跳到主要內容

臺灣博碩士論文加值系統

(3.236.23.193) 您好!臺灣時間:2021/07/26 07:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭君展
研究生(外文):Chun-Chan Hsiao
論文名稱:有機薄膜電晶體之高介電常數介電層研究
論文名稱(外文):A Study on High-k Dielectrics of Organic Thin Film Transistors
指導教授:蔡豐羽
指導教授(外文):Feng-Yu Tsai
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:50
中文關鍵詞:高介電常數原子層沈積有機薄膜電晶體操作電壓臨限電壓聚3-己基噻
外文關鍵詞:high-katomic layer deposition (ALD)threshold voltage (Vth)organic thin film transistor (OTFT)poly-3-hexthylthiophene (P3HT)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:159
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇研究利用原子層沈積(ALD)技術來成長極薄的高介電常數閘極介電層,以應用於聚3-己基噻吩(P3HT)有機薄膜電晶體,其目標是使元件的操作電壓減至最低,同時避免對場效遷移率(field-effect mobility)及元件開關比(on/off ratio)有不好的影響。我們最佳化了前驅物的暴露條件,以幫助ALD薄膜的成核及覆蓋率。氧化鋁、氧化鉿、氧化鋁-氧化鉿多層結構三種閘極介電層,在厚度小於50奈米的狀況下,皆具有不錯的性質,此厚度也低於目前文獻所報導的最小值。
由於具有高電容值及低漏電流的特性,本篇研究中的三種介電層皆成功地將元件的臨限電壓(Vth)降至3 V以下,與傳統用熱氧化矽當做閘極介電層的控制元件相比(26.7 V),有大幅度的下降。利用厚度10奈米的氧化鋁介電層甚至可以將臨限電壓降低至1.2 V。
雖然ALD高介電介電層有效的降低了Vth,但是由於其高極性所造成的電荷捕獲效應(charge trapping effect),降低了有機薄膜電晶體的場效遷移率。藉由在高介電介電層之表面以十八基三氯矽烷(octadecyltrichlorosilane, OTS)的自組裝層(self-assembled monolayer)做表面處理,具有低極性末端基的OTS可以避免電荷捕獲效應的發生。此自組裝層還可以進一步降低閘極漏電流,使得有機薄膜電晶體之臨限電壓皆下降至2 V以下。
This study uses atomic layer deposition (ALD) to develop ultra-thin high-dielectric-constant (high-k) gate dielectrics for poly-3-hexthylthiophene (P3HT) organic thin film transistors (OTFTs), aiming to minimize the operation voltage of the OTFTs without compromising the field-effect mobility and the on/off ratio. By optimizing the precursor exposure condition to improve the nucleation and coverage of ALD films, we demonstrate that Al2O3 films, HfO2 films and Al2O3/HfO2 alternating laminates can all achieve adequate film quality to function as the gate dielectric at thickness < 50 nm, which is significantly below the minimum thickness of high-k dielectrics previously reported for OTFTs. With high capacitance and low leakage current, all of the three types of ALD high-k dielectrics reduce the threshold voltage (Vth) of OTFT to < 3 V, down from 26.7 V of the control which uses SiO2 as the gate dielectric; the lowest Vth of 1.2 V is achieved with a 10-nm ALD Al2O3 dielectric layer. Although the ALD high-k dielectrics effectively lower the Vth, they also decrease the field-effect mobility of the resultant OTFTs due to the charge trapping effect of their high-polarity end groups. This trade-off is eliminated by modifying the surface of the high-k dielectrics with a self-assembled monolayer (SAM) of octadecyltrichlorosilane (OTS), whose low-polarity end groups prevent charge-trapping interactions with the P3HT layer. The SAM layer also reduces current leakage through the gate, thereby further lowering the Vth of all OTFTs with ALD high-k dielectrics to < 2 V.
Contents
Acknowledgement………………………………………………………………………..i
Abstract (Chinese)……………………………………………………………………….ii
Abstract (English)……………………………………………………………………....iii
Contents……………………………………………………………………………….....v
List of the figures and tables……………………………………………………………vi

Chapter 1 Introduction…………………………………………………………..…….1
1.1 Motivation: High-k Dielectrics for Organic Thin Film Transistors (OTFTs)……...1
1.2 Working Principle of OTFT………………………………………………………..5
1.3 The Influence of Gate Leakage Current on Threshold Voltage (Vth) of Devices.....8
1.4 Advantages of Atomic Layer Deposition (ALD)…………………………………10
1.5 Objective Statements…………………………………………….…………….…13

Chapter 2 Experimental……………………………………………………………... 14
2.1 Fabrication of a Metal-insulator-metal (MIM) Capacitor……..…………………14
2.2 Device Fabrication of OTFT……………………………………………………..17
2.3 ALD Process……………………………………………………………………...21
2.4 Measurement of Devices…………………………………………………………24

Chapter 3 Results and Discussions………………………………………………….. 25
3.1 Dielectric Constants of ALD High-k Dielectrics…………………………………26
3.2 Optimization of ALD Process…………………………………………………….27
3.3 Comparison of Different High-k Dielectric Layers………………………………33
3.4 Improving ALD High-k Dielectrics with an Organic Self-assembled Monolayer………………………………………………………………….…..…38
3.5 Thickness Effects of the ALD Al2O3 Dielectrics…………………………………42

Chapter 4 Conclusions and Future Works………………………………………….45
4.1 Conclusions.................................................................................................45
4.2 Future Works………………….…………………………………………………..46

References……………………………………………………………………………..48
1Robert Rotzoll, Siddharth Mohapatra, Viorel Olariu, Robert Wenz, Michelle Grigas, Klaus Dimmlerb, Oleg Shchekin, and Ananth Dodabalapur. Appl. Phys. Lett., 2006, Vol. 88, 123502.
2Takao Someya, Tsuyoshi Sekitani, Shingo Iba, Yusaku Kato, Hiroshi Kawaguchi, and Takayasu Sakurai, PNAS, 2004, vol. 101, No. 27, pp. 9966-9970.
3Masahiro Kawasaki, Shuji Imazeki, Masahiko Ando, Yoshifumi Sekiguchi, Shoichi Hirota, Sei Uemura, and Toshihide Kamata, IEEE T. Electron Devices, 2006, Vol. 53, No.3, pp. 435-441.
4Hsin-Fei Meng, Chien-Cheng Liu, Chin-Jung Jiang, Sheng-Fu Horng, Yu-Lin Yeh, and Chain-Shu Hsu, Appl. Phys. Lett., 2006, Vol. 89, 243503.
5L. A. Majewski, J. W. Kingsley, C. Balocco, and A. M. Songa, Appl. Phys. Lett., 2005, Vol. 88, 222108.
6A. Zen, J. Pflaum, S. Hirschmann, W. Zhuang, F. Jaiser, U. Asawapirom, J. P. Rabe, U. Scherf, and D. Neher, Adv. Funct. Mater., 2004, Vol. 14, No. 8, pp. 757-764.
7D. J. Gundlach, L. Zhou, J. A. Nichols, and T. N. Jackson, P. V. Necliudov, and M. S. Shur, J. Appl. Phys., 2006, Vol. 100, 024509.
8Chih-Wei Chu, Sheng-Han Li, Chieh-Wei Chen, Vishal Shrotriya, and Yang Yang, Appl. Phys. Lett., 2005, Vol. 87, 193508.
9P. Fontaine, D. Goguenheim, D. Deresmes, D. Vuillaume, M. Garet and F. Rondelez, Appl. Phys. Lett., 1993, Vol. 62, 2256.
10J. Collet, O. Tharaud, A. Chapoton, and D. Vuillaume, Appl. Phys. Lett., 2000, 76, 1941.
11Marcus Halik, Hagen Klauk, Ute Zschieschang, Günter Schmid, Christine Dehm, Markus Schütz, Steffen Maisch, Franz Effenberger, Markus Brunnbauer, and Francesco Stellacci, Nature, 2004, Vol. 431, pp. 963-966.
12Yeong Don Park, Do Hwan Kim, Yunseok Jang, Minkyu Hwang, Jung Ah Lim, and Kilwon Cho, Appl. Phys. Lett., 2005, Vol. 87, 243509.
13Myung-Han Yoon, He Yan, Antonio Facchetti, and Tobin J. Marks, J. AM. CHEM. SOC., 2005, Vol. 127, pp. 10388-10395.
14Yunseok Jang, Do Hwan Kim, Yeong Don Park, Jeong Ho Cho, Minkyu Hwang, and Kilwon Cho, 2006, Vol. 88, 072101.
15Guangming Wang, Daniel Moses, Alan J. Heeger, Hong-Mei Zhang, Mux Narasimhan, and R. E. Demaray, J. Appl. Phys., 2004, Vol. 95, pp. 316-322.
16 J Zhu, Y R Li and Z G Liu, J. Phys. D: Appl. Phys., 2004, Vol. 37, pp. 2896-2900.
17A.K. Jonsson, G.A. Niklasson, and M. Veszelei, Thin Solid Films, 2002, 402, pp. 242-247.
18C. D. Dimitrakopoulos, S. Purushothaman, J. Kymissis, A. Callegari, J. M. Shaw, SCIENCE, 1999, Vol. 283, pp. 822-824.
19Dennis M. Hausmann, Esther Kim, Jill Becker, and Roy G. Gordon, Chem. Mater., 2002, Vol. 14, No. 10, pp. 4350-4358.
20M. J. Biercuk, D. J. Monsma, C. M. Marcus, R. G. Gordon, and S. Becker, Appl. Phys. Lett., 2003, Vol. 83, No. 12, pp. 2405-2407.
21Annelies Delabie, Matty Caymax, Bert Brijs, David P. Brunco, Thierry Conard, Erik Sleeckx, Sven Van Elshocht, Lars-Åke Ragnarsson, Stefan De Gendt, and Marc M. Heyns, Journal of The Electrochemical Society, 2006, Vol. 153, pp. F180-F187.
22Annelies Delabie, Riikka L. Puurunen, Bert Brijs, Matty Caymax, Thierry Conard, Bart Onsia, Olivier Richard, Wilfried Vandervorst, Chao Zhao, Marc M. Heyns, Marc Meuris, Minna M. Viitanen, Hidde H. Brongersma, Marco de Ridder, Lyudmila V. Goncharova, Eric Garfunkel, Torgny Gustafsson, and Wilman Tsai, Journal of Applied Physics, 2005, Vol. 97, No. 6, pp. 064104.
23Xiao-Hong Zhang, Benoit Domercq, Xudong Wang, Seunghyup Yoo, Takeshi Kondo, Zhong Lin Wang, and Bernard Kippelen, Organic Electronics, 2007, pp. 718-726.
24L. Fumagalli, D. Natali, M. Sampietro, E. Peron, F. Perissinotti, G. Tallarida, and S. Ferrari, Organic Electronics, 2008, pp. 198-208.
25 Martin M. Frank, Yves J. Chabal, and Glen D. Wilk, Appl. Phys. Lett., 2003, Vol. 82, No. 26, pp. 4758-4760.
26E.P. Gusev, C. Cabral Jr., M. Copel, C. D’Emic, and M. Gribelyuk, Microelectronic Engineering, 2003, Vol. 69, pp. 145-151.
27Dennis M. Hausmann and Roy G. Gordon, Journal of Crystal Growth, 2003, Vol. 249, pp. 251-261.
28J. Veres, S.D. Ogier, S.W. Leeming, D.C. Cupertino, and S. Mohialdin Khaffaf, Adv. Funct. Mater., 2003, Vol. 13, No. 3, pp. 199-204.
29Janos Veres, Simon Ogier, Giles Lloyd, and Dago de Leeuw, Chem. Mater., 2004, Vol. 16, No. 23, pp. 4543-4555.
30Veaceslav Coropceanu and Jean-Luc Brédas, Nat. Mater., 2006, Vol. 5, No. 12, pp. 929-930.
31D. H. Kim, Y. D. Park, Y. Jang, H. Yang, Y. H. Kim, J. I. Han, S. Park, D. G. Moon, T. Chang, C. Chang, M. Joo, C. Y. Ryu, and K. Cho, Adv. Funct. Mater., 2005, Vol. 15, No. 1, pp. 77-82.
32R. Joseph Kline, Michael D. McGehee and Michael F. Toney, Nat. Mater., 2006, Vol. 5, No. 3, pp. 222-228.
33Jay S. Lewis and Michael S. Weaver, IEEE Journal of Selected Topics in Quantum Electronics, 2004, Vol. 10, No. 1, pp. 45-57.
34Ewald Guenther, Ramadas Senthil Kumar, Furong Zhu, Hong Yee Low, jan Soo Ong, Mark Dai Joong Auch, Keran Zhang, and Soo Jin Chua, Proc. SPIE, 2002, Vol. 4464, pp. 23-33.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊