|
[1] P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” In 35th Annual Symposium on Foundations of Computer Science. IEEE Press, Los Alamos (1994). [2] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM J. Computing 26 (1997). [3] L. K. Grover, “A fast quantum mechanical algorithm for database search,” In STOC ’96: Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pp. 212–219 (ACM, New York, NY, USA, 1996). [4] L. K. Grover, “Quantum Mechanics Helps in Searching for a Needle in a Haystack,” Phys. Rev. Lett. 79, 325–328 (1997). [5] L. K. Grover, “Quantum Computers Can Search Rapidly by Using Almost Any Transformation,” Phys. Rev. Lett. 80, 4329–4332 (1998). [6] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Informa- tion, 2 ed. (Cambridge University Press, 2001). [7] B. E. Kane, “A silicon-based nuclear spin quantum computer,” Nature 393, 133–137 (1998). [8] L. C. L. Hollenberg, A. D. Greentree, A. G. Fowler, and C. J. Wellard, “Twodimensional architectures for donor-based quantum computing,” Phys. Rev. B 74, 045311 (2006). [9] A. Carlini, A. Hosoya, T. Koike, and Y. Okudaira, “Time-Optimal Quantum Evolution,” Phys. Rev. Lett. 96, 060503 (2006). [10] A. Carlini, A. Hosoya, T. Koike, and Y. Okudaira, “Time-optimal unitary operations,” Phys. Rev. A 75, 042308 (2007). [11] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbr‥uggen, and S. J. Glaser, “Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms,” J. Magn. Reson. 172 (2005). [12] A. G. Fowler, C. J. Wellard, and L. C. L. Hollenberg, “Error rate of the Kane quantum computer controlled-NOT gate in the presence of dephasing,” Phys. Rev. A 67, 012301 (2003). [13] C. D. Hill and H.-S. Goan, “Fast nonadiabatic two-qubit gates for the Kane quantum computer,” Phys. Rev. A 68, 012321 (2003). [14] C. D. Hill and H.-S. Goan, “Gates for the Kane quantum computer in the presence of dephasing,” Phys. Rev. A 70, 022310 (2004). [15] A. M. Tyryshkin, S. A. Lyon, A. V. Astashkin, and A. M. Raitsimring, “Electron spin relaxation times of phosphorus donors in silicon,” Phys. Rev. B 68, 193207 (2003). [16] C. D. Hill, L. C. L. Hollenberg, A. G. Fowler, C. J. Wellard, A. D. Greentree, and H.-S. Goan, “Global control and fast solid-state donor electron spin quantum computing,” Phys. Rev. B 72, 045350 (2005). [17] T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, and J. S. Tsai, “Demonstration of conditional gate operation using superconducting charge qubits,” Nature 425, 941–944 (2003). [18] A. Sp‥orl, T. Schulte-Herbr‥uggen, S. J. Glaser, V. Bergholm, M. J. Storcz, J. Ferber, and F. K. Wilhelm, “Optimal control of coupled Josephson qubits,” Phys. Rev. A 75, 012302 (2007). [19] L. Kettle, H.-S. Goan, S. C. Smith, L. C. L. Hollenberg, C. I. Pakers, and C. Wellard, (unpublished). [20] C. D. Hill, Ph.D thesis (University of Queensland, Brisbane, Australia, 2006). [21] C. Herring and M. Flicker, “Asymptotic Exchange Coupling of Two Hydrogen Atoms,” Phys. Rev. 134, A362–A366 (1964). [22] M. J. Testolin, C. D. Hill, C. J. Wellard, and L. C. L. Hollenberg, “Robust controlled-NOT gate in the presence of large fabrication-induced variations of the exchange interaction strength,” Phys. Rev. A 76, 012302 (2007). [23] R. B. Sidje, “Expokit. A Software Package for Computing Matrix Exponentials,” ACM Trans. Math. Softw. 24 (1998). [24] C. Moler and C. V. Loan, “Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later,” Society for Industrial and Applied Mathematics 45 (2003). [25] E. G. Birgin, J. M. Martinez, and M. Raydan, “Nonmonotone Spectral Projected Gradient Methods on Convex Sets,” SIAM J. on Optim. 10 (2000). [26] B. Kraus and J. I. Cirac, “Optimal creation of entanglement using a two-qubit gate,” Phys. Rev. A 63, 062309 (2001). [27] G. Vidal, K. Hammerer, and J. I. Cirac, “Interaction Cost of Nonlocal Gates,” Phys. Rev. Lett. 88, 237902 (2002). [28] M. J. Bremner, C. M. Dawson, J. L. Dodd, A. Gilchrist, A. W. Harrow, D. Mortimer, M. A. Nielsen, and T. J. Osborne, “Practical Scheme for Quantum Computation with Any Two-Qubit Entangling Gate,” Phys. Rev. Lett. 89, 247902 (2002). [29] M. L. Liou, “A novel method of evaluating transient response,” Proc. IEEEE 54 (1966). [30] R. B. Sidje, Parallel Algorithms for Large Sparse Matrix Exponentials: applica- tion to numerical transient analysis of Markov processes. (Ph. D. thesis, Univ. of Rennes 1., 1994).
|