|
2.6 References [1] Sandip Tiwari, Farhan Rana, Hussein Hanafi, Allan Hartstein, Emmanuel F. Crabbe and Kevin Chan, “A silicon nanocrystals based memory”, Applied Physics Letters, Volume: 68, Issue: 10, Pages: 1377-1379 (1996) [2] Jan De Blauwe, “Nanocrystal nonvolatile memory devices”, IEEE Transactions on Nanotechnology, Volume: 1, Issue: 1, Pages: 72-77 (2002) [3] R. J. Walters, G. I. Bourianoff, H. A. Atwater, ”Field-effect electroluminescence in silicon nanocrystals”, Nature Materials, Volume: 4, Issue: 2, Pages: 143-146 (2005) [4] M. A. Rafiq, Y. Tsuchiya, H. Mizuta, S. Oda, Shigeyasu Uno, Z. A. K. Durrani and W. I. Milne, “Charge injection and trapping in silicon nanocrystals”, Applied Physics Letters, Volume: 87, Issue: 18, Article Number: 182101 (2005) [5] Yi Shi, Kenichi Saito, Hiroki Ishikuro, and Toshiro Hiramoto, “Effects of traps on charge storage characteristics in metal-oxide-semiconductor memory structures based on silicon nanocrystals”, Journal Of Applied Physics, Volume: 84, Issue: 4, Pages: 2358-2360 (1998) [6]A. Souifi, P. Brounkov, S. Bernardini, C. Busseret, L. Militaru, G. Guillot, T. Baron, “Study of trap centers in silicon nanocrystal memories”, Materials Science and Engineering B, 102, 99 /107 (2003) [7] P. Dimitrakis, E. Kapetanakis, D. Tsoukalas, D. Skarlatos, C. Bonafos, G. Ben Asssayag, A. Claverie, M. Perego, M. Fanciulli, V. Soncini, R. Sotgiu, A. Agarwal, M. Ameen, C. Sohl, P. Normand, “Silicon nanocrystal memory devices obtained by ultra-low-energy ion-beam synthesis”, Solid-State Electronics, Volume: 48, Issue: 9 , Pages: 1511-1517 (2004) [8] Fabio Iacona, Giorgia Franzo, and Corrado Spinella, “Correlation between l uminescence and structural properties of Si nanocrystals”, Journal of Applied Physics, Volume: 87, Issue: 3, Pages: 1295-1303 (2000) [9] Zhanhong Cen, Jun Xu,a Yansong Liu, Wei Li, Ling Xu, Zhongyuan Ma, Xinfan Huang, and Kunji Chen, “Visible light emission from single layer Si nanodots fabricated by laser irradiation method”, Applied Physics Letters, Volume: 89, Issue: 16, Article Number: 163107 (2006) [10] Keisuke Satoa and Kenji Hirakuri, “Three primary color luminescence from natively and thermally oxidized nanocrystalline silicon”, Journal of Vacuum Science & Technology B, Volume: 24, Issue: 2, Pages: 604-607 (2006) [11] N. Peyghambarian, S. W. Koch, A. Mysyrowicz “Introduction to Semiconductor Optics”, pp. 300~309, ISBN 0-13-075029-8 [12] Jagdeep Shah, M. Combescot, A. H. Dayem, “Investigation of Exciton-Plasma Mott Transition in Si’, Physical Review Letters, Volume: 38, Issue: 25, Pages: 1497-1500 (1977) [13] D. Cavalcoli, A. Cavallini, M. Rossi, and S. Pizzini “Micro- and Nano-Structures in Silicon Studied by DLTS and Scanning Probe Methods” Semiconductors, Volume: 41, Issue: 4, Pages: 421-426 (2007). [14] S. Binetti, S. Pizzini, E. Leoni, and R. Somaschini, A. Castaldini and A. Cavallini “Optical properties of oxygen precipitates and dislocations in silicon” Journal of Applied Physics, Volume: 92, Issue: 5, Pages: 2437-2445 (2002) [15] Richard S. Crandall “Deep electron traps in hydrogenated amorphous silicon”, Physical Review B, Volume: 24, Issue: 12, Pages: 7457-7459 (1981) 3.7 Reference [1] F. A. S. Soliman, A. S. S. Al-Kabbani, K. A. A. Sharshar, “Characteristics and radiation effects of MOS capacitors with Al2O3 layers in p-type silicon”; Applied Radiation and Isotopes, Volume: 46, Issue: 5, Pages: 355-361 (1995) [2] S. C. Ha, E. Choi, S. H. Kim, “Influence of oxidant source on the property of atomic layer deposited Al2O3 on hydrogen-terminated Si substrate”, Thin Solid Films, Volume: 476, Issue: 2, Pages: 252-257 (2005) [3] H. Bartzsch; D. Gloss; B. Bocher, “Properties of SiO2 and Al2O3 films for electrical insulation applications deposited by reactive pulse magnetron sputtering”, Surface & Coatings Technology, Volume: 174, Pages: 774-778 (2003) [4] Q. Wang , Z. T. Song , W. L. Liu , C. L. Lin , T. H. Wang ,“Synthesis and electron storage characteristics of isolated silver nanodots on-embedded in Al2O3 gate dielectric”, Applied Surface Science, Volume 230, Issues 1-4, Pages 8-11 (2004) [5] M. Specht, H. Reisinger, F. Hofmann”Charge trapping memory structures with Al2O3 trapping dielectric for high-temperature applications”, Solid-State Electronics, Volume: 49, Issue: 5, Pages: 716-720 (2005) [6] J. Toudert, S. Nunez-Sanchez, R. Serna ”Enhanced photoluminescence of nanostructured Er3+-doped a-Si_a-Al2O3 thin films prepared by PLD”, Materials Science And Engineering B-Solid State Materials For Advanced Technology, Volume: 146, Pages: 141-145 (2008) [7] N. Koshizaki; H. Umehara; T. Oyama “XPS characterization and optical properties of Si-SiO2, Si-Al2O3 and Si-MgO co-sputtered films”, Thin Solid Films, Volume: 325, Issue: 1-2, Pages: 130-136 (1998) [8] S. Tiwari, F. Rana, K. Chan, H. Hanafi, D. Wei Chan Buchanan, “Volatile and Non-Volatile Memories in Silicon with nanocrystal storage”, Electron Devices Meeting, International (1995) [9] S. Tiwari; F. Rana; K. Chan, ”Single charge and confinement effects in nano-crystal memories”, Applied Physics Letters, Volume: 69, Issue: 9, Pages: 1232-1234 (1996) [10] R. A. Rao, R. F. Steimle, M. Sadd , “Silicon nanocrystal based memory devices for NVM and DRAM applications”, Solid-State Electronics, Volume: 48, Issue: 9, Pages: 1463-1473 (2004) [11] L. Bi; J. Y. Feng , “Nanocrystal and interface defects related photoluminescence in silicon-rich Al2O3 films”, Journal of Luminescence, Volume: 121, Pages: 95-101 (2006) [12] A. Kovalev, D. Wainstein , D. Tetelbaum, “The electron and crystalline structure features of ion-synthesized nanocomposite of Si nanocrystals in Al2O3 matrix revealed by electron spectroscopy”, Journal of Physics: Conference Series, Volume 100, Issue 7, pp. 072012 (2008) [13] T. Dekorsy; J. M. Sun, W. Skorupa, “Light emitting silicon pn diodes”, Applied Physics A-Materials Science & Processing, Volume: 78, Issue: 4, Pages: 471-475 (2004) [14] M. Tajima, S. Ibuka, “Luminescence due to electron-hole condensation in silicon-on-insulator”, Journal of Applied Physics, Volume: 84, Issue: 4, Pages: 2224-2228 (1998) 4.5 Reference [1] Y. Hirano, F. Sato, N. Saito, “Fabrication of nanometer sized Si dot multilayers and their photoluminescence properties”, Journal of Non-Crystalline Solids, Volume: 266, Pages: 1004-1008, Part: B (2000) [2] K. Shiba, K. Nakagawa, M. Ikeda, “Optical Absorption and Photoluminescence of Self-Assembled Silicon Quantum Dots”, Japanese Journal of Applied Physics Part 2-Letters Volume: 36 Issue: 10A Pages: L1279-L1282 (1997) [3] S. A. Ding, M. Ikeda, M. Fukuda, “Quantum confinement effect in self-assembled, nanometer silicon dots”, Applied Physics Letters, Volume: 73, Issue: 26, Pages: 3881-3883 (1998) [4] X. L. Zheng, W. Wang, H. C. Chen, “Anomalous temperature dependencies of photoluminescence for visible light emitting porous Si”, Applied Physics Letters, Volume: 60, Issue: 8, Pages: 986-988 (1992) [5] R. P. Vasquez, R. W. Fathauer, T. George, ”Electronic structure of light emitting porous Si”, Applied Physics Letters, Volume: 60, Issue: 8, Pages: 1004-1006 (1992) [6] J. Linnros, N. Lalic, “High quantum efficiency for a porous silicon light emitting diode under pulsed operation”, Applied Physics Letters, Volume: 66, Issue: 22, Pages: 3048-3050 (1995) [7] P. Schmuki, L. E. Erickson, D. J. Lockwood, “Light Emitting Micropatterns of Porous Si Created at Surface Defects”, Physical Review Letters, Volume: 80, Issue: 18, Pages: 4060-4063 (1998) [8] RJ. Walters; GI. Bourianoff; HA. Atwater, “Field-effect electroluminescence in silicon nanocrystals”, Nature Materials, Volume: 4, Issue: 2, Pages: 143-146 (2005) [9] N. Lalic, J. Linnros, “Light emitting diode structure based on Si nanocrystals formed by implantation into thermal oxide”, Journal of Luminescence, Volume: 80, Issue: 1-4, Pages: 263-267 (1998) [10] K. S. Min, K. V. Shcheglov, C. M. Yang, “Defect-related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2”, Applied Physics Letters, Volume: 69, Issue: 14, Pages: 2033-2035 (1996) [11] S. Fujita; N. Sugiyama, “Visible light-emitting devices with Schottky contacts on an ultrathin amorphous silicon layer containing silicon nanocrystals”, Applied Physics Letters, Volume: 74, Issue: 2, Pages: 308-310 (1999) [12] J. M. Shieh, Y. F. Lai, W. X. Ni, “Enhanced photoresponse of a metal-oxide-semiconductor photodetector with silicon nanocrystals embedded in the oxide layer”, Applied Physics Letters, Volume: 90, Issue: 5, Article Number: 051105 (2007) [13] W. J. Chiang, C. Y. Chen, C. J. Lin, “Silicon nanocrystal-based photosensor on low-temperature polycrystalline-silicon panels”, Applied Physics Letters, Volume: 91, Issue: 5, Article Number: 051120 (2007) [14] O. M. Nayfeh, S. Rao, A. Smith, “Thin Film Silicon Nanoparticle UV Photodetector”, IEEE Photonics Technology Letters, Volume: 16, Issue: 8, Pages: 1927-1929 (2004) [15] S.M. Sze, “Physics of Semiconductor Device”, pp. 288~318, ISBN 0-471-33372-7 [16] J. Yoo; J. Lee; S. Kim, “High transmittance and low resistive ZnO-Al films for thin film solar cells”, Thin Solid Films, Volume: 480, Special Issue: SI, Pages: 213-217 (2005) [17] J. M. Lee; K. K. Kim; S. J. Park, “Low-resistance and nonalloyed ohmic contacts to plasma treated ZnO”, Applied Physics Letters, Volume: 78, Issue: 24, Pages: 3842-3844 (2001) [18] Z. Y. Ning; S. H. Cheng; S. B. Ge, “Preparation and characterization of ZnO-Al films by pulsed laser deposition”, Thin Solid Films, Volume: 307, Issue: 1-2, Pages: 50-53 (1997) [19] Y. S. Choi; J. Y. Lee; S. Im, “Photoresponse characteristics of n-ZnO+p-Si heterojunction photodiodes”, Journal of Vacuum Science & Technology B, Volume: 20, Issue: 6, Pages: 2384-2387 (2002) [20] S. Mridha, M. Dutta, Durga Basak, “Photoresponse of n-ZnO/p-Si heterojunction towards ultraviolet visible lights- thickness dependent behavior”, Journal of Materials Science: Materials in Electronics [21] S. Mridha, D. Basak, “Ultraviolet and visible photoresponse properties of n-ZnO/p-Si heterojunction”, Journal of Applied Physics, Volume: 101, Issue: 8, Article Number: 083102 (2007) [22] J. Y. Lee; Y. S. Choi, W. H. Choi, “Characterization of films and interfaces in n-ZnO/p-Si photodiodes”, Thin Solid Films, Volume: 420, Pages: 112-116 (2002) [23] H. Sun; Q. F. Zhang; J. L. Wu, “Electroluminescence from ZnO nanorods with an n-ZnO/p-Si heterojunction structure”, Nanotechnology, Volume: 17, Issue: 9, Pages: 2271-2274 (2006) [24] J. D. Ye; S. L. Gu; S. M. Zhu, “Electroluminescent and transport mechanisms of n-ZnO/p-Si heterojunctions”, Applied Physics Letters, Volume: 88, Issue: 18, Article Number: 182112 (2006) 5.5 Reference [1] M. Jo, K. Ishida, N. Yasuhara, “A Si-based quantum-dot light-emitting diode”, Applied Physics Letters, Volume: 86, Issue: 10, Article Number: 103509 (2005) [2] N. M. Park, T. S. Kim, S. J. Park, “Band gap engineering of amorphous silicon quantum dots for light-emitting diodes”, Applied Physics Letters, Volume: 78, Issue: 17, Pages: 2575-2577 (2001) [3] N. A. Sobolev, A. M. Emel’yanov, E. I. Shek, “Effect of the post implantation-annealing temperature on the properties of silicon light-emitting diodes fabricated through boron ion implantation into n-Si”, Physics of the Solid State, Volume 46, Number 1 (2004) [4] R. J. Walters, G. I. Bourianoff, H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals”, Nature Materials, Volume: 4, Issue: 2, Pages: 143-146 (2005) [5] N. Lalic, J. Linnros, “Light emitting diode structure based on Si nanocrystalsformed by implantation into thermal oxide”, Journal of Luminescence, Volume: 80, Issue: 1-4, Pages: 263-267 (1998) [6] K. S. Min, K. V. Shcheglov, C. M. Yang, “Defect-related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2”, Applied Physics Letters, Volume: 69, Issue: 14, Pages: 2033-2035 (1996) [7] S. Fujita; N. Sugiyama, “Visible light-emitting devices with Schottky contacts on an ultrathin amorphous silicon layer containing silicon nanocrystals”, Applied Physics Letters, Volume: 74, Issue: 2, Pages: 308-310 (1999) [8] K. Sato; L. Hirakuri, “Improved luminescence properties of nanocrystalline silicon based electroluminescent device by annealing”, Thin Solid Films, Volume: 515, Issue: 2, Pages: 778-781 (2006) [9] J. Yoo; J. Lee; S. Kim, “High transmittance and low resistive ZnO-Al films for thin film solar cells”, Thin Solid Films, Volume: 480, Special Issue: SI, Pages: 213-217 (2005) [10] J. M. Lee, K. K. Kim, S. J. Park, “Low-resistance and nonalloyed ohmic contacts to plasma treated ZnO”, Applied Physics Letters, Volume: 78, Issue: 24, Pages: 3842-3844 (2001) [11] Z. Y. Ning, S. H. Cheng, S. B. Ge, “Preparation and characterization of ZnO-Al films by pulsed laser deposition”, Thin Solid Films, Volume: 307, Issue: 1-2, Pages: 50-53 (1997) [12] Y. S. Choi. J. Y. Lee; S. Im, “Photoresponse characteristics of n-ZnO+p-Si heterojunction photodiodes”, Journal of Vacuum Science & Technology B, Volume: 20, Issue: 6, Pages: 2384-2387 (2002) [13] S. Mridha, M. Dutta, Durga Basak, “Photoresponse of n-ZnO/p-Si heterojunction towards ultraviolet visible lights thickness dependent behavior”, Journal of Materials Science: Materials in Electronics, 0957-4522 (2008) [14] S. Mridha, D. Basak, “Ultraviolet and visible photoresponse properties of n-ZnO/p-Si heterojunction”, Journal of Applied Physics, 101, 083102 (2007) [15] J. Y. Lee, Y. S. Choi, W. H. Choi, “Characterization of films and interfaces in n-ZnO/p-Si photodiodes”, Thin Solid Films, Volume: 420, Pages: 112-116 (2002) [16] H. Sun, Q. F. Zhang, J. L. Wu, “Electroluminescence from ZnO nanorods with an n-ZnO+p-Si heterojunction structure”, Nanotechnology, Volume: 17, Issue: 9, Pages: 2271-2274 (2006) [17] J. D. Ye, S. L. Gu, S. M. Zhu, “Electroluminescent and transport mechanisms of n-ZnO+p-Si heterojunctions”, Applied Physics Letters, Volume: 88, Issue: 18, Article Number: 182112 (2006) 6.5 Reference [1] M. Jo, K. Ishida, N. Yasuhara, “A Si-based quantum-dot light-emitting diode”, Applied Physics Letters, Volume: 86, Issue: 10, Article Number: 103509 (2005) [2] N. M. Park, T. S. Kim, S. J. Park, “Band gap engineering of amorphous silicon quantum dots for light-emitting diodes”, Applied Physics Letters, Volume: 78, Issue: 17, Pages: 2575-2577 (2001) [3] N. A. Sobolev, A. M. Emel’yanov, E. I. Shek, “Effect of the post implantation-annealing temperature on the properties of silicon light-emitting diodes fabricated through boron ion implantation into n-Si”, Physics of the Solid State, Volume 46, Number 1 (2004) [4] R. J. Walters, G. I. Bourianoff, H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals”, Nature Materials, Volume: 4, Issue: 2, Pages: 143-146 (2005) [5] N. Lalic, J. Linnros, “Light emitting diode structure based on Si nanocrystalsformed by implantation into thermal oxide”, Journal of Luminescence, Volume: 80, Issue: 1-4, Pages: 263-267 (1998) [6] K. S. Min, K. V. Shcheglov, C. M. Yang, “Defect-related versus excitonic visible light emission from ion beam synthesized Si nanocrystals in SiO2”, Applied Physics Letters, Volume: 69, Issue: 14, Pages: 2033-2035 (1996) [7] S. Fujita; N. Sugiyama, “Visible light-emitting devices with Schottky contacts on an ultrathin amorphous silicon layer containing silicon nanocrystals”, Applied Physics Letters, Volume: 74, Issue: 2, Pages: 308-310 (1999) [8] K. Sato; L. Hirakuri, “Improved luminescence properties of nanocrystalline silicon based electroluminescent device by annealing”, Thin Solid Films, Volume: 515, Issue: 2, Pages: 778-781 (2006) [9] L. Pavesi, L. Dal Negro, C. Mazzoleni, “Optical gain in silicon nanocrystals”, Nature, Volume: 408, Issue: 6811, Pages: 440-444 (2000) [10] S. G. Cloutier, P. A. Kossyrev, J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon”, Nature Materials, Volume: 4, Issue: 12, Pages: 887-891 (2005) [11] L. Dal Negro, M. Cazzanelli , Z.Gaburro , P.Bettotti ,L .Pavesi, “Optical gain and stimulated emission in silicon nanocrystals”, Nature, Volume: 408, Page: 440-444 (2000) [12] P. M. Fauchet, J. Ruan, H. Chen, “Optical gain in different silicon nanocrystal systems”, Optical Materials, Volume: 27, Issue: 5, Pages: 745-749 (2005) [13] J. Ruan, P. M. Fauchet, L. Dal Negro, “Stimulated emission in nanocrystalline silicon superlattices”, Applied Physics Letters, Volume: 83, Issue: 26, Pages: 5479-5481 (2003) [14] K. Luterova , D. Navarro , M. Cazzanelli , T. Ostatnicky , J. Valenta , S. Cheylan , I. Pelant , L. Pavesi , “Stimulated emission in the active planar optical waveguide made of silicon nanocrystals”, Physica Status Solidi (c), Volume 2, Issue 9, Pages 3429 – 3434 (2005) [15] C. J. Oton, D. Navarro-Urrios; N. E. Capuj, “Optical gain in dye-impregnated oxidized porous silicon waveguides”, Applied Physics Letters, Volume: 89, Issue: 1, Article Number: 011107 (2006) [16] K. Luterova, M. Cazzanelli, J. P. Likforman, “Optical gain in nanocrystalline silicon- comparison of planar waveguide geometry with a non waveguiding ensemble of nanocrystals”, Optical Materials, Volume: 27, Issue: 5, Pages: 750-755 (2005) [17] L. Dal Negro, P. Bettotti, M. Cazzanelli, “Applicability conditions and experimental analysis of the variable stripe length method for gain measurements”, Optics Communications, Volume: 229, Issue: 1-6, Pages: 337-348 (2004) [18] M. J. Chen, C. S. Tsa, M. K. Wu, “Optical Gain and Co-Stimulated Emissions of Photons and Phonons in Indirect Bandgap Semiconductors”, Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, Volume: 45, Issue: 8B, Pages: 6576-6588 (2006) [19] L. Dal Negro, M. Cazzanelli, N. Daldosso, “Stimulated emission in plasma-enhanced chemical vapour deposited silicon nanocrystals”, Physica E-Low-Dimensional Systems & Nanostructures, Volume: 16, Issue: 3-4, Pages: 297-308 (2003)
|