 308-310 (1999)
[8] K. Sato; L. Hirakuri, “Improved luminescence properties of nanocrystalline silicon based electroluminescent device by annealing”, Thin Solid Films, Volume: 515, Issue: 2, Pages: 778-781 (2006)
[9] J. Yoo; J. Lee; S. Kim, “High transmittance and low resistive ZnO-Al films for thin film solar cells”, Thin Solid Films, Volume: 480, Special Issue: SI, Pages: 213-217 (2005)
[10] J. M. Lee, K. K. Kim, S. J. Park, “Low-resistance and nonalloyed ohmic contacts to plasma treated ZnO”, Applied Physics Letters, Volume: 78, Issue: 24, Pages: 3842-3844 (2001)
[11] Z. Y. Ning, S. H. Cheng, S. B. Ge, “Preparation and characterization of ZnO-Al films by pulsed laser deposition”, Thin Solid Films, Volume: 307, Issue: 1-2, Pages: 50-53 (1997)
[12] Y. S. Choi. J. Y. Lee; S. Im, “Photoresponse characteristics of n-ZnO+p-Si heterojunction photodiodes”, Journal of Vacuum Science & Technology B, Volume: 20, Issue: 6, Pages: 2384-2387 (2002)
[13] S. Mridha, M. Dutta, Durga Basak, “Photoresponse of n-ZnO/p-Si heterojunction towards ultraviolet visible lights thickness dependent behavior”, Journal of Materials Science: Materials in Electronics, 0957-4522 (2008)
[14] S. Mridha, D. Basak, “Ultraviolet and visible photoresponse properties of n-ZnO/p-Si heterojunction”, Journal of Applied Physics, 101, 083102 (2007)
[15] J. Y. Lee, Y. S. Choi, W. H. Choi, “Characterization of films and interfaces in n-ZnO/p-Si photodiodes”, Thin Solid Films, Volume: 420, Pages: 112-116 (2002)
[16] H. Sun, Q. F. Zhang, J. L. Wu, “Electroluminescence from ZnO nanorods with an n-ZnO+p-Si heterojunction structure”, Nanotechnology, Volume: 17, Issue: 9, Pages: 2271-2274 (2006)
[17] J. D. Ye, S. L. Gu, S. M. Zhu, “Electroluminescent and transport mechanisms of n-ZnO+p-Si heterojunctions”, Applied Physics Letters, Volume: 88, Issue: 18, Article Number: 182112 (2006)
6.5 Reference
[1] M. Jo, K. Ishida, N. Yasuhara, “A Si-based quantum-dot light-emitting diode”, Applied Physics Letters, Volume: 86, Issue: 10, Article Number: 103509 (2005)
[2] N. M. Park, T. S. Kim, S. J. Park, “Band gap engineering of amorphous silicon quantum dots for light-emitting diodes”, Applied Physics Letters, Volume: 78, Issue: 17, Pages: 2575-2577 (2001)
[3] N. A. Sobolev, A. M. Emel’yanov, E. I. Shek, “Effect of the post implantation-annealing temperature on the properties of silicon light-emitting diodes fabricated through boron ion implantation into n-Si”, Physics of the Solid State, Volume 46, Number 1 (2004)
[4] R. J. Walters, G. I. Bourianoff, H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals”, Nature Materials, Volume: 4, Issue: 2, Pages: 143-146 (2005)
[5] N. Lalic, J. Linnros, “Light emitting diode structure based on Si nanocrystalsformed by implantation into thermal oxide”, Journal of Luminescence, Volume: 80, Issue: 1-4, Pages: 263-267 (1998)
[6] K. S. Min, K. V. Shcheglov, C. M. Yang, “Defect-related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2”, Applied Physics Letters, Volume: 69, Issue: 14, Pages: 2033-2035 (1996)
[7] S. Fujita; N. Sugiyama, “Visible light-emitting devices with Schottky contacts on an ultrathin amorphous silicon layer containing silicon nanocrystals”, Applied Physics Letters, Volume: 74, Issue: 2, Pages: 308-310 (1999)
[8] K. Sato; L. Hirakuri, “Improved luminescence properties of nanocrystalline silicon based electroluminescent device by annealing”, Thin Solid Films, Volume: 515, Issue: 2, Pages: 778-781 (2006)
[9] L. Pavesi, L. Dal Negro, C. Mazzoleni, “Optical gain in silicon nanocrystals”, Nature, Volume: 408, Issue: 6811, Pages: 440-444 (2000)
[10] S. G. Cloutier, P. A. Kossyrev, J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon”, Nature Materials, Volume: 4, Issue: 12, Pages: 887-891 (2005)
[11] L. Dal Negro, M. Cazzanelli , Z.Gaburro , P.Bettotti ,L .Pavesi, “Optical gain and stimulated emission in silicon nanocrystals”, Nature, Volume: 408, Page: 440-444 (2000)
[12] P. M. Fauchet, J. Ruan, H. Chen, “Optical gain in different silicon nanocrystal systems”, Optical Materials, Volume: 27, Issue: 5, Pages: 745-749 (2005)
[13] J. Ruan, P. M. Fauchet, L. Dal Negro, “Stimulated emission in nanocrystalline silicon superlattices”, Applied Physics Letters, Volume: 83, Issue: 26, Pages: 5479-5481 (2003)
[14] K. Luterova , D. Navarro , M. Cazzanelli , T. Ostatnicky , J. Valenta , S. Cheylan , I. Pelant , L. Pavesi , “Stimulated emission in the active planar optical waveguide made of silicon nanocrystals”, Physica Status Solidi (c), Volume 2, Issue 9, Pages 3429 – 3434 (2005)
[15] C. J. Oton, D. Navarro-Urrios; N. E. Capuj, “Optical gain in dye-impregnated oxidized porous silicon waveguides”, Applied Physics Letters, Volume: 89, Issue: 1, Article Number: 011107 (2006)
[16] K. Luterova, M. Cazzanelli, J. P. Likforman, “Optical gain in nanocrystalline silicon- comparison of planar waveguide geometry with a non waveguiding ensemble of nanocrystals”, Optical Materials, Volume: 27, Issue: 5, Pages: 750-755 (2005)
[17] L. Dal Negro, P. Bettotti, M. Cazzanelli, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements”, Optics Communications, Volume: 229, Issue: 1-6, Pages: 337-348 (2004)
[18] M. J. Chen, C. S. Tsa, M. K. Wu, “Optical Gain and Co-Stimulated Emissions of Photons and Phonons in Indirect Bandgap Semiconductors”, Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, Volume: 45, Issue: 8B, Pages: 6576-6588 (2006)
[19] L. Dal Negro, M. Cazzanelli, N. Daldosso, “Stimulated emission in plasma-enhanced chemical vapour deposited silicon nanocrystals”, Physica E-Low-Dimensional Systems & Nanostructures, Volume: 16, Issue: 3-4, Pages: 297-308 (2003)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊