跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/11 02:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李東霖
研究生(外文):Dong-Lin Li
論文名稱:金奈米天線之遠場光學性質量測
論文名稱(外文):Far-Field Optical Properties of Gold Nano-antenna
指導教授:蔡定平
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:74
中文關鍵詞:奈米光學遠場光學量測奈米金棒
外文關鍵詞:nano opticsfar-field optical measurementgold nano-rod
相關次數:
  • 被引用被引用:0
  • 點閱點閱:379
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們使用一套遠場光學量測系統測量入射光與金奈米天線(兩根串聯的奈米金棒) 之光跟物質的交互作用。此系統有兩種測量的架構,分別為偏振對比顯微術與雷射聚焦式暗視野顯微術。偏振對比顯微術可以量測到入射平行光與奈米天線產生交互作用後所激發的表面電漿共振模態,並且隨著改變不同入射角度去分析模態的變化。雷射聚焦式暗視野顯微術則可以量測雷射聚焦光點與金奈米天線交互作用之暗視野影像,進而分析影像可得到金奈米天線散射光場的耦合效應。此外,我們使用聚焦式顯微光譜儀量測奈米天線的穿透光譜,可得到表面電漿共振波長在兩根金棒距離不同時的變化。本論文研究結果可以做為未來奈米尺度下表面電漿積體光學元件的基石。
In this paper, we use the far-field optical systems to measure the interaction of the gold nano-antenna with the incident light. There are two types of the measurement systems, including the polarization-contrast microscopy and the laser focal dark field microscopy. The polarization-contrast microscopy is used to attain far-field optical images of the surface plasmon resonance (SPR) modes in the gold nano-antenna. And the laser focal dark field microscopy is used to measure the interaction of the laser spot with the gold nano-antenna. According to the dark field images, we can analyze the coupling effect of the gold nano-antenna. Furthermore, we use the microscope spectrometer systems to measure the transmission spectrum of the gold nano-antenna. From the spectrum, the SPR wavelength changed with different length of the gold nano-rod gap. Our research can function as fundamental building blocks in nano-plasmonic integrated optics.
致謝 I
中文摘要 II
Abstract III
第一章 序論 1
1-1 前言 1
1-2 文獻回顧 4
1-3 研究動機 7
1-4 參考文獻 8
第二章 基本理論背景 12
2-1 電磁波與物質的交互作用 12
2-1-1 電磁波在導體中傳播 14
2-2 表面電漿共振原理 17
2-3 侷域表面電漿共振 24
第三章 實驗儀器基本架構與原理 27
3-1 光學顯微鏡基本原理簡介 27
3-1-1 光學顯微鏡基本光路架構 27
3-1-2 空間解析度與繞射極限 28
3-1-3 顯微鏡對比技術介紹 29
3-1-3-1 明視野顯微術 29
3-1-3-2 暗視野微術 30
3-1-3-3 偏振顯微術 32
3-1-3-4 相位差顯微術 33
3-1-4 全反射螢光顯微鏡 34
3-2 遠場光學量測系統 36
3-2-1 偏振對比遠場光學顯微術 36
3-2-2 雷射聚焦式暗視野顯微術 37
3-2-2-1 第一類雷射聚焦式暗視野顯微術 37
3-2-2-2 第二類雷射聚焦式暗視野顯微術 38
3-3 聚焦式顯微光譜儀 40
3-4 原子力顯微鏡 41
3-4-1 儀器簡介及用途 41
3-4-2 工作操作模式 42
3-5 參考文獻 44
第四章 奈米材料之合成 45
4-1 奈米金棒的製作方法 46
4-1-1 金的晶種溶液製備 46
4-1-2 金奈米棒的合成 46
4-2 奈米操縱技術 49
4-2-1 操縱方法與過程 50
4-3 參考文獻 53
第五章 實驗結果討論與分析 54
5-1 明視野量測結果 54
5-2 偏振對比遠場光學實驗結果 56
5-3 有限差分時域法(FDTD)模擬偏振對比結果 62
5-4 雷射聚焦式暗視野實驗結果 67
5-4-1 第一類雷射聚焦式暗視野實驗結果 67
5-4-2 第二類雷射聚焦式暗視野實驗結果 68
5-5 聚焦式顯微光譜實驗結果 71
第六章 結論 73
[1-1] F. E. Wagner et al., Nature 407, 691 (2000)
[1-2] The Stained Glass Museum (www.stainedglassmuseum.org)
[1-3] M.P. Faraday, Trans. “R. Soc. London,” 147, 145(1857)
[1-4] R. W. Wood, Philos. Mag. 4, 396 (1902).
[1-5] U. Fano, J. Opt. Soc. Am 31,213 (1941).
[1-6] A. Hessel, and A. A. Oliner, “A new theory of Wood''s anomalies on
optical gratings”, Appl. Opt. 4, 1275 (1965).
[1-7]A. Christ, T. Zentgraf, J. Kuhl, S. G. Tikhodeev, N. A. Gippius, and
H. Giessen, “Optical properties of planar metallic photonic crystal structures: Experiment and theory,” Phys. Rev. B 70, 125113 (2004).
[1-8] S. I. Bozhevolnyi, J. Erland, K. Leosson, P. M. W. Skovgaard, and J.
M. Hvam, “Waveguiding in surface plasmon polariton band gap
structures,” Phys. Rev. Lett. 86, 3008 (2001).
[1-9] F. I. Baida, D. van Labeke, Y. Pagani, B. Guizal, and M. al Naboulsi, “Waveguiding through a two-dimensional metallic photonic crystal,” J. Microsc. 213, 144–148 (2004).
[1-10] M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nano-particles,” Opt. Lett. 23, 1331–1333 (1998).
[1-11] M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nano-particle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356–R16359 (2000).
[1-12] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature ,391, 667–669 (1998).
[1-13] W. C. Tan, T. W. Preist, R. J. Sambles, and N. P. Wanstall, “Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings,” Phys. Rev. B 59, 12661–12666 (1999).
[1-14] L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordianary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86, 1114–1117 (2001).
[1-15] D. P. Tsai, C. W. Yang, W. C. Lin, F. H. Ho, H. J. Huang, M. Y. Chen, T. F. Tseng, C. H. Lee, and C. J. Yeh “Dynamic aperture of near-field super resolution structures,” Jpn. J. Appl. Phys. 39, 982–983 (2000).
[1-16] W. C. Liu and D. P. Tsai, “Optical tunneling effect of surface plasmon polaritons and localized surface plasmon resonance,” Phys. Rev. B 65, 155423 (2001).
[1-17] M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[1-18] S. Nie and S. R. Emory, “Probing single molecules and single nano-particles by surface-enhanced Raman Scattering,” Science 275, 1102–1106 (1997).
[1-19] H. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phy. Rev. Lett. 83, 4357 (1999).
[1-20] D. P. Tsai and W. C. Lin, “Probing the near fields of the super-resolution near-field optical structure,” Appl. Phys. Lett., 77, 1413–1415 (2000).
[1-21] F. H. Ho, W. Y. Lin, H. H. Chang, Y. H. Lin, W. C. Liu, and D. P. Tsai, “Nonlinear optical absorption in the AgOx-type super-resolution near-field structure,” Jpn. J. Appl. Phys. 40, 4101–4102 (2001).
[1-22] T. C. Chu, W. C. Liu, and D. P. Tsai, “Enhanced resolution induced by random silver nano-particles in near-field optical disks,” Opt. Commun. 246, 561–567 (2005).
[1-23] T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nano-particles,” Phys. Rev. Lett. 80, 4249–4252 (1999).
[1-24] K. Imura, T. Nagahara, and H. Okamoto, “Characteristic near-field spectra of single gold nano-particles,” Chem. Phys. Lett. 400, 500–505 (2004).
[1-25] K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nano-rods and imaging of plasmon modes,” J. Phys. Chem. B 109, 13214–13220 (2005).
[1-26] G. Laurent, N. Félidj, J. Aubard, and G. Lévi, “Evidence of multipolar excitations in surface enhanced Raman scattering,” Phys. Rev. B 71, 45430 (2005).
[1-27] E. K. Payne, K. L. Shuford, S. Park, G. C. Schatz, and C. A. Mirkin, “Multipole plasmon resonances in gold nano-rods,” J. Phys. Chem. B 110, 2150–2154 (2006).
[1-28] P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607 (2005).
[1-29] C. Sonnichsen and A. P. Alivisatos, “Gold nano-rods as novel nonbleaching plasmon-based orientation sensors for polarized single-particle microscopy,” Nano Lett. 5, 301–304 (2005).
[1-30] A. Ono, J. Kato, and S. Kawata, “Subwavelength optical imaging through a metallic nano-rod array,” Phys. Rev. Letts. 95, 267407 (2005).
[1-31] J. C. Weeber, A. Dereux, C. Girard, J. R. Krenn, and J. P. Goudonnet, “Plasmon polaritons of metallic nano-wires for controlling submicron propagation of light,” Phys. Rev. B 60, 9061 (1999).
[1-32] H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nano-wires as surface plasmon resonators,” Phys. Rev. Lett. 95, 257403 (2005).
[1-33] J. Aizpurua, G. W. Bryant, L. J. Richter, and F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nano-rods for field-enhanced spectroscopy,” Phys. Rev. B 71, 235420 (2005).
[1-34] G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, and F. R. Aussenegg, “Plasmon dispersion relation of Au and Ag nano-wires,” Phys. Rev. B 68, 155427 (2003).
[1-35] K. Imura, T. Nagahara, and H. Okamoto, “Near-field optical imaging of plasmon modes in gold nano-rods,” J. Chem. Phys. 122, 154701 (2005).
[1-36] N. Félidj, G. Laurent, J. Grand, J. Aubard, G. Lévi, A. Hohenau, F. R. Aussenegg, and J. R. Krenn, “Far-field Raman Imaging of short-wavelength particle plasmons on gold nano-rods,” Plasmonics 1, 35–39 (2006).
[1-37] H. J. Huang et al. Optics Express15 (12), 7132 (2007)
[3-1] http://www.olympusmicro.com/
[3-2] http://wallcoo.com/nature/under_sky/html/image17.html
[3-3]徐豪汶,“鍺銻碲相變化奈米薄膜之奈米尺度光熱性質的究”,碩士論文,中央物理研究所 (2006)
[3-4]祁子年,“近場光學顯微術及其應用”,碩士論文,中正大學物理學研究所 (1996)
[4-1]http://www.devicelink.com/industry/index.html
[4-2]A. Doron, E. Katz, and I. “Organization of Au Colloids as Monolayer Films onto ITO Glass Surfaces: Application of the Metal Colloid Films as Base Interfaces To Construct Redox-Active Monolayers,” Willner, Langmuir 11,1313-1317 (1995).
[4-3]N. Taub, O. Krichevski, and G. Markovich, “Growth of gold nano-rods on surfaces,” J. Phys. Chem. B 107, 11579–11582 (2003).
[4-4]H. M. Chen, H. C. Peng, R. S. Liu, K. Asakura, C. L. Lee, J. F. Lee and S. F. Fu, “Controlling the Length and Shape of Gold nano-rods,” J. Phys. Chem. B 109, 19553 (2005).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top