跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 18:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許嘉晉
研究生(外文):Chia-Chin Hsu
論文名稱:含有磷酸鋯衍生物之質子傳導複合膜:磷酸鋯衍生物之合成與複合膜製備及特性研究
論文名稱(外文):Preparation and Characterization of Composite Proton Exchange Membranes with Zirconium Sulfophenylenphosphonates as Inorganic Fillers
指導教授:趙基揚
指導教授(外文):Chi-Yang Chao
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:97
中文關鍵詞:α-zirconium phosphonate直接甲醇燃料電池(DMFC)Nafion質子傳導膜複合膜離子交換容量質子傳導度甲醇穿透
外文關鍵詞:α-zirconium phosphonatedirect methanol fuel cell (DMFC)Nafionproton exchange membranecomposite membraneion exchange capacityproton conductivitymethanol crossover
相關次數:
  • 被引用被引用:1
  • 點閱點閱:134
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗利用控制溫度、溶劑和進料比例等實驗參數,以不同的反應條件來控制α-zirconium phosphate sulfophenylenphosphonates (α-ZrSPP)之組成成分、晶粒大小和顆粒大小。當溶劑由水改為弱鹼性之N-甲基-2-四氫吡各酮 (NMP)時,雖然觀察到所合成的α-ZrSPP晶粒大小有些微的增加,但顆粒大小卻大幅的下降。在同樣的反應溫度及進料比例的反應條件下,以NMP為溶劑所得的α-ZrSPP會有較高含量的SPPA。由低溫(室溫)製程所得的α-ZrSPP,其晶粒大小與顆粒大小皆隨著反應進料的m-sulfophenylphosphonic (SPPA)添加量的增加而上升;然而高溫製程(>80°C)所得的α-ZrSPP,其晶粒大小隨SPPA的添加量增加而縮小,但顆粒大小則呈現先下降後上升的趨勢。一般來說,較低的反應溫度所得的α-ZrSPP會有較高的SPPA含量。
將不同成分、不同顆粒大小之α-ZrSPP和Nafion®的NMP溶液以不同比例進行摻混並將溶劑揮發製成複合質子傳導膜。複合膜之吸水率會隨著α-ZrSPP添加量的增加而隨之上升;通常所添加之α-ZrSPP之SPPA含量越高,則複合膜的吸水率越高。複合膜的離子交換容量(IEC)跟質子傳導度(proton conductivity)受到所添加的α-ZrSPP的特性,其在膜內分散的情形及膜的微結構所影響而顯現出複雜的行為。當所添加的α-ZrSPP的粒徑>40nm且SPPA的含量較低時,複合膜的IEC值隨著α-ZrSPP添加量的增加而上升;但其質子傳導度卻呈現相反的趨勢。當所添加的α-ZrSPP的粒徑<40nm且SPPA的含量較低時,複合膜的IEC值與質子傳導度與α-ZrSPP添加量的關係呈現複雜的走勢。當α-ZrSPP的SPPA含量較高時,所對應的複合膜的IEC值並不會隨著α-ZrSPP添加量的上升而有所變化,但質子傳導度則呈現先上升後下降的趨勢。有趣的是,含有顆粒最小且SPPA含量最高的α-ZrSPP的複合膜並沒有得到最高的IEC及質子傳導度。然而顆粒越小的α-ZrSPP越能有效阻擋甲醇的穿透,且只需要少量的α-ZrSPP的添加(<10wt%)。通常顆粒越小且SPPA含量越高的α-ZrSPP會有較好的分散性,因此其複合膜會表現出較好的選擇性。添加了5wt% α-Zr(HPO4)0.36(SPPA)1.64之Nafion 1100®複合膜將選擇率由重製的Nafion®膜的4600提升至22000。
In this study, α-zirconium phosphate sulfophenylenphosphonates (α-ZrSPP) were prepared via various reaction conditions to control their compositions, crystal domain sizes and particle sizes. The properties of α-ZrSPP were affected by the reaction temperature, the solvent and the ratio between different reactants in the feed. When NMP, a basic organic solvent, was used as the solvent instead of water, the crystalline sizes of the obtained α-ZrSPP were slightly larger than those of α-ZrSPP synthesized from water while the particle sizes were significantly smaller. α-ZrSPP obtained from NMP had higher SPPA (m-sulfophenylphosphonic acid) contents than those from water did when both of them were synthesized at the same temperature with the same SPPA/H3PO4 ratio in the feed. When the reaction temperature was low (for example, room temperature), high SPPA/H3PO4 ratios in the feed would lead to large particle sizes and large crystalline sizes. However, when the reaction was carried out at high temperatures (>80°C), the resulted α-ZrSPP exhibited decreasing crystalline size with incresing SPPA/H3PO4 ratio in the feed; in addition, the minimum particle sizes were observed from the reactions with SPPA/H3PO4=3. Higher SPPA contents ofα-ZrSPP were obtained from the low temperature reactions.
Different amount of α-ZrSPP with various sizes and compositions was blended with Nafion® solution in NMP and the composite membranes were obtained from these mixtures by solvent casting. With increasing loading of α-ZrSPP, water uptakes of the composite membranes increased andα-ZrSPP having high SPPA contents generally led to higher water uptakes. Ion exchange capacity (IEC) and proton conductivity were complicated functions of the properties and the distribution of α-ZrSPP as well as the morphologies of the composite membranes. When the particle sizes of α-ZrSPP were larger than 40nm and the SPPA contents were low, the IEC values of the composites increased with increasing loading while the proton conductivities decreased. When the particle sizes were below 40nm, IEC and proton conductivities of the composites showed a mixed trend. When the SPPA contents of α-ZrSPP were high, the IEC value retained as a constant regardless the loading while the proton conductivities show a convex trand with increasing α-ZrSPP loading. Interestingly, α-ZrSPP particles having high SPPA content and small particle sizes were not necessarily providing their corresponding composite membranes the highest proton conductivity. Nevertheless, when smaller α-ZrSPP particles were used as fillers, the methanol crossover could be substantially suppressed with a small amount of α-ZrSPP loading. In general, composite membranes containing small α-ZrSPP particles with high SPPA contents showed better selectivity (conductivity/methanol permeability) owing to more homogeneous distribution of α-ZrSPP in the membrane. The 5wt% α-Zr(HPO4)0.36(SPPA)1.64/Nafion 1100® composite membrane showed a selectivity of approximately 22000, which was much improved than that (4600) of the recast Nafion® membrane.
口試委員會審定書 I
致謝 II
中文摘要 III
Abstract IV
圖目錄 IX
表目錄 XIII
第一章、緒論 1
1.1 前言 1
1.2 燃料電池的種類 2
1.3 直接甲醇燃料電池(Direct Methanol Fuel Cell)的基本原理 4
1.4 質子在質子傳導膜內的傳導機制 5
1.5 DMFC用質子傳導膜之發展現況 7
1.6 研究動機 8
第二章、文獻回顧 9
2.1 常用於質子傳導膜之高分子電解質 9
2.2 有機/無機複合膜 11
2.2.1 親水性無機物(Hygroscopic oxides)及其複合膜 12
2.2.2 異性聚合酸(Heteropolyacid)及其複合膜 13
2.2.3 磷酸鋯及其衍生物(Zirconium phosphate and phosphonate) 13
第三章、實驗步驟與原理 22
3.1 樣品製備 22
3.1.1 實驗藥品 22
3.1.2 m-sulfophenylphosphonic acid(SPPA)之製備 24
3.1.3 α-zirconium phosphate(α-ZrP)之製備 25
3.1.4 α-zirconium sulfophenylphosphonate(α-ZrSPP)之製備 25
3.1.5 複合質子傳導膜之製備 26
3.2 儀器分析與鑑定 27
3.2.1 傅立葉式紅外線光譜儀(Furrier Transform-infrared Spectroscopy,FTIR) 27
3.2.2 核磁共振光譜儀 (Nuclear Meganetic Resonance, NMR) 28
3.2.3 X光射線繞射(X-Ray diffraction,XRD) 28
3.2.4 穿透式電子顯微鏡(Transmission Electron Microscopy,TEM) 29
3.2.5 熱重量分析儀(Thermo gravimetric analyzer,TGA) 29
3.2.6 交流阻抗分析儀(AC Impedance)與質子傳導度(proton conductivity)之量測 29
3.2.7 吸水率(water uptake/solvent uptake) 31
3.2.8 甲醇滲透(Methanol Crossover,MOC) 31
3.2.9 離子交換容量(ion exchange capacity,IEC) 32
3.2.10 掃描式電子顯微鏡(Scanning Electron Microscope,SEM)和X射線能量散佈分析儀(Energy Dispersive X-ray Spectrometer,EDX or EDS) 32
3.2.11 動態光散射儀 (Dynamic Light Scattering,DLS) 33
第四章、結果與討論 34
4.1 m-sulfophenylphosphonic acid (SPPA)之合成與鑑定 35
4.2 α-ZrSPP之合成與鑑定 37
4.2.1 X-ray分析 42
4.2.2 傅立葉紅外線光譜(FTIR)分析 47
4.2.3 31P固態核磁共振(31P Solid State NMR)分析 48
4.2.4 熱重量分析(TGA) 50
4.2.5 穿透式電子顯微鏡(TEM)與動態光散射(DLS)分析 53
4.3 α-ZrSPP/Nafion®複合膜之製備與分析 60
4.3.1 吸水率(water uptake)分析 63
4.3.2 質子傳導度(Proton conductivity)與離子交換容量(ion exchange capacity)及掃描式電子顯微鏡(scanning electron microscopy)分析 64
4.3.3 甲醇滲透率(Methanol permeability)分析 72
4.3.4 選擇性(Selectivity,C/P) 73
第五章、結論 75
附錄 77
參考文獻 95
[1]Agmon, N., Chemical Physics Letters, 1995. 244(5-6): p. 456-462.
[2]Alberti, G., M.G. Bernasconi, and M. Casciola, Reactive Polymer, 1989. 11: p. 245-252.
[3]Alberti, G., A. Carbone, and R. Palombari, Sensors and Actuators B-Chemical, 2001. 75(1-2): p. 125-128.
[4]Alberti, G. and M. Casciola, Solid State Ionics, 1997. 97(1-4): p. 177-186.
[5]Alberti, G., et al., Electrochimica Acta, 2007. 52(28): p. 8125-8132.
[6]Alberti, G., et al., Journal of Materials Chemistry, 2004. 14(12): p. 1910-1914.
[7]Alberti, G., et al., Solid State Ionics, 2005. 176(39-40): p. 2893-2898.
[8]Alberti, G., et al., Fuel Cells, 2005. 5(3): p. 366-374.
[9]Alberti, G., et al., Applied Catalysis a-General, 2001. 218(1-2): p. 219-228.
[10]Alberti, G., et al., Journal of Inorganic & Nuclear Chemistry, 1978. 40(6): p. 1113-1117.
[11]Amarilla, J.M., et al., Solid State Ionics, 2000. 127(1-2): p. 133-139.
[12]Antonucci, P.L., et al., Solid State Ionics, 1999. 125(1-4): p. 431-437.
[13]Aricò, A.S., et al., Journal of Applied Electrochemistry, 1998. 28(9): p. 881-887.
[14]Aric, A.S., et al., Electrochimica Acta, 1994. 39(5): p. 691-700.
[15]Baradie, B., et al., Journal of Power Sources, 1998. 74(1): p. 8-16.
[16]Bellezza, F., et al., Langmuir, 2002. 18(23): p. 8737-8742.
[17]Bonnet, B., et al., Journal of New Materials for Electrochemical Systems, 2000. 3(2): p. 87-92.
[18]Bujoli, B., et al., Chemistry-a European Journal, 2005. 11(7): p. 1981-1988.
[19]Cao, G., et al., Journal of the American Chemical Society, 1992. 114(19): p. 7574-7575.
[20]Casciola, M., et al., Solid State Ionics, 2005. 176(39-40): p. 2985-2989.
[21]Chen, L.C., et al., Journal of Membrane Science, 2008. 307(1): p. 10-20.
[22]Clearfield, A., et al., Journal of Solid State Chemistry, 1995. 117(2): p. 275-289.
[23]Costamagna, P., et al., Electrochimica Acta, 2002. 47(7): p. 1023-1033.
[24]Curini, M., O. Rosati, and U. Costantino, Current Organic Chemistry, 2004. 8(7): p. 591-606.
[25]Dai, C.A., et al., Journal of Power Sources, 2008. 177(2): p. 262-272.
[26]Daiko, Y., et al., Solid State Ionics. In Press, Corrected Proof.
[27]Damay, F. and L.C. Klein, Solid State Ionics, 2003. 162: p. 261-267.
[28]Depre, L., et al., Electrochimica Acta, 2000. 45(8-9): p. 1377-1383.
[29]Dimitrova, P., et al., Solid State Ionics, 2002. 150(1-2): p. 115-122.
[30]Fuel Cell Handbook, F.E., EG & G Services, 2000.
[31]Genova-Dimitrova, P., et al., Journal of Membrane Science, 2001. 185(1): p. 59-71.
[32]Genoveva, G.R., et al., Journal of Minerals & Materials Characterization & Engineering, 2007. 6(1): p. 39-51.
[33]Hasani-Sadrabadi, M.M., et al., Nanocomposite Membranes Made from Sulfonated Poly(ether ether ketone) and Montmorillonite Clay for Fuel Cell Applications. 2008. p. 2539-2542.
[34]Heinzel, A., et al., Electrochimica Acta, 1998. 43(24): p. 3817-3820.
[35]Hietala, S., et al., Journal of Materials Chemistry, 1998. 8(5): p. 1127-1132.
[36]Hill, M.L., et al., Journal of Membrane Science, 2006. 283(1-2): p. 102-108.
[37]Honma, I., S. Nomura, and H. Nakajima, Journal of Membrane Science, 2001. 185(1): p. 83-94.
[38]Honma, I., Y. Takeda, and J.M. Bae, Solid State Ionics, 1999. 120(1-4): p. 255-264.
[39]http://en.wikipedia.org/wiki/Main_Page.
[40]http://www.sigmaaldrich.com/.
[41]Kim, H.N., et al., Chemistry of Materials, 1997. 9(6): p. 1414-1421.
[42]Kim, Y.T., et al., Electrochimica Acta, 2004. 50(2-3): p. 645-648.
[43]Kozhevnikov, I.V., Catalysis by Heteropoly Acids and Multicomponent Polyoxometalates in Liquid-Phase Reactions. 1998. p. 171-198.
[44]Kreuer, K.D., Solid State Ionics, 2000. 136: p. 149-160.
[45]Krishnan, P., et al., Journal of Power Sources, 2006. 163(1): p. 2-8.
[46]Kuan, H.-C., et al., Electrochemical and Solid-State Letters, 2006. 9(2): p. A76-A79.
[47]Kuan, H.C., et al., Electrochemical and Solid State Letters, 2006. 9(2): p. A76-A79.
[48]Kumar, C.V. and A. Chaudhari, Journal of the American Chemical Society, 1994. 116(1): p. 403-404.
[49]Kumar, C.V. and A. Chaudhari, Journal of the American Chemical Society, 2000. 122(5): p. 830-837.
[50]Lane, S.M., et al., Colloids and Surfaces B-Biointerfaces, 2007. 58(1): p. 34-38.
[51]Le Bail, A. and J.P. Laval, European Journal of Solid State and Inorganic Chemistry, 1998. 35(4-5): p. 357-372.
[52]Mauritz, K.A., Materials Science and Engineering: C, 1998. 6(2-3): p. 121-133.
[53]Mauritz, K.A., et al., Journal of Applied Polymer Science, 1995. 55(1): p. 181-190.
[54]Mikhailenko, S.D., S.M.J. Zaidi, and S. Kaliaguine, Catalysis Today, 2001. 67(1-3): p. 225-236.
[55]Montoneri, E., M.C. Gallazzi, and M. Grassi, Journal of the Chemical Society Dalton Transactions, 1989. 9: p. 1819-1823.
[56]Nakajima, H. and I. Honma, Solid State Ionics, 2002. 148(3-4): p. 607-610.
[57]Nakajima, H., et al., Journal of the Electrochemical Society, 2002. 149(8): p. A953-A959.
[58]Neburchilov, V., et al., Journal of Power Sources, 2007. 169(2): p. 221-238.
[59]Nunes, S.P., et al., Journal of Membrane Science, 2002. 203(1-2): p. 215-225.
[60]Staiti, P., Materials Letters, 2001. 47(4-5): p. 241-246.
[61]Staiti, P., Journal of New Materials for Electrochemical Systems, 2001. 4(3): p. 181-186.
[62]Staiti, P., et al., Solid State Ionics, 2001. 145(1-4): p. 101-107.
[63]Staiti, P., S. Freni, and S. Hocevar, Journal of Power Sources, 1999. 79(2): p. 250-255.
[64]Staiti, P. and M. Minutoli, Journal of Power Sources, 2001. 94(1): p. 9-13.
[65]Staiti, P., M. Minutoli, and S. Hocevar, Journal of Power Sources, 2000. 90(2): p. 231-235.
[66]Sui, Y., et al., Materials Letters, 2007. 61(6): p. 1354-1357.
[67]Tazi, B. and O. Savadogo, Electrochimica Acta, 2000. 45(25-26): p. 4329-4339.
[68]Tazi, B. and O. Savadogo, Journal of New Materials for Electrochemical Systems, 2001. 4(3): p. 187-196.
[69]Truffler-Boutry, D., et al., Macromolecules, 2007. 40(23): p. 8259-8264.
[70] Grot W.G. and Rajendran G., US Patent, 1999. 9(919): p. 583.
[71]Xu, Q.H., et al., Solid State Sciences, 2007. 9(8): p. 732-736.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊