跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/03 22:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭俊廷
研究生(外文):Chun-Ting Kuo
論文名稱:CoPt-SiNx/Ag薄膜與CoPt-SiNx-Ag/Ag薄膜的製作與磁性質及微結構研究
論文名稱(外文):Study of fabrications, magnetic properties and microstructures of CoPt-SiNx /Ag films and CoPt-SiNx -Ag/Ag films
指導教授:郭博成
指導教授(外文):Po-Cheng Kuo
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:85
中文關鍵詞:CoPt薄膜顆粒狀結構序化溫度垂直膜面磁性質Ag底層
外文關鍵詞:CoPt filmgranular structureordering temperatureperpendicular magnetic propertiesAg underlayer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:237
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以直流磁控濺鍍的方式,在室溫於自然氧化的矽基板及玻璃基板上鍍製CoPt薄膜,搭配Ag底層及添加SiNx與Ag於CoPt薄膜中,以形成五種不同的多層膜結構,分別為(a)CoPt/Ag,(b)CoPt-SiNx / Ag,(c)( SiNx / CoPt )9 / Ag,(d)( CoPt-SiNx / CoPt )9 / Ag,(e)( CoPt-SiNx -Ag/ CoPt )9 / Ag,探討Ag底層的厚度、SiNx與Ag添加物的含量及退火溫度與時間的改變對Co50Pt50薄膜之顯微結構、磁性質及其易磁化軸方向的影響。
在CoPt/Ag薄膜方面,引入不同厚度的Ag底層於CoPt薄膜後,發現有降低CoPt序化溫度的效果,其序化溫度從單層CoPt的700°C降至600°C。這是因為Ag底層與CoPt的晶格不匹配,產生了應力,促使CoPt薄膜的序化並具有垂直膜面磁異向性。CoPt (16 nm)/ Ag (30 nm)於700°C退火30分鐘之後,具有最好的垂直膜面磁異向性,其垂直膜面矯頑磁力Hc⊥值為18000 Oe、水平膜面矯頑磁力Hc//值為12200 Oe、飽和磁化量Ms值為388 emu/cm3、垂直膜面角形比S⊥值為0.93及水平膜面角形比S//值為0.42。
另一方面,改變SiNx添加於CoPt薄膜內的方式,發現CoPt的磁性質會受到CoPt-SiNx濺鍍方式的不同而改變,使其I001/I111比值會從CoPt-SiNx / Ag薄膜的0.92上升到( CoPt-SiNx / CoPt )9 / Ag薄膜的1.24,造成CoPt的易磁化軸會由random趨向於垂直膜面方向。( CoPt-SiNx / CoPt )9 /Ag (30 nm)薄膜700°C退火30分鐘後會有最好的垂直磁異向性。其Hc⊥=16300 Oe、Hc//=14600Oe、Ms=295 emu/cm3、S⊥=0.80及S//=0.44。
此外,我們發現的( CoPt-SiNx / CoPt )9 /Ag (30 nm)薄膜,經過700°C退火30分鐘之後,SiNx的添加會破壞原來CoPt (16 nm)/ Ag (30 nm)薄膜的垂直磁異向性結構,但隨著SiNx添加量的增加,其垂直磁異向性結構會由於擴散產生的空位而再次出現。當SiNx添加很多的時候,使得CoPt晶粒大幅縮小且部分晶粒小於超順磁粒子尺寸,導致其矯頑磁力下降。
最後,我們將引入不同體積百分率的Ag於(CoPt)53.8(SiNx)46.2/Ag薄膜中,形成[(CoPt)53.8(SiNx)46.2]yAg1-y /Ag薄膜,希望能降低 CoPt的序化溫度。實驗結果顯示,Ag的添加會使(CoPt)53.8(SiNx)46.2/Ag薄膜的序化溫度從原先的600°C降至500°C。但隨著Ag添加量過多,將會造成磁性質的下降。而[(CoPt)53.8(SiNx)46.2] 40.8Ag59.2 / Ag(30 nm)薄膜於600°C退火30分鐘後有最好的垂直膜面磁性質,其Hc⊥=9600 Oe、Hc//=5500 Oe、Ms=127 emu/cm3、S⊥=0.75及S//=0.49。
The Ag under layers were deposited on naturally oxidized Si (100) wafer and glass substrates by dc magnetron sputtering at room temperature. Subsequently, SiNx, Ag and CoPt films were co-sputtered on the Ag films at room temperature to form five kinds of multilayer films:(a)CoPt/Ag,(b)CoPt-SiNx / Ag,(c)( SiNx / CoPt )9 / Ag,(d)( CoPt-SiNx / CoPt )9 / Ag, and(e)( CoPt-SiNx -Ag/ CoPt )9 / Ag. The effects of Ag underlayer thickness, annealing temperature and time, and the contents of SiNx and Ag, on the microstructure, magnetic properties, and easy axis orientation of these magnetic films were investigated.
For the CoPt/Ag films, the ordering temperature of CoPt films could be decreased from 700°C to 600°C as the Ag underlayer was introduced beneath the CoPt films. The misfit between CoPt film and Ag underlayer cause the strain energy to provide the energy for fcc-CoPt film to transform from fcc-CoPt(001) to fct-CoPt(001) and fct-CoPt(002) phases. After annealing at 700°C for 30 minutes, the CoPt (16nm)/ Ag (30 nm) film shows the best perpendicular anisotropy, the out-of-plane coercivity (Hc⊥), in-plane coercivity (Hc//), saturation magnetization (Ms), out-of-plane squareness (S⊥), and in-plane squareness (S//) values of this film are 18 kOe, 12.2 kOe, 388 emu/cm3, 0.93, and 0.42, respectively.
On the other hand, the magnetic properties of CoPt-SiNx / Ag films are strong dependent on the different sputtering methods. The I001 /I111 ratio increases from 0.92 of to 1.24 as the film structure changed from CoPt-SiNx / Ag to ( CoPt-SiNx / CoPt )9 / Ag. After annealing at 700°C for 30 minutes, ( CoPt-SiNx / CoPt )9 / Ag film shows the best perpendicular anisotropy, the Hc⊥, Hc//, Ms, S⊥, and S// values of this film are 16.3 kOe, 14.6 kOe, 295 emu/cm3, 0.8, and 0.44, respectively.
Moreover, after annealing, the perpendicular anisoyropy of ( CoPt-SiNx / CoPt )9 / Ag film will be broken as the SiNx is added. However, as the SiNx content increases, the perpendicular magnetic anisotropy of this film can be obtained due to the formation of vacancies which result from the diffusion of SiNx from grain to grain boundary. As the SiNx content increases to 46.2 vol.%, some CoPt grains are smaller than the superparamagnetism particle size and causes the rapidly decrease of the coercivity.
Finally, we add the Ag element into (CoPt)53.8(SiNx)46.2/Ag (30 nm) films to form the [(CoPt)53.8(SiNx)46.2]1-y Agy /Ag (30 nm) films, in attempt to lower the ordering temperature of this film. From the experiment results, the ordering temperature of the film will decrease from 600°C to 500°C as Ag is added. As the addition of Ag content increases, the perpendicular anisotropy will be reduced. After annealing at 600°C for 30 minutes, the [(CoPt)53.8(SiNx)46.2]40.8Ag59.2/Ag (30 nm) film shows the best perpendicular anisotropy, the Hc⊥, Hc//, Ms, S⊥, and S// values of this film are 9.6 kOe, 5.5 kOe, 127 emu/cm3, 0.75, and 0.49, respectively.
口試委員會審定書……………………………………………………………...……….I
誌謝…………………….…………………………………………………….…….....…II
摘要……………………………………………………………………………...….….III
Abstract……………………………………………………………………….……........V
目錄…………………………………………...………………..…..………………….VII
圖目錄………………………………………………………………….…………....….X
表目錄……………………………………………………………………....………..XVI
第一章、前言…………………………………………..………………………………...1
第二章、基礎理論與文獻回顧……………………………..…………………………...3
2-1 基礎理論…………………………………………..……………………..…..3
2-1-1 基本磁記錄原理………………………………..…………………..…..3
2-1-2 水平磁記錄的極限………………………………..………………..…..4
2-1-3 垂直磁記錄………………………………………..………………..…..4
2-1-4 顆粒尺寸與矯頑磁力的關係…………………………………………..5
2-1-5 磁記錄材料……………………………………………………………..5
2-1-6 CoPt序化度的計算……….…………………….…………………..…..6
2-1-7 顆粒狀磁性薄膜…………………………..………………………...….7
2-2 文獻回顧………………………………………..………………………....…7
2-2-1 單層CoPt薄膜.........................................................................................7
2-2-2 CoPt薄膜序化溫度的降低......................................................................8
2-2-3 顆粒狀磁性薄膜....................................................................................10
2-3 研究方向……………………………………………………...………..……11
第三章、實驗方法………………………………………………………....………..….16
3-1 實驗流程…………………………………………………………..……..…16
3-2 靶材選取………………………………………....…………………………17
3-2-1 陶瓷靶材………………………………………………………………17
3-2-2 金屬靶材…………………………..……………..……………………17
3-3基板選取與基板清洗…………………………………….……………….…17
3-3-1 基板選取……………………….………..……………..…………...…17
3-3-2 基板清洗…………………………………..……………..……………17
3-4 實驗裝置及薄膜製備……………………………..……………..…………18
3-4-1 實驗裝置……………………………………..………………..………18
3-4-2 薄膜濺鍍……………………………………..………………..………18
3-4-3 退火步驟…………………………………....…………………………19
3-5 磁性質分析…………………………………………………………………20
3-6 EPMA薄膜之化學組成分析…………………………..…...………………20
3-7 AFM厚度及表面形貌分析……………………………...……..…………20
3-8 微結構分析…………………………………………………..…..…………21
3-8-1 X光繞射分析…………………………………………..…...……….21
3-8-2 TEM微結構及成分分析…………………………………..……..……21
第四章、實驗結果與討論……………………………….………………………….….32
4-1單層CoPt合金薄膜製作……………………………………………...….….32
4-1-1 CoPt薄膜厚度對微結構的影響………….…………………………32
4-1-2 單層CoPt薄膜的磁性質分析………………..…….……………..…33
4-2 Ag底層對CoPt合金薄膜的影響……...……………...…….……………...34
4-2-1 Ag底層的製作………………...…………………..…..….…………34
4-2-2 Ag底層對CoPt合金薄膜微結構的影響……………...……….…...35
4-3不同SiNx添加方式對CoPt-SiNx/Ag合金薄膜的影響..……………...…….36
4-3-1 不同SiNx添加方式對CoPt-SiNx/Ag合金薄膜微結構的影響……....36
4-3-2 不同SiNx添加方式對CoPt-SiNx/Ag合金薄膜磁性質的影響………37
4-4 (CoPt)1-y(SiNx)y/Ag顆粒狀薄膜的製作…………………………...………..38
4-4-1 SiNx的體積分率對(CoPt)1-y(SiNx)y/Ag合金薄膜微結構的影響…….38
4-4-2 SiNx的體積分率對(CoPt)1-y(SiNx)y/Ag合金薄膜磁性質的影響….....40
4-4-3 SiNx的體積分率對(CoPt)1-y(SiNx)y/Ag合金薄膜TEM微結構的影
響………………………………………….……………………………42
4-5 Ag的添加對(CoPt)53.8(SiNx)46.2/Ag顆粒狀薄膜的影響………...……….42
4-5-1 Ag的添加對(CoPt)53.8(SiNx)46.2/Ag顆粒狀薄膜微結構的影響……...43
4-5-2 Ag的添加對(CoPt)53.8(SiNx)46.2/Ag顆粒狀薄膜磁性質的影響……...43
4-5-3 Ag的添加對(CoPt)53.8(SiNx)46.2/Ag顆粒狀薄膜TEM微結構的影響.45
第五章、結論……………………………………………….………………………......82
參考文獻……………………………………………………………………………….83
[1] A. Moesr, et al., J. Phys. D: Appl. Phys. 35, R157 (2002)
[2] http://www.magneticdiskheritagecenter.org/ .(2006)
[3] http://en.wikipedia.org/wiki/IBM_305 (2007)
[4] http://www.seagate.com/www/en-us/ (2006)
[5] http://www.hitachigst.com
[6] B. D. Cullity, “ Introduction to Magnetic Materials ”, Massachusetts: Addison-Wesley, 1972
[7] H. N. Bertram, H. Zhou, and R. Gustafson, IEEE Trans. Magn. 34, 1845 (1998)
[8] S. H. Charap, P.-L. Lu, and Y. He, IEEE Trans. Magn. 33, 978 (1997)
[9] D. Weller and A. Moser, IEEE Trans. Magn. 35, 4423 (1999)
[10] H. J. Richter, J. Magn. Magn. Mater. 287, 41 (2005)
[11] H. N. Bertram, and M. Williams, IEEE Trans. Magn. 36 (2000)
[12] D. Weller, A. Moser, L. Folks, M. E. Best, W. Lee, Mike F. Toney, M. Scgwickert, J.-U Thiele, and M. F. Doerner, IEEE Trans. Magn. 36, 10 (2000)
[13] M. S. Patwari, and R. H. Vistoria, IEEE Trans. Magn. 40, 247 (2004)
[14] S. Batra, J. D. Hannay H. Zhou, and J. S. Goldberg, IEEE Trans. Magn. 40, 319 (2004)
[15] J. Li, M. Mirzamaani, X. Bian, M. Doerner, S. Duan, K. Tang, M. Toney, T. Arnoldussen, and M. Madison, J. Appl. Phys, 85, 4286 (1999)
[16] 楊志信,台灣資訊儲存技術協會會刊,民國94年4月3日,第1頁 (2005)
[17] 曾厚朗及盧志權,磁性技術協會會訊,第25期,第9頁 (2000)
[18] S. Khizrroev and D. Litvinov, J. Appl. Phys. 95, 4521 (2004)
[19] S. Iwasaki and Y. Nakamura, IEEE Trans. Magn. 13, 1271 (1977)
[20] J. J. Miles, D. McA. McKirdy, R. W. Chantrell, and R. Wood, IEEE Trans. Magn. 39, 1876 (2003)
[21] M. H. Kryder and R. W. Gustafson, J. Magn. Magn. Mater. 287, 449 (2005)
[22] C. Kittel, Phys. Rev. 70, 965 (1946)
[23] D. Weller, A. Moser, L. Folks, M. E. Best, L. Wen, M. F. Toney, M. Schwickert, J. U. Thiele, and M. F. Doerner, IEEE Trans. Magn. 36, 10 (2000)
[24] D. Weller and M. F. Doerner, Annu. Rev. Mater. Res. 30, 611 (2000)
[25] T. Shima, K. Takanashi, Y. K. Takahashi, and K. Hono, Appl. Phys. Lett. 85, 2571 (2004)
[26] J. S. Chen, B. C. Lim, J. F. Hu, Y. K. Lim, B. Liu, and G. M. Chow, Appl. Phys. Lett. 90, 042508 (2007)
[27] C. C. Chiang, Chih-Huang Lai, and Y. C. Wu, Appl. Phys. Lett. 88, 152508 (2006)
[28] R. A. MaCurrie and P. Gaunt, Philos. Mag. 13, 567 (1966)
[29] Y. Iijima, O. Taguchi, and K. Hirano, Trans. Japan Inst. Met 21, 366 (1980)
[30] 林宥朋,”碩士論文:銅添加對鈷鉑薄膜序化與磁特性之影響”,私立逢甲大學材料科學與工程研究所 (2002)
[31] J. A. Christodoulides and P. Farber. IEEE. Trans. Magn. 37, 1292 (2001)
[32] 郭志明,”博士論文:Co100-xTbx與Fe100-xPtx與(FePt)-(Si3N4)薄膜之磁性及微結構研究”,國立台灣大學材料科學與工程研究所(1999)
[33] J. Orehotsky and J. L. Orehotsky, J. Appl. Phys. 61, 1210 (1987)
[34] K. Barmak, R. A. Ristau, K. R. Coffey, M. A. Parker, and J. K. Howard, J. Appl. Phys. 79, 5330 (1996)
[35] K. Barmak, J. Kim, and S. Shell, Appl. Phys. Lett. 80, 4268 (2002)
[36] D. Y. Oh and J. K. Park, J. Appl. Phys. 97, 10N105 (2005)
[37] W. M. Liao, S. K. Chen, F. T. Yuan, C. W. Hsu, and H. Y. Lee, J. Magn. Magn. Mater. 303, e246-e246 (2006)
[38] E. Manios, V. Karanasos, D. Niarchos, I. Panagiotopoulos, J. Magn. Magn. Mater. 272-276, 2169 (2004)
[39] T. Yokota, L. Gao, S. H. Liou, M. L. Yan, and D. J. Sellmyer, J. Appl. Phys. 95, 7270 (2004)
[40] T. Yokota, L. Gao, R. Zhang, L. Nicholl, M. L. Yan, D. J. Sellmyer, and S. H. Liou, J. Magn. Magn. Mater. 286, 301 (2005)
[41] X.-H Xu, Z.-G. Yang, and H.-S. Wu, J. Magn. Magn. Mater. 295, 106 (2005)
[42] H. Wang, S. X. Xue, F. J. Yang, H. B. Wang, X. Cao, J. A. Wang, Y. Gao, Z. B. Huang, C. P. Yang, W. Y. Cheung, S. P. Wong, Q. Li, and Z. Li, Thin Solid Films, 505, 77 (2006)
[43] H. Yamaguchi, O. Kitakami, S. Okamoto, Y. Shimada, K. Oikawa, and K. Fukamichi, Appl. Phys. Lett. 79, 2001 (2001)
[44] O. Kitakami, Y. Shimada, K. Oikawa, H. Daimon, and K. Fukamichi, Appl. Phys. Lett. 78, 1104 (2001)
[45] J.-J. Delaunay, T. Hayashi, M. Tomita, S. Hirono, and S. Umemura, Appl. Phys. Lett. 71, 3427 (1997)
[46] C. Chen, O. Kitakami, S. Okamoto, and Y. Shimada, Appl. Phys. Lett. 76, 3218 (2000)
[47] V. Karanasos, I. Panagiotopoulos, and D. Niarchos, J. Magn. Magn. Mater. 249, 471 (2002)
[48] S. H. Liou, S. Huang, E. Klimek, R. D. Kirby, Y. D. Yao, J. Appl. Phys. 85, 4334 (1999)
[49] D. Y. Oh, and J. K. Park, J. Appl.Phys. 93 7756 (2003)
[50] H. Wang, F. J. Yang, S. X. Xue, Q. Mo, H. B. Wa g, Q. Li, and Z. Y. Li, Appl. Phys. A. 88 775 (2007)
[51] C. J. Lin et and G. Gorman, Appl. Phys. Lett. 61, 1600 (1992)
[52] Y. H. Fang, P. C. Kuo, P. L. Lin, C. H. Kuo, G. P. Lin, and S. C. Chen, J. Appl.
Phys. 103 07F514 (2008)
[53] http://nems.ntu.edu.tw/web_nems/document/general/NMC-W-8009_WEB.pdf
[54] B. D. Cullity and S. R. Stock, “Elements of X-ray diffraction”, p. 170, 3rd edition, Prentice Hall (2001)
[55] S. H. Liou, S. Huang, E. Klimek, R. D. Kirby, and Y. D. Yao, J. Appl. Phys. 85, 4334 (1999)
[56] W. M. Liao, S. K. Chen, F. T. Yuan, C. W. Hsu, S. N. Hsiao, and W. C. Chang, J. Magn. Magn. Mater. 304, e255 (2006)
[57] S. -E. Park, P. -Y. Jung, and K. -B. Kim, J. Appl. Phys. 77, 2641 (1995)
[58] S. Nakagawa and Taro Kamiki, J. Magn. Magn. Mater. 287, 204 (2005)
[59] S.Stavrouiannis, I. Panagiotopoulos, D. Niarchos, J. A. Christodoulides, Y. Zhang, and G. C. Hadjipanayis, J. Magn. Magn. Mater. 193, 181 (1999)
[60] S.Stavrouiannis, I. Panagiotopoulos, D. Niarchos, J. A. Christodoulides, Y. Zhang, and G. C. Hadjipanayis, J. Appl. Phys. 85, 4304 (1999)
[61] X. Xum B. Lv, F. Wang, X. Li, F. Jiang, and H. Wu, J. Magn. Magn. Mater. 310, 2653 (2007)
[62] Y. K. Takahashi, K. Hono, T. Shima, and K. Takanashi, J. Magn. Magn. Mater. 267, 248 (2003)
[63] T. Shima, K. Takanashi, Y. K. Takahashi, and K. Hono, Appl. Phys. Let t. 85, 2571 (2004)
[64] S. Shiomi, T. Nakakita, T. Kobayashi, and M. Masuda, Jpn. J. Appl. Phys. 32, L1058 (1993)
[65] S. Shiomi, T. Nakakita, R. Tanaka, and T. Kobayashi, Jpn. J. Appl. Phys. 35, L213 (1996)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top