跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/23 22:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴建宏
研究生(外文):Jian-Hung Lai
論文名稱:N型氧化鋅薄膜之蕭特基接觸
論文名稱(外文):Schottky contacts on n-type ZnO thin films
指導教授:陳銘堯陳銘堯引用關係
指導教授(外文):Ming-Yau Chern
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:75
中文關鍵詞:氧化鋅薄膜
外文關鍵詞:ZnOthin films
相關次數:
  • 被引用被引用:0
  • 點閱點閱:252
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究在N型氧化鋅薄膜之蕭特基接觸的製造與特性。氧化鋅擁有許多良好的特性,氧化鋅蕭基元件的製作先形成蕭特基接觸。在此實驗中,首先利用快速脈衝雷射蒸鍍法生長氧化鋅薄膜,並使用射頻磁控濺鍍法形成的金當作蕭特基接觸,但其電流電壓關係呈現歐姆現象或是漏電流很大的蕭特基特性。為改善其電性,利用雙氧水溶液來做氧化鋅薄膜的表面處理,發現其呈現良好的蕭特基特性,甚至在正負兩伏特間幾乎有高達四個數量級的差別。接者,將這個方法用在陶瓷材料上,也發現由歐姆接觸轉變為蕭特基接觸的現象。最後,為研究其氧化鋅薄膜在做雙氧水表面處理前後的變化,利用Van der Pauw四點量法分析其電性、Kelvin probe force microscopy 量測其表面電位變化、原子力顯微鏡觀察其表面起伏程度,以及光激螢光光譜檢測其發光位置。
The formation and properties of Schottky contacts to ZnO thin films have been investigated. Since ZnO possesses superior properties in many aspects, Schottky contact are needed to realize some ZnO-based devices. In this work, ZnO thin films were grown by fast pulsed laser deposition. Au Schottky contacts were deposited by radio frequency magnetron sputtering but their current-voltage relations show ohmic characteristics or Schottky behavior with a high leakage current. In order to improve the Schottky behavior, the hydrogen peroxide treatment was used on the ZnO thin films before the deposition of Au. After the treatment, the sample possessed good Schottky contacts and up to four orders of magnitude in rectification of the current was obtained for the bias between -2V and +2 V. This method was applied to ceramic materials and the conversion from ohmic to Schottky behavior was also found. Finally, the effect of hydrogen peroxide treatment on the ZnO surface was studied using Van der Pauw measurement, Kelvin probe force microscopy, atomic force microscopy, and photoluminescence.
口試委員審定書 i
誌謝 ii
摘要 iii
Abstract iv
Contents v
List of figures viii
List of tables x
Chapter 1 Introduction 1
References 5
Chapter 2 Background knowledge and experimental techniques 6
2.1 ZnO and ITO 6
2.2 Schottky contacts 9
2.3 Techniques for thin films growth 13
2.3.1 Fast pulsed laser deposition 13
2.3.2 Radio frequency magnetron sputtering 15
2.4 Techniques for thin films analysis 17
2.4.1 X-ray diffraction 17
2.4.2 Atomic force microscopy 19
2.4.3 Kelvin probe force microscopy 20
2.4.4 Van der Pauw measurement 23
2.4.5 Photoluminescence 26
References 29
Chapter 3 Au Schottky contacts on ZnO thin films 30
3.1 Sample growth 30
3.1.1 Preparation of substrates and targets 30
3.1.2 Deposition of ZnO thin films 30
3.1.3 Preparation of ohmic contacts 31
3.1.4 Preparation for Schottky contacts 33
3.2 X-ray diffraction measurement 35
3.3 Kelvin probe force microscopy measurement 38
3.4 Current-voltage measurement 40
3.4.1 Conventionally cleaned sample 40
3.4.2 Hydrogen peroxide treated sample 42
3.5 Summary 46
References 47
Chapter 4 ITO Schottky contacts on ZnO thin films 48
4.1 Sample growth 48
4.1.1 Preparation of substrates and targets 48
4.1.2 Deposition of ITO thin films 49
4.1.3 Deposition of ZnO thin films 49
4.1.4 Preparation for Schottky contacts 50
4.2 X-ray diffraction measurement 51
4.3 Kelvin probe force microscopy measurement 53
4.4 Current-voltage measurement 55
4.4.1 Conventionally cleaned sample 55
4.4.2 Hydrogen peroxide treated sample 55
4.5 Summary 57
References 58
Chapter 5 The effect of the hydrogen peroxide treatment 59
5.1 Van der Pauw measurement 59
5.2 Photoluminescence measurement 62
5.3 Kelvin probe force microscopy measurement 66
5.4 Atomic force microscopy measurement 68
5.5 Summary 68
References 72
Chapter 6 Conclusions 73
1 Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).
2 S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, and T. Steiner, Progress in Materials Science 50, 293 (2005).
3 Murphy, Blaszczak, Moazzami, Bowen, and Phillips, Journal of Electronic Materials,
Vol. 34, No. 4 (2005).
4 H. Sheng, S. Muthukumar, N.W. Emanetoglu, and Y. Lu, Appl. Phys. Lett. 80, 2132
(2002).
5 A.Y. Polyakov, N.B. Smirnov, E.A. Kozhukhova, V.I. Vdovin, K. Ip, Y.W. Heo, D.P.
Norton, and S.J. Pearton, Appl. Phys. Lett. 83, 1575 (2003).
6 K. Ip, Y.W. Heo, K.H. Baik, D.P. Norton, S.J. Pearton, S. Kim, J.R. LaRoche, and F. Ren, Appl. Phys. Lett. 84, 2835 (2004).
7 S. Kim, B.S. Kang, F. Ren, K. Ip, Y.W. Heo, D.P. Norton, and S.J. Pearton, Appl. Phys. Lett. 84, 1698 (2004).
8 F.D. Auret, S.A. Goodmann, M. Hayes, M.J. Legodi, H.A. van Laarhoven, and D.C. Look, Appl. Phys. Lett. 79, 3074 (2001).
9 H. L. Mosbacker, Y. M. Strzhemechny, B. D. White, P. E. Smith, D. C. Look, D. C.
Reynolds, C. W. Litton, and L. J. Brillson, Appl. Phys. Lett. 87, 012102 (2005).
10 H. von Wenckstern, E.M. Kaidashev, M. Lorenz, H. Hochmuth, G. Biehne, J. Lenzer,
V. Gottschalch, R. Pickenhain, and M. Grundmann, Appl. Phys. Lett. 84, 79 (2004).
11 C. Weichsel, O. Pagni, and A. W. R. Leitch, and Semicond. Sci. Technol. 20, 840 (2005)
12 B. J. Coppa, R. F. Davis, and R. J. Nemanich, Appl. Phys. Lett. 82, 400 (2003).
13 K. Ip, B. P. Gila, A. H. Onstine, E. S. Lambers, Y. W. Heo, K. H. Baik, D. P. Norton,
S. J. Pearton, S. Kim, J. R. LaRoche, and F. Ren, Appl. Phys. Lett. 84, 5133 (2004).
14 S. H. Kim, H. K. Kim, and T. Y. Seong, Appl. Phys. Lett. 86, 112101 (2005).
15 S. H. Kim, H. K. Kim, and T. Y. Seong, Appl. Phys. Lett. 86, 022101 (2005).

1Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin,
S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).
2 S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, and T. Steiner, Progress in Materials Science 50, 293 (2005).
3T. Konry and R.S. Marks, Thin Solid Films 492, 313 (2005).
4J. C. C. Fan and J. B. Goodenough, J. Appl. Phys. 48, 3524 (1977).
5Robert F. Pierret, Smiconductor Drvice Fundamentals, Addison-Wesley (1996).
6Ming-Zheng LIN, Chun-Tsung SU, Hong-Chang YAN and Ming-Yau CHERN, Jpn. J.
Appl. Phys., Vol. 44, No. 31 (2005).
7John L. Vossen and Werner Kern, Thin Film Processes, Academic press (1978).
8林明正, Ca3PbN薄膜的合成及結構,台灣大學物理所碩士論文 (2001).
9NT-MDT Co., Solver Instruction manual.
10http://www.eeel.nist.gov/812/hall.html
11L.J. van der Pauw, Philips Res. Repts. 13,1 (1958).
12蘇俊聰, 利用快速脈衝雷射蒸鍍法成長氧化鋅薄膜,台灣大學物理所碩士論
文 (2004).

1F.O. Adurodija, H. Izumi, T. Ishihara, H. Yoshioka, H. Matsui, and M. Motoyama, Vacuum 59, 641 (2000).
2C.H. Yi, I. Yasui, and Y. Shigesato, Jpn. J. Appl. Phys. 34, 1639 (1995).
3S. Halas, Materials Science-Poland, Vol. 24, No. 4 (2006).
4Wilson W. Wenas and Syarif Riyadi, Solar Energy Materials and Solar Cells 90, 3261 (2006).
5K. B. Sundaram and A. Khan, J. Vac. Sci. Technol. A 15, 428 (1997).

1C.H. Yi, I. Yasui, and Y. Shigesato, Jpn. J. Appl. Phys. 34, 1639 (1995).
2Emanuele Centurioni and Daniele Iencinella, IEEE Electron Device Letters, Vol. 24,
No. 3, March (2003).
3L. Chkoda, C. Heske, M. Sokolowski, E. Umbach, F. Steuber, J. Staudigel, M. Sto¨ßel, and J. Simmerer, Synthetic Metals 111, 315 (2000).

1K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. Voigt, Appl. Phys. Lett. 68, 403 (1996)
2E. G. Bylander, J. Appl. Phys. 49, 1188 (1978)
3C.-C. Lin, C.-S. Hsiao, S.-Y. Chen, and S.-Y. Cheng, J. Electrochem. Soc.151, G285 (2004).
4Sang-Ho Kim, Han-Ki Kim, and Tae-Yeon Seong, Appl. Phys. Lett. 86, 112101 (2005).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊