[1-1] F. E. Wagner et al., Nature 407, 691 (2000)
[1-2] The Stained Glass Museum (www.stainedglassmuseum.org)
[1-3] M.P. Faraday, Trans. “R. Soc. London,” 147, 145(1857)
[1-4] R. W. Wood, Philos. Mag. 4, 396 (1902).
[1-5] U. Fano, J. Opt. Soc. Am 31,213 (1941).
[1-6] A. Hessel, and A. A. Oliner, “A new theory of Wood''s anomalies on
optical gratings”, Appl. Opt. 4, 1275 (1965).
[1-7]A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and
H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B 70, 125113 (2004).
[1-8] S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J.
M. Hvam, “Waveguiding in surface plasmon polariton band gap
structures,” Phys. Rev. Lett. 86, 3008 (2001).
[1-9] F. I. Baida, D. van Labeke, Y. Pagani, B. Guizal, and M. al Naboulsi, “Waveguiding through a two-dimensional metallic photonic crystal,” J. Microsc. 213, 144–148 (2004).
[1-10] M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nano-particles,” Opt. Lett. 23, 1331–1333 (1998).
[1-11] M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nano-particle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356–R16359 (2000).
[1-12] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature ,391, 667–669 (1998).
[1-13] W. C. Tan, T. W. Preist, R. J. Sambles, and N. P. Wanstall, “Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings,” Phys. Rev. B 59, 12661–12666 (1999).
[1-14] L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordianary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[1-15] D. P. Tsai, C. W. Yang, W. C. Lin, F. H. Ho, H. J. Huang, M. Y. Chen, T. F. Tseng, C. H. Lee, and C. J. Yeh “Dynamic aperture of near-field super resolution structures,” Jpn. J. Appl. Phys. 39, 982–983 (2000).
[1-16] W. C. Liu and D. P. Tsai, “Optical tunneling effect of surface plasmon polaritons and localized surface plasmon resonance,” Phys. Rev. B 65, 155423 (2001).
[1-17] M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[1-18] S. Nie and S. R. Emory, “Probing single molecules and single nano-particles by surface-enhanced Raman Scattering,” Science 275, 1102–1106 (1997).
[1-19] H. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phy. Rev. Lett. 83, 4357 (1999).
[1-20] D. P. Tsai and W. C. Lin, “Probing the near fields of the super-resolution near-field optical structure,” Appl. Phys. Lett., 77, 1413–1415 (2000).
[1-21] F. H. Ho, W. Y. Lin, H. H. Chang, Y. H. Lin, W. C. Liu, and D. P. Tsai, “Nonlinear optical absorption in the AgOx-type super-resolution near-field structure,” Jpn. J. Appl. Phys. 40, 4101–4102 (2001).
[1-22] T. C. Chu, W. C. Liu, and D. P. Tsai, “Enhanced resolution induced by random silver nano-particles in near-field optical disks,” Opt. Commun. 246, 561–567 (2005).
[1-23] T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nano-particles,” Phys. Rev. Lett. 80, 4249–4252 (1999).
[1-24] K. Imura, T. Nagahara, and H. Okamoto, “Characteristic near-field spectra of single gold nano-particles,” Chem. Phys. Lett. 400, 500–505 (2004).
[1-25] K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nano-rods and imaging of plasmon modes,” J. Phys. Chem. B 109, 13214–13220 (2005).
[1-26] G. Laurent, N. Félidj, J. Aubard, and G. Lévi, “Evidence of multipolar excitations in surface enhanced Raman scattering,” Phys. Rev. B 71, 45430 (2005).
[1-27] E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nano-rods,” J. Phys. Chem. B 110, 2150–2154 (2006).
[1-28] P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607 (2005).
[1-29] C. Sonnichsen and A. P. Alivisatos, “Gold nano-rods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy,” Nano Lett. 5, 301–304 (2005).
[1-30] A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nano-rod array,” Phys. Rev. Letts. 95, 267407 (2005).
[1-31] J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nano-wires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061 (1999).
[1-32] H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nano-wires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[1-33] J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nano-rods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[1-34] G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Plasmon dispersion relation of Au and Ag nano-wires,” Phys. Rev. B 68, 155427 (2003).
[1-35] K. Imura, T. Nagahara, and H. Okamoto, “Near-field optical imaging of plasmon modes in gold nano-rods,” J. Chem. Phys. 122, 154701 (2005).
[1-36] N. Félidj, G. Laurent, J. Grand, J. Aubard, G. Lévi, A. Hohenau, F. R. Aussenegg, and J. R. Krenn, “Far-field Raman Imaging of short-wavelength particle plasmons on gold nano-rods,” Plasmonics 1, 35–39 (2006).
[1-37] H. J. Huang et al. Optics Express15 (12), 7132 (2007)
[3-1] http://www.olympusmicro.com/
[3-2] http://wallcoo.com/nature/under_sky/html/image17.html
[3-3]徐豪汶,“鍺銻碲相變化奈米薄膜之奈米尺度光熱性質的究”,碩士論文,中央物理研究所 (2006)[3-4]祁子年,“近場光學顯微術及其應用”,碩士論文,中正大學物理學研究所 (1996)[4-1]http://www.devicelink.com/industry/index.html
[4-2]A. Doron, E. Katz, and I. “Organization of Au Colloids as Monolayer Films onto ITO Glass Surfaces: Application of the Metal Colloid Films as Base Interfaces To Construct Redox-Active Monolayers,” Willner, Langmuir 11,1313-1317 (1995).
[4-3]N. Taub, O. Krichevski, and G. Markovich, “Growth of gold nano-rods on surfaces,” J. Phys. Chem. B 107, 11579–11582 (2003).
[4-4]H. M. Chen, H. C. Peng, R. S. Liu, K. Asakura, C. L. Lee, J. F. Lee and S. F. Fu, “Controlling the Length and Shape of Gold nano-rods,” J. Phys. Chem. B 109, 19553 (2005).