跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/09 22:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李宗憲
研究生(外文):Tsung-Hsien Li
論文名稱:利用偏振二倍頻顯微術分析第一類與第二類膠原蛋白的結構
論文名稱(外文):Structural Analysis of Type I and Type II Collagen by Polarized Second Harmonic Generation Microscopy
指導教授:董成淵
指導教授(外文):Chen-Yuan Dong
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:52
中文關鍵詞:二倍頻膠原蛋白偏振肌腱軟骨非線性極化率螺旋結構螺旋角
外文關鍵詞:second harmonic generationcollagenpolarizationtendoncartilagenonlinear susceptibilityhelical structurepitch angle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:216
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
膠原蛋白是人體中非常重要的一種蛋白質,其分子由三條多肽鏈纏繞而成,具有三股螺旋結構。依據多肽鏈中的胺基酸序列的不同,可以將目前已知的膠原蛋白分為29種類型。
光學顯微術中,利用偏振二倍頻顯微術來掃描生物樣品,可以得到其分子尺度上的資訊,但考慮到光學元件,如分光鏡,會改變光的偏振性。因此,我們使用了二分之一波長片及四分之一波長片來彌補這種效應,同時也藉此旋轉雷射的偏振角度。如此一來,我們校正了分光鏡造成的偏振性改變,也減少了轉動樣品所帶來的困擾。
藉由分析隨著入射光的偏振角度而改變的二倍頻強度變化,我們可以分析出生物樣品內膠原蛋白的二階極化率張量,並且推導出膠原蛋白分子的螺旋角。此實驗中,我們使用了大鼠尾巴的肌腱和豬腿骨間的關節軟骨來做比較,他們分別含有大量的第一類及第二類的膠原蛋白,而這兩種不同類型的膠原蛋白分析出來的二階極化率張量及螺旋角確實有所不同!第一類和第二類膠原蛋白分子的螺旋角分別為49.1°±1.3° and 52.8°±2.7°。證明了偏振二倍頻顯微術能夠有效的分辨第一類及第二類的膠原蛋白。
Collagen is one of the most important and abundant protein in human body. Its molecules composed of three entwined polypeptide chains. There are currently 29 known types of collagen differentiated by the sequence of residues in each polypeptide chain.
Utilizing polarized second harmonic generation microscopy, we can obtain structural information at the molecular level. In order to compensate the depolarization effects of optical component such as the dichroic mirror, we used the combination of a half-wave plate and a quarter-wave plate to rotate the polarization angle of the laser incident on the sample. This allows us to perform polarization microscopy without the drawbacks of sample rotation.
By measuring second harmonic generation intensity variation as a function of the polarization angle of the incident light, we can analyze the second-order susceptibility tensor of collagen in a biological sample and determinate the pitch angle of the collagen helix. In this study, we compared the second-order susceptibility tensor of collagen from rat tail tendon and cartilage of porcine femoral-tibial joint, which contain abundant type I and type II collagens respectively. We found that the second-order susceptibility tensor and the calculated pitch angle for type I and II collagen to be 49.20°±0.34° and 52.43°±0.72°. Our results suggest that polarized SHG microscopy could potentially be used for distinguishing these two types of collagen.
致謝 II
摘要 III
Abstract IV
Contents VI
Figure Catalog VII
Table Catalog VII
Chapter 1 Introduction 1
Chapter 2 Basic Principle 4
2.1 Theory of second harmonic generation 4
Basics of second harmonic generation process 4
Intrinsic permutation symmetry of nonlinear susceptibility 6
Effect of inversion symmetry on second-order polarization 7
Kleinman’s symmetry 8
Contracted notation 9
2.2 SHG microscopy 10
Optical resolution 10
Mode-locking laser 13
2.3 Use of wave plates for ellipticity compensation 16
Compensation for the retardation phase due to dichroic 16
Calibration of power variation due to dichroic 21
Chapter 3 Collagen 24
3.1 Overview of collagen 24
Basic information 24
Subfamily 25
Arrangement of collagen 26
3.2 Second order susceptibility of collagen fiber 29
3.3 Collagen in rat-tail tendon and cartilage 31
Chapter 4 Experimental Setup 32
4.1 Configuration of instruments 32
4.2 Sample preparation 34
4.3 Experimental and analytical methods 37
Chapter 5 Results and Discussion 39
Chapter 6 Conclusion 48
References 50
1. Plotnikov, S.V., Millard, A.C., Campagnola, P.J. & Mohler, W.A. Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres. Biophysical Journal 90, 693-703 (2006).
2. Nadiarnykh, O., LaComb, R., Campagnola, P.J. & Mohler, W.A. Coherent and incoherent SHG in fibrillar cellulose matrices. Optics Express 15, 3348-3360 (2007).
3. Zoumi, A., Yeh, A. & Tromberg, B.J. Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proceedings of the National Academy of Sciences of the United States of America 99, 11014-11019 (2002).
4. Brown, E.B., et al. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nature Medicine 7, 864-868 (2001).
5. Liu, Y., et al. Visualization of hepatobiliary excretory function by intravital multiphoton microscopy. Journal of Biomedical Optics 12, 014014 (2007).
6. Lin, M.G., et al. Evaluation of dermal thermal damage by multiphoton autofluorescence and second-harmonic-generation microscopy. Journal of Biomedical Optics 11, - (2006).
7. Wang, C. & St. Leger, R.J. A collagenous protective coat enables Metarhizium anisopliae to evade insect immune responses. Proceedings of the National Academy of Sciences 103, 6647-6652 (2006).
8. Han, M., Giese, G. & Bille, J.F. Second harmonic generation imaging of collagen fibrils in cornea and sclera. Optics Express 13, 5791-5797 (2005).
9. Soderhall, C., et al. Variants in a novel epidermal collagen gene (COL29A1) are associated with atopic dermatitis. PLoS Biol 5, e242 (2007).
10. Stoller, P., Reiser, K.M., Celliers, P.M. & Rubenchik, A.M. Polarization-modulated second harmonic generation in collagen. Biophysical Journal 82, 3330-3342 (2002).
11. Tsuzaki, M., Yamauchi, M. & Banes, A.J. Tendon Collagens: Extracellular Matrix Composition in Shear Stress and Tensile Components of Flexor Tendons. Connective Tissue Research 29, 141-152 (1993).
12. Steplewski, A., Hintze, V. & Fertala, A. Molecular basis of organization of collagen fibrils. Journal of Structural Biology 157, 297-307 (2007).
13. So, P.T.C., Dong, C.Y., Masters, B.R. & Berland, K.M. Two-photon excitation fluorescence microscopy. Annual Review of Biomedical Engineering 2, 399-429 (2000).
14. Chu, S.W., et al. Studies of x((2))/x((3)) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy. Biophysical Journal 86, 3914-3922 (2004).
15. Carmeliet, P. & Jain, R.K. Angiogenesis in cancer and other diseases. Nature 407, 249-257 (2000).
16. Li, F.C., et al. Dorsal skin fold chamber for high resolution multiphoton imaging. Optical and Quantum Electronics 37, 1439-1445 (2005).
17. Stoller, P., Kim, B.M., Rubenchik, A.M., Reiser, K.M. & Da Silva, L.B. Polarization-dependent optical second-harmonic imaging of a rat-tail tendon. Journal of Biomedical Optics 7, 205-214 (2002).
18. Boyd, R.W. Nonlinear Optics, (Academic Press, 2003).
19. Liu, S.H., Yang, R.S., al-Shaikh, R. & Lane, J.M. Collagen in tendon, ligament, and bone healing. A current review. Clin Orthop Relat Res 318, 265-278 (1995).
20. Venturoni, M., Gutsmann, T., Fantner, G.E., Kindt, J.H. & Hansma, P.K. Investigations into the polymorphism of rat tail tendon fibrils using atomic force microscopy. Biochemical and Biophysical Research Communications 303, 508-513 (2003).
21. Engel, J. Biochemistry - Versatile collagens in invertebrates. Science 277, 1785-1786 (1997).
22. Brinckmann, J., Notbohm, H. & Muller, P.K. Collagen: Primer in Structure, Processing and Assembly, (Springer, 2005).
23. Nelson, D.L., Cox, M.M. & Lehninger, A. Lehninger principles of biochemistry, (W. H. Freeman ; Palgrave, New York; Basingstoke, 2004).
24. Keene, D.R., Oxford, J.T. & Morris, N.P. Ultrastructural-Localization of Collagen Type-Ii, Type-Ix, and Type-Xi in the Growth-Plate of Human Rib and Fetal Bovine Epiphyseal Cartilage - Type-Xi Collagen Is Restricted to Thin Fibrils. Journal of Histochemistry & Cytochemistry 43, 967-979 (1995).
25. Fertala, A., Holmes, D.F., Kadler, K.E., Sieron, A.L. & Prockop, D.J. Assembly in Vitro of Thin and Thick Fibrils of Collagen II from Recombinant Procollagen II. THE MONOMERS IN THE TIPS OF THICK FIBRILS HAVE THE OPPOSITE ORIENTATION FROM MONOMERS IN THE GROWING TIPS OF COLLAGEN I FIBRILS. Journal of Biological Chemistry 271, 14864 (1996).
26. Prockop, D.J. & Fertala, A. The Collagen Fibril: The Almost Crystalline Structure. Journal of Structural Biology 122, 111-118 (1998).
27. Fertala, A., Han, W.B. & Ko, F.K. Mapping critical sites in collagen II for rational design of gene-engineered proteins for cell-supporting materials. Journal of Biomedical Materials Research 57, 48-58 (2001).
28. Tsuzaki, M., Yamauchi, M. & Banes, A.J. Tendon Collagens - Extracellular-Matrix Composition in Shear-Stress and Tensile Components of Flexor Tendons. Connective Tissue Research 29, 141-152 (1993).
29. Eyre, D. Collagen of articular cartilage. Arthritis Res 4, 30-35 (2002).
30. Chou, C.K., et al. Polarization ellipticity compensation in polarization second-harmonic generation microscopy without specimen rotation. Journal of Biomedical Optics 13, - (2008).
31. Richards, B. & Wolf, E. Electromagnetic Diffraction in Optical Systems. II. Structure of the Image Field in an Aplanatic System. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences (1934-1990) 253, 358-379 (1959).
32. Markwardt, C.B. MPFITFUN. NASA/GSFC Code 662, Greenbelt, MD 20770 (http://cow.physics.wisc.edu/~craigm/idl/idl.html, 2007).
33. Markwardt, C.B. MPFIT. NASA/GSFC Code 662, Greenbelt, MD 20770 (http://cow.physics.wisc.edu/~craigm/idl/idl.html, 2007).
34. Yeh, A.T., et al. Nonlinear optical microscopy of articular cartilage. Osteoarthritis and Cartilage 13, 345-352 (2005).
35. Lee, H.S., et al. Imaging human bone marrow stem cell morphogenesis in polyglycolic acid scaffold by multiphoton microscopy. Tissue Engineering 12, 2835-2841 (2006).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊