跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.88) 您好!臺灣時間:2024/12/04 13:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江國榮
研究生(外文):Guo-Ron Jiang
論文名稱:加工前處理降低冷藏截切鳳梨生菌數之研究
論文名稱(外文):Reduction of microbial load in the pretreatment of refrigerated fresh-cut pineapple
指導教授:吳瑞碧
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:119
中文關鍵詞:鳳梨截切二氧化氯臭氧真空技術
外文關鍵詞:pineapplefresh-cutchlorine dioxideozonevacuum
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1013
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
鳳梨為台灣最重要的水果之一,其冷藏截切品的外銷需求量也與日遽增。近日有廠商反映,冷藏截切鳳梨常因生菌數過高遭日本買主退貨,造成農民極大損失。本研究即針對冷藏截切鳳梨生產過程中微生物數量的控制而進行。

本實驗分為兩部分,第一部分鳳梨分別以50ppm二氧化氯溶液處理,搭配傳統浸漬法、超音波震盪浸漬 (40kHz) 與真空浸漬法 (65 cmHg ),分別處理2.5 或5分鐘;第二部分利用0.93或1.11ppm臭氧氣體處理,搭配直接接觸法、多次抽氣法以及真空穿透法分別處理30分鐘後,測定各種處理方式對鳳梨芽眼中生菌抑制情形,以及截切成品於低溫 (5±2℃) 儲藏期間 (0、24、48、72hr) 色澤及質地之變化。

結果顯示,以二氧化氯溶液或臭氧氣體配合真空技術皆可顯著下降生菌數,但二氧化氯溶液或臭氧氣體搭配傳統浸漬法、超音波震盪、直接接觸法和多次抽氣法則無法有效抑制微生物生長。儲藏試驗結果發現,鳳梨經二氧化氯溶液或臭氧氣體真空穿透處理後截切之鳳梨,其截切成品色澤及質地於低溫儲藏期間無顯著劣變。由此可見以二氧化氯溶液或氣態臭氧配合真空穿透技術為核心,將可獲得比目前製程更具微生物清潔度,同時保有良好貯藏品質的冷藏截切鳳梨。
Pineapple is one of the most important fruits grown in Taiwan. The demand for fresh-cut pineapple is growing;However, microbial quality has been limiting its marketability. Thus, this study was aimed to look for methods that reduce the microbial load on fresh-cut pineapple effectively.

Chlorine dioxide and ozone were used in this study. In the first part, pineapple was immersed into 50ppm chlorine dioxide solution with ultrasonication and with or without vacuuming for 2.5 or 5 min. In the second part, pineapple was treated with gaseous ozone (0.93 or 1.11 ppm) with or without vacuuming or repeated vacuuming for 30 min. After these treatments, the microbial load was evaluated. The effects of chlorine dioxide and ozone on physical properties of fresh-cut pineapples during storage were also investigated.

The results showed that vacuum-penetration with chlorine dioxide solution or gaseous ozone can effectively reduce the microbial load in pineapple. Meanwhile, there is no significant effect on the physical properties of fresh-cut pineapples under refrigerated storage. In conclusion, we propose to use vacuum-penetration with microbicide as a pretreatment in the processing of refrigerated fresh-cut fruit to reduce the microbial load.
中文摘要………………………………………………………………………… I
英文摘要………………………………………………………………………… II
目錄……………………………………………………………………………… Ⅲ
表次……………………………………………………………………………… VII
圖次……………………………………………………………………………… VⅢ
第一章 前言……………………………………………………………………… 1
第二章 文獻整理………………………………………………………………… 3
第一節 鳳梨簡介………………………………………………………………… 3
一、概說……………………………………………………………………… 3
二、品種…………………………………………………………………… 5
第二節 生鮮截切蔬果………………………………………………………… 6
一、定義與特性………………………………………………………… 6
二、截切蔬果產品之需求………………………………………………… 7
三、生鮮截切蔬果加工後主要品質劣變因子………………………………… 8
四、生鮮截切蔬果之殺菌技術………………………………………………… 9
第三節 二氧化氯……………………………………………………………… 13
一、前言…………………………………………………………………… 13
二、物理化學性質 13
三、二氧化氯於水中之反應 14




四、二氧化氯之消毒機制…………………………………………………… 15
五、二氧化氯殺菌能力……………………………………………………… 16
六、二氧化氯於蔬果殺菌之應用…………………………………………… 17
七、二氧化氯之使用安全性………………………………………………… 17
八、毒性……………………………………………………………………… 18
第四節 臭氧簡介……………………………………………………………… 19
一、簡史……………………………………………………………………… 19
二、臭氧之物化性質………………………………………………………… 19
三、臭氧之化學反應………………………………………………………… 21
四、臭氧之殺菌機制………………………………………………………… 23
五、臭氧之殺菌效果………………………………………………………… 24
六、影響臭氧殺菌之因子…………………………………………………… 25
七、臭氧之毒性及相關法規………………………………………………… 27
第五節 真空技術於食品加工之應用………………………………………… 28
第三章 材料與方法……………………………………………………………… 30
第一節 實驗材料……………………………………………………………… 30
第二節 試藥…………………………………………………………………… 30
第三節 儀器設備……………………………………………………………… 31
第四節 實驗架構……………………………………………………………… 32
第五節 實驗設計……………………………………………………………… 36
一、基本成分分析………………………………………………………… 36
二、前處理加工探討……………………………………………………… 36
三、殺菌方法……………………………………………………………… 36
(一) 二氧化氯溶液殺菌部分……………………………………………… 36
(二) 臭氧氣體殺菌部分…………………………………………………… 37
四、貯藏試驗………………………………………………………………… 38
第六節 分析方法……………………………………………………………… 38
一、酸鹼值…………………………………………………………………… 38
二、總多酚類化合物含量…………………………………………………… 38
三、總可溶性固形物………………………………………………………… 39
四、可滴定酸含量………………………………………………………… 39
五、還原糖含量…………………………………………………………… 39
六、總糖類含量……………………………………………………………… 40
七、臭氧濃度計算方式……………………………………………………… 40
八、微生物之測定…………………………………………………………… 40
九、果實質地特性之測定…………………………………………………… 41
十、果實色澤之測定………………………………………………………… 41
第七節 資料處理及數據分析………………………………………………… 41
一、統計分析………………………………………………………………… 41
二、繪圖…………………………………………………………………… 41
第四章 結果與討論……………………………………………………………… 42
第一節 二氧化氯溶液抑菌試驗……………………………………………… 42
一、基本成分分析………………………………………………………… 42
二、工廠加工前處理分析…………………………………………………… 43
三、傳統二氧化氯溶液浸漬法……………………………………………… 45
四、二氧化氯溶液配合超音波震盪處理法………………………………… 47
五、二氧化氯溶液真空浸漬處理法………………………………………… 49
六、二氧化氯溶液真空浸漬處理法對鳳梨果肉色澤之影響……………… 55
七、二氧化氯溶液真空浸漬處理法對鳳梨果肉質地之影響……………… 62
第二節 臭氧氣體抑菌試驗…………………………………………………… 67
一、臭氧氣體抑菌 模式試驗……………………………………………… 67
二、臭氧氣體直接接觸法………………………………………………… 70
三、臭氧氣體多次抽氣處理法…………………………………………… 70
四、臭氧氣體真空穿透處理法……………………………………………… 73
五、臭氧氣體真空穿透處理法對鳳梨果肉色澤之影響…………………… 76
六、臭氧氣體真空穿透處理法對鳳梨果肉質地之影響…………………… 82
第五章 結論……………………………………………………………………… 84
第六章 參考文獻………………………………………………………………… 85
附錄一 第三屆兩岸三地食品暨生物科技研討會……………………………… 99
附錄二 以真空穿透技術降低截切鳳梨生菌數之研究 (摘要) ……………… 100
附錄三 台灣農業化學與食品科學期刊格式……………… ………………… 101


表次
頁次
表 一、(一) 屏東某截切鳳梨加工製造廠微生物檢測表……………………… 2
(二) 雲林某截切鳳梨加工製造廠微生物檢測表…………………… 2
表 二、(一) 農產品進出口量值 (鳳梨加工製品) 資料表…………………… 7
(二) 生鮮冷藏鳳梨進出口量值 (進出口國家) 資料表……………… 8
表 三、常用於截切蔬果之消毒劑種類及效果……………………………… 11
表 四、四種消毒劑的比較…………………………………………………… 12
表 五、臭氧的物理化學性質………………………………………………… 20
表 六、鳳梨基本分析………………………………………………………… 42
表 七、二氧化氯溶液真空浸漬處理前後鳳梨重量變化及二氧化氯吸入率 50
表 八 、鳳梨以二氧化氯溶液真空浸漬不同時間後截切,於5±2℃儲藏期間Hunter’s L、a、b值之變化……………………………………………
56
表 九 、鳳梨以二氧化氯溶液真空浸漬不同時間後截切,於5±2℃儲藏期間質地之變化………………………………………………………
63
表 十、鳳梨以不同濃度臭氧氣體真空穿透後截切,於5±2℃儲藏期間Hunter’s L、a、b值之變化……………………………………………
75
表十一、 鳳梨以不同濃度臭氧氣體真空穿透後截切,於5±2℃儲藏期間質地之變化……………………………………………………………………
81


圖次
頁次
圖 一、(一) 金鑽鳳梨 熟度0……………………………………………… 3
(二) 金鑽鳳梨 熟度3……………………………………………… 4
(三) 金鑽鳳梨 熟度5……………………………………………… 4
(四) 金鑽鳳梨 熟度7……………………………………………… 4
(五) 金鑽鳳梨 熟度9……………………………………………… 5
圖 二、截切鳳梨成品……………………………………………………… 6
圖 三、二氧化氯結構式…………………………………………………… 14
圖 四、臭氧結構式………………………………………………………… 19
圖 五、臭氧與有機化合物的反應機制圖………………………………… 22
圖 六、(一) 真空浸漬設備 (工業用)…………………………………… 29
(二) 真空浸漬設備 (實驗室架設) ……………………………… 29
圖 七、截切鳳梨製程中各加工步驟總生菌數含量……………………… 44
圖 八、傳統二氧化氯浸漬法對鳳梨芽眼總生菌數之影響……………… 46
圖 九、二氧化氯溶液配合超音波震盪對鳳梨芽眼總生菌數之影響…… 48
圖 十、二氧化氯溶液真空浸漬對鳳梨芽眼總生菌數之影響…………… 51
圖 十一、截切鳳梨產品與芽眼重量………………………………………… 52
圖 十二、鳳梨經二氧化氯溶液真空浸漬處理25分鐘後芽眼與截切產品
生菌數比較………………………………………………………
53
圖 十三、鳳梨以二氧化氯溶液真空浸漬不同時間後截切,於5±2℃儲藏
期間外觀之變化……………………………………………………
58


圖 十四、鳳梨以二氧化氯溶液真空浸漬後截切,於5±2℃儲藏期間Hunter’s L值之變化…………………………………………………………
59
圖 十五、鳳梨以二氧化氯溶液真空浸漬後截切,於5±2℃儲藏期間Hunter’s b值之變化…………………………………………………………
60
圖 十六、鳳梨以二氧化氯溶液真空浸漬後截切,於5±2℃儲藏期間硬度之變化…………………………………………………………………
64
圖 十七、鳳梨以二氧化氯溶液真空浸漬後截切,於5±2℃儲藏期間脆裂度之變化………………………………………………………………
65
圖 十八、(一) 無臭氧處理鳳梨培菌後外觀………………………………… 67
(二) 臭氧處理後鳳梨泥培菌後外觀……………………………… 67
圖 十九、臭氧氣體對鳳梨漿中微生物之影響……………………………… 68
圖二 十、臭氧氣體直接接觸法對鳳梨芽眼總生菌數之影響…………… 70
圖二十一、臭氧氣體多次抽氣處理法對鳳梨芽眼總生菌數之影響………… 71
圖二十二、臭氧氣體真空穿透處理法對鳳梨芽眼總生菌數之影響………… 73
圖圖二十三、鳳梨以不同濃度臭氧氣體真空穿透處理,於5±2℃儲藏期間外觀之變化…………………………………………………
77
圖二十四、鳳梨以不同濃度臭氧氣體真空穿透漬後截切,於5±2℃儲藏期間Hunter’s L值之變化………………………………………………
78
圖二十五、鳳梨以不同濃度臭氧氣體真空穿透漬後截切,於5±2℃儲藏期間Hunter’s b值之變化………………………………………………
79
圖二十六、鳳梨以不同濃度臭氧氣體真空穿透處理後截切,於5±2℃儲藏期間硬度之變化……………………………………………………
82
圖二十七、鳳梨以不同濃度臭氧氣體真空穿透處理後截切,於5±2℃儲藏期間脆裂度之變化……………………………………………………
83
王憶鎧:截切蔬菜之處理技術及產業之應用。園產品採收後處理技術之研究與應用研討會專刊,120-130 (2005)。
任立宇:臭氧應用於空間消毒殺菌之評估研究。國立台灣大學環境工程學研究所碩士論文 (2004)。
行政院農業委員會農糧署。農糧產品消費資訊 (2006)。
巫健次﹕水中有機物對O3及ClO2消毒致病微生物的影響研究。國立台灣大學環境工程學研究所碩士論文 (1988)。
李雅志:臭氧及溶液處理對輕度加工蘋果楔型切塊品質改善之研究。國立台灣大學園藝研究所碩士論文 (2001)。
林致苑:不同臭氧濃度及冷卻時間對生鮮雞肉保存性之影響。東海大學畜產學研究所碩士論文 (2000)。
吳婉甄:截切蔬果產品之需求。食品市場資訊,97(1): 28-30 (2007)。
吳清熊:臭氧在魚介類保鮮及其他食品殺菌之應用。中國水產,415:37-41 (1987)。
陳耀仁:飲用水採二氧化氯消毒以減低氯仿生成量之研究。國立台灣大學環境工程學研究所碩士論文 (1980)。
陳如茵:截切蔬果之保存。食品工業,29(4): 9-18 (1997)。
張禎祐:以二氧化氯為替代消毒劑之副產物生成與控制研究。國立中興大學環境工程學研究所博士論文 (2000)。
陳麗霞:二氧化氯作為殺菌劑之特性及其在水產品之應用研究。國立台灣海洋大學食品科學系碩士論文 (2002)。
黃錦城、王憶鎧、何秋燕、紀璟叡:使用消毒劑清洗對於苜蓿種子和苜蓿芽細菌殺菌之影響。食品工業,40(4): 8-20 (2007)。

曾琬宓:有效二氧化氯的定量及其抗菌處理對鮪魚肉片品質的影響。國立高雄海洋科技大學水產食品科學研究所碩士論文 (2006)。
溫添進、張家欽﹕氧之應用及其電解法製造。中國化學工程學會會刊,41(3): 60-71 (1994)。
蔡滄朝、曾慶瀛、鄭三郎﹕真空浸漬及殺菁條件對帶殼花生加工技術改進之研究。中華生質能源學會會誌,30(3):328-336 (1992)。
廖惠文:應用臭氧處理生活污水之可行性研究。國立台灣大學環境工程學研究所碩士論文 (2004)。
蔡禮新:二氧化氯使用於食品上。科學與技術,36:69-72 (2004)。
潘永貴、植麗華、黃德凱:穩定性二氧化氯在MP芒果上的應用研究。食品科學,24(2): 142-144 (2003)。
劉明哲:二氧化氯 (Chlorine dioxide) 生物除污滅菌效能研究。核生化防護半年刊,77: 78-93 (2004)。
劉耀仁﹕數種鳳梨的果實發育與自然開花的抑制。國立屏東科技大學農園生產系碩士論文 (2004)。
衛生署。食品類衛生標準-冷凍食品。中文網站。行政院衛生署網站。http://www.doh.gov.tw/cht/index.aspx# (2004)。
衛生署。食品添加物使用範圍及限量暨規格標準-第二類殺菌劑。中文網站 行政院衛生署。http://www.doh.gov.tw/cht/index.aspx# (2006)。
環保署。飲用水水質標準。環保法規查詢系統。行政院環保署網站。http://w3.epa.gov.tw/epalaw/ (2006)。
顧寧、胡雙啟、晉日雅:穩定性二氧化氯在食品殺菌保鮮中的應用。山西化工,27(5): 24-26 (2007)。

Alder, M. G.; Hill, G. R. The kinetics and mechanism of hydroxide ion catalyzed ozone decomposition in aqueous solution. J. Amer. Chem. Soc. 1950, 72, 1885-1887.
Amerine, M. A.; Kunkee, R. E.; Ough, C. S.; Singleton, V. L.; Webb, A. D. The technology of wine making. Avi Pub Co. Wesport, CN, USA. 1980.
Aieta, E. M.; Berg, J. D. A review of chlorine dioxide in drinking water treatment. J. American Water Works Associ. 1986, 78, 62-65.
Andrzejewski, P.; Kasprzyk-Hordern, B.; Nawrocki, J. The hazard of N-nitrosodimethylamine (NDMA) formation during water disinfection with strong oxidants. Desalination. 2005, 176, 37-45.
Aguayo, E.; Escalona, V. H. Effect of cyclic exposure to ozone gas on physicochemical, sensorial and microbial quality of whole and sliced tomatoes. Postharvest Biol. Technol. 2006, 39, 189-177.
Allende, A.; Tomas-Barberan, F. A.; Gil, M. I. Minimal processing foe healthy traditional foods. Trends in Food Sci. and Tech. 2006, 51, 513-519.
Ajlouni, A.; Sibrani, H.; Premier, R.; Tomkins, B. Ultrasonication and fresh produce (cos lettuce) preservation. J. Food Sci. 2006, 71, 62-68.
Akdas, M. Y.; Ozdemir, M. Application of gaseous ozone to control populations pf Escherichia coli, Bacillus cereus spores in dried figs. Food Microbiol. 2008, 25, 386-391.
Bruno, L.; David, A. R.; Brink, R. Ozone in Water Treatment Application and Engineering. Lewis Publishers.
Benarde, M A.; Israel,B. M.; Oliveri, V. P.; Granstrom, M. L. Efficiency of chlorine dioxide as bactericide. J. Appl. Microbiol. 1965, 13, 776.
Baird-Parker, A. C.; Holbrook, R. The inhibition and distruction of cocci in the microbial cell. Ed. by W.B. 1971.
Bellar, T. A.; Lichtenberg, J. J.; Korner, R. C. The occurrence of organohalids in chlorinated drinking water. J. AWWA. 1974, 66, 703-706.
Bartolome, A. P.; Ruperez, P.; Fuster, C. Pineapple fruit: morphological characteristics, chemical composition and sensory analysis of Red Spanish and Cayenne cultivars. Food Chem. 1995, 53, 75-79.
Bartolome, A. P.; Ruperez, P.; Fuster, C. Change in soluble sugars of two pineapple fruit cultivars during frozen storage. Food Chem. 1996, 56, 163-166.
Beuchat, L. R.; Nail, B. V.; Adler, B. B.; Clavero, M. R. S. Efficacy of spray application of chlorinated water in killing pathogenic bacteria on raw apples, tomatoes and lettuce. J. Food Prot. 1998, 61, 1305-1311.
Cho, M.; Kim, J. H.; Yoon, J. Investigating synergism during sequential inactivation of Bacillus subtilis spores with several disinfectants. Water Res. 2006, 40, 2911-2920.
Coseteng, M. Y.; Lee C. Y. Changes in apple polyphenoloxidase and polyphenol concentration in relation to degree of browning. J. Food Sci. 1987, 52, 985-989.
Crisp, L. M.; Bland, C. E. Potential use of ozone to disinfect sea water of fungi causing diseases of cultured marine crustacea. J. Invertebrate Pathology. 1990, 55, 380-386.
Clydesdale, F. M. Color as a factor in food choice. Critical Reviews in Food Sci. and Nutri. 1993, 33, 83-101.
Cherry, J. P. Improving the safety of fresh produce with antimicrobials. Food Technol. 1999, 53, 54-59.
Du, J.; Han, Y.; Linton, R. H. Efficacy of chlorine dioxide gas in reducing Escherichia coli O157:H7 on apple surface. Food Microbiol. 2003, 20, 583-591.
Das, E.; Gurakan, G. C.; Bayindirli. Effect of controlled atmosphere storage, modified atmosphere packaging and gaseous ozone treatment on the survival of Salmonella Enteritidis on cherry tomatoes. Food microbiol. 2006, 23, 430-438,
Erkan, M.; Wang, C. Y.; Krizek, D. T. UV-C radiation reduce microbial populations and determination in Cucurbita pepo fruit tissue. Environ. Exp. Bot. 2001, 45, 1-9.
Fetner, R. H.; Ingols, R. S. A comparison of bacteridal activity of ozone and chlorine against Escherchia coli at 1° Nature. 1956, 15, 381-385.

Food and Drug Administration. Guide to minimize microbial food safety hazards for fresh fruits and vegetables. Department of Agriculture, Centers for Disease Control and Prevention. USA. 1998.
Farooq, S.; Akhlaque, S. Comparative response of mixed cultures of bacteria and virus to ozonation. Water Res. 1983, 17, 809-812.
Finch, G. R.; Smith, D. W. Ozone dose-response of E. coli in activated sludge effluent. Water Res. 1989, 23, 1017-1025.
FDA. Beverages: bottled water. Final rule. Fed Regist. 2005, 70, 33694-33701.
http://www.foodsafety.gov/~dms/prodguid.html#v
Gortner, W. A. Chemical and physical development of the pineapple fruit. IV. Plant pigment constituent. J. Food Sci. 1965, 30, 30-32.
Gilbert, L. C. The functional food trend: What’s next and what American think about eggs. J. Am. Coll. Nutr. 2000, 19, 507s-512s.
Gunten, U. V. Ozonation of drinking water: Part ΙΙ. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res. 2003, 37, 1469-1487.
Guzel-Seydim, Z. B.; Greene, A. K.; Seydim, A. C. Use of ozone in the food industry. Lebensm. Wiss. Technol. 2004, 37, 453-460.
Gonzalez-Aguilar, G. A.; Ruiz-Cruz, S.; Cruz-Valenzuela, R.; Rodriguez-Felix, A.; Wang, C. Y. Physiological and quality changes of fresh-cut pineapple treated with antibrowning agents. Lebensm. Wiss. Technol. 2004, 37, 369-376.
Huang, T. S; Xu, C.; Walker, K.; West, P.; Zhang, S.; Weese, J. Decontamination efficacy of combined chlorine dioxide with ultrasonication on apples and lettuce. J. Food Sci. 2006, 4, 134-139.


Hamelin, C.; Sarhan, F.; Chung, Y. S. Ozone induced DNA degradation in different DNA polymerase Imutants of Escherichia coli K12. Biochemi. Biophy. Res. Comm. 1977, 77, 220-224.
Hanks G. r.; Rees, A. R.; The response of partly cooled tulips to vacuum infiltration with gibberellins. Sci. Hortic. 1983, 21, 159-172.
Hoigne, J,; Bader, H. Rate constants of reactions of ozone with organic and inorganic compounds in water-Ι. Water Res. 1983, 17, 173-183.
Han, Y.; Linton, R. H.; Nielsen, S. S.; Nelson, P. E. Reduction of Listeria monocytogenes on green peppers (Capsicum annuum L) by gaseous and aqueous chlorine dioxide and water washing, and its growth at 7°C. J. Food Prot. 2001a, 64, 1730-1738.
Han, Y.; Floros, J. D.; Linton, R. H.; Nielsen, S. S.; Nelson, P. E. Response surface modeling for the inactivation of Escherichia coli O157:H7 on green peppers (Capsicum annuum L) by chlorine dioxide gas treatment. J. Food Prot. 2001b, 64, 1128-1133.
Han, Y.; Linton, R. H.; Nielsen, S. S.; Nelson, P. E. A comparison of methods for recovery of chlorine dioxide-injured Escherichia coli O157:H7 and Listeria monocytogenes. Food Microbiol. 2002, 19, 201-210.
Han, Y.; Floros, J. D.; Linton, R. H.; Nielsen, S. S.; Nelson, P. E. Response surface modeling for the inactivation of Escherichia coli O157:H7 on green peppers (Capsicum annuum) by ozone gas treatment. J. Food Sci. 2002, 67, 1188-1193
Hugo. pp.391. Academic Press. London, NY.Barbeau, B.; Desjardins, R.; Mysore, C.; Prevost, M. Impacts of water quality on chlorine dioxide efficacy in natural waters. Water Res. 2005, 39, 2024-2033.
Hua, G.; Reckhow, D. A. Comparison of disinfection byproduct formation from chlorine and alternative disinfectants. Water Res. 2007, 41, 1667-1678.
IDI. Chlorine dioxide testing. International Dioxide. Inc. 2000
http://69.94.17.115/clo2chem/test.html
ICMSF. Microbial ecology of foods Vol. 1. Factors affecting life and death of microorganisms. Academic Press Inc. 1980.
Ishizaki, K. Degradation of Nucleic acid with ozone-1. Degradation of nucleobases, ribonucleosides, and ribonucleosides 5-monophosphate. Chem. Pharm. Bull. 1981, 29, 868
Ishizaki, K.; Sawadaish, K. I.; Miura, K.; and Shinriki, N. Effect of ozone on plasmid DNA of Escherichia coli in situ. Water Res. 1987, 21, 823-827.
Izumi, H. Electrolysed water as a disinfectant or fresh cut vegetbles. J. Food Sci. 1999, 64, 536-537.
Javeri, H.; Toledo, R.; Wicker, L. Vacuum infusion of pectinmethlyesterase and calcium effects on firmness of peaches. J. Food Sci. 1991, 56, 739-742.
Junli, H.; Li, W.; Nanqi, R.; Fang, M.; Juli. Disinfection effect of chlorine dioxide on
bacteria in water. Water Res. 1997, 31, 607-613.
Kim, C. K.; Gentile, D. M.; Sproul O. J. Mechanism of ozone inactivation of bacteriophage f2. Appl. Environ. Microbiol. 1980, 39, 210-218.
Klein, B. P. Nutritional consequences of minimal processing on fruit and vegetables. J. Food Quality. 1987, 10, 179-193.
Krause, C. R.; Weidensaul, T. C. Effect of ozone on the sporulation, germination and pathogenicity of Botrytis cinerea. Phytopathol. 1987, 68, 195-197.
Ke, D.; Saltveit, M. E. Wound-induced ethylene production, phenilic metabolism and susceptibility to russet spotting in iceberg lettuce. Physiol. Plant. 1989, 76, 412-418.


Kusakabe, Aso, K. S.; Hayashi, J. I.; Isomura, K.; Morooka, S. Decoposition of humic acid and reduction of trihalomethane formation potential in water by ozone with U.V. irradiation. Water Res. 1990, 24, 781-785.
Kays, S. J. Preharvest factors affecting apperence. Postharvest Biol. Technol.1999, 15, 233-247.
Kim, J. G.; Yousef, A. E.; Chism, G. W. Use of ozone to inactive microorganisms on lettuce. J. Food Safety. 1999, 19, 17-34.
Kenny, S. J.; Burnett, S. L.; Beuchat, S. L. Location of Escherichia coli O157:H7 on and in apples as affected by bruising, washing, and rubbing. J Food Prot. 2001, 64, 1328-1333.
Kenney, S. J.; Beuchat L. R.. Survival of Escherichia coli O157:H7 and Salmonella muenchen on apples as affected by application of commercial waxes. Int. J. Food Microbiol. 2002, 77, 223–231.
Kinay, P.; Yildiz, F.;Sen, f.; Yildiz, M.; Karacali, I. Integration of pre-and postharvest to minimize Penicillium decay of Satsuma mandarins. Postharvest Biol. Technol. 2005, 37, 31-36.
Kim, H.; Ryu, J. H.; Beuchat, L. R. Survival of Enterobacter sakazaki on fresh produce as affected by temperature, and effectiveness of sanitizers for its elimination. Int. J. Food Microbiol. 2006, 111, 134-143.
Leiguarda, R. H.; Peso, O. A.; Palazzola, de. A. Bactericidal action of ozone. Anal. Assoc. Quim. Argent. 1949, 97, 165.
Laties, G. G. The development and control of respiratory pathways in slices of plant storage tissue. Biochemistry of wounded plant tissue. In G. Kahl (Ed). 1978, 421-466.


Labatiuk, C. W.; Belosevic, M.; Finch,G. R. Factors influencing the infectivity of Giardia muris cysts following inactivation in laboratory and natural waters. Water Res. 1992, 26, 733-743
Liu, J.; Steven, C.; Khan, V. A.; Lu, J. Y; Wilson, C. L.; Adeyeye, O.; et al. Application of ultraviolet-C light on storage rots and ripening of tomatoes. J. Food Prot. 1993, 56, 868-872.
Lee, K.; Vallarino, J.; Dumyahn, T.; Ozkaynak, H.; Spengler,J. D. Ozone decay rates in residences. J. Air & Waste Manage. Assoc. 1999, 49, 1238-1244.
Lin, C. M.; Kim, J.; Du, W. X.; Wei, C. I. Bactericidal activity of isocyanate against pathogens on fresh produce. J. Food Prot. 2000, 63, 25-30.
Lee, S. Y.; Gray, P. M.; Dougherty, R. H.; Kang, D. H. The use of chlorine dioxide to control Alicyclobacillus acidoterrestris spores in aqueous suspension and on apples. Int. J. Food Microbiol. 2004, 92, 121-127.
Lin, C. Y.; Wu, S. C. Effects of ozone exposure on inactivation of intra- and extracellular enterovirus 71. Antiviral Res. 2006, 70, 147-153.
Lee, S. Y.; Dancer, G. I.; Chang, S. S.; Rhee, M. S.; Kang, D. H. Efficacy of chlorine dioxide gas against Alicyclobacillus acidoterrestris spores on apple surface. Int. J. Food Microbiol. 2006, 108, 364-368.
Miller, G.L.; Dean, J.; Blum, R. A study of methods for preparing oligosaccharides from cellulose. Arch. Biochem. Biophys. 1959, 91, 21-26.
Manley, T. C.; Niegowski, S. J. Ozone. In Encycl. Chem. technol. Wiley: New York, NY. 1967, 14, 410-432.
Myers, R. A. Packageing considerations for minimal processed fruits and vegetables. Food Technol. 1989, 2, 129-131.


Marquenie D.; Michiels C. W.; Geeraerd A. H.; Schenk A., Soontjen C.; Van Impe J. F.; Nicolai B. M. Using survival analysis to investigate the effect of UV-C and heat treatment on storage rot of strawberry and sweet cherry. Int. J. Food Microbiol. 2002, 73, 187-196.
Nicoli, M. C.;Elizabe, B. E.; Piotti, A.; Lerici, C. R. Effects of sugars and Maillard reaction products on polyphenol oxidase activity in food. J. Food Biochem. 1991, 15, 169-184.
Nicholl, P.; Prendergast, M. Disinfection of shredded salads ingredients with sodium dichloroisocyanurate. J. Food Sci. 1998, 22, 67-79.
Nadas, A.; Olmo, M.; Garcia, J. M.; Growth of Botrytis cinerea and strawberry quality in ozone-enriched atmospheres. J. Food Sci. 2003, 68, 1798-1802.
Nebel C. Ozone treatment of potable water-Part 1. Public Works 1981, 30, 86-90.
Novak, J. S.; Yuan, J. T. C. The fate of Clostridium perfrigens spore exposed to ozone and/or mild heat pretreatment on beef surfaces followed by modified atmosphere packaging. Food Microbiol. 2004, 21, 667-673.
Ohlsson, T. Temperature dependence of sensory quality changes during thermal processing. J. Food Sci. 1980, 45, 836-839.
Oms-Oliu, G.; Aguilo-Aguayo, I.; Martin-Belloso, O. Inhibition of browning on fresh-cut pear wedge by natural compounds. J. Food Sci. 2006, 71, 216-224.
Pantastico, ER. B. Pineapple: In postharvest, handling and utilization of tropical and subtropical fruit and vegetable. AVI, Westport Connecticut. 1975. 65-6, 490-2.
Perez, A. G.; Sanz, C.; Rios, J. J.; Olias, R. R.; Olias, J. M. Effects of ozone treatment on postharvest strawberry quality. J. Agric. Food Chem. 1999, 47, 1652-1656.



Palou, L.; Crisosto, H. C.; Smilanick, J. L.; Adaskaveg, J. E.; Zoffoli, J. P. Effects of continuous 0.3 ppm ozone exposure on decay development and physiological responses of peaches and table grapes in cold storage. Postharvest Biol. Technol. 2002, 24, 39-48.
Palou, L.; Smilanick, J. L.;Crisosto, C. H.; Monir, M. M.; Plaza, P. Ozone gas penetration and control of the sporulation of Penicillium digitatum and Penicillium italicum within commercial packages of oranges during cold storage. Crop Prot. 2003, 22, 1131-1134.
Ridel, E. K. Ozone. Condon: Constable & Co. Ltd. 1920.
Roller, S. D.; Olivieri, V. P.; Kawata, K. Mode of bacterial inactivation by chlorine dioxide. Water Res. 1980, 14, 635-641.
Roy, D.; Wong, P. K. Y.; Engelbrecht, R. S.; Chian, E. S. K. Mechanism of enteroviral inactivation by ozone. Appl. Environ. Microbiol. 1981, 41, 718-723.
Rip, R. G.; Netzer, A. Handbook of ozone technology and applications. Vol 1. 1982
Rice, R. G.; Farguhar, J. W.; Bollyky, L J. Review of the applications of ozone for increasing storage times of perishable foods. Ozone Sci and Eng. 1982, 4, 147-163.
Rames J.; Chaloupecky V.; Sojkova N.; Bencko V. An attempt to demonstrate the increased resistance of selected bacterial strains during repeated exposure to UV radiation at 254 nm. Cent. Eur. J. Public Health. 1997, 5, 30-31.
Rico, D.; Martin-Diana, A. B.; Barat, J. M.; Barry-Ryan, C. Extending and measuring the quality of fresh-cut fruit and vegetables: a review. Trends in Food Sci. and Tech. 2007, 18, 373-386.
Restaino, L.; Frampton E. W.; Hemphill, J. B. Efficacy of ozonated water against various food-related microorganisms. Appl. Environ. Microbiol. 1995, 61, 3471-
3475.
Scott D. B.; Lesher E. C. Effect of ozone on survival and permeability of Escherichia coli. J. Bacteriol. 1963, 85, 567-576.
Shinriki, N. Mechanism of inactivation of Tobacco mosaic virus with ozone. Water Res. 1988, 22, 933-938.
Sax, N. I.; Lewis, R. J. Dangerous properties of industrial materials. 7th ed. Van Nostrand Reinhold, New York, USA. 1989.
Sapers, G. M.; Simmons, G. F. Hydrogen peroxide disinfection of minimally processed fruits and vegetables. Food Technol. 1998, 52, 48-52.
Szczensniak, A. S. The meaning of textural characteristics of crispiness. J. Textural Studies. 1998, 19, 51-59.
Seymour, I. J. Review of current industry practice on fruit and vegetable decontamination. 「Review no.14」. Gloucestershire, UK: Campden & Chorleywood Food Reserch Association. 1999, 1-38.
Scouten, A. J.; Beuchat, L. R. Combined effects of chemical, heat and ultrasound treatment to kill Salmonella and Escherichia coli O157:H7 on alfalfa seeds. J. Appl. Microbiol. 2002, 92, 668-674.
Stivarius, M. R.; Pohlma, F. W.; McElyea, K. S.; Apple, J. K. Microbial, instrumental color and sensory color and odor characteristics of ground beef produced from beef trimmings treated with ozone or chlorine dioxide. Meat Sci. 2002, 60, 299-305.
Saltveit, m. E. Is it impossible to find an optimal controlled atmosphere? Postharvest Biol. Technol. 2003, 27, 3-13.
Swietlik, J.; Dabrowska, A.; Raczyk-Stanislawiak, U.; Nawrocki, J. Reactivity of natural organic fractions with chlorine dioxide and ozone. Water Res. 2004, 38, 547-558.

SY, K. V.; Murray, M. B.; Harrison, M. D.; Beuchat, L. R. Evaluation of gaseous chlorine dioxide as sanitizer for killing Salmonella, Escherichia coli O157:H7, Listeria monocytogenes, and Yeast and Molds on fresh and fresh-cut produce. J. Food Prot. 2005, 68, 1176-1187.
Sapers, G. M.; Miller, R. L.; Mattrazzo, A. M. Effectiveness of sanitizing agents in inactivating Escherichia coli in Golden Delicious apples. J. Food Sci. 1999, 64, 734-737.
Tsai, L. S.; Huxsoll, C. C.; Robertson, G. Prevention of potato spoilage during storage by chlorine dioxide. J. Food Sci. 2001, 66, 472-477.
Tzortzakis, N.; Singleton, I.; Barnes, J. Deployment of low-level ozone-enrichment for the preservation of chilled fresh produce. Postharvest Biol. Technol. 2007, 43, 261-270.
Vrochinskii, K. K. Experimental data on water decontamination with ozone. Hyg. Sanit. 1963, 28, 3
Van buren, J. P. The chemistry of texture in fruits and vegetables. J. Texture Studies. 1979, 10, 1-23.
Wickramanayake, G. B.; Rubin A. J.; Sproul, O. J. Inactivation of Giardia lamblia cysts with ozone. Appl. Environ. Microbiol. 1984, 41, 483-487.
Wang, W. L.; Chai, H. J.; Lin, S. L.; Shiue, Y. E. Studies on the sterilization effect of ozone and ultrasonic virtation on microorganism-Ⅰ. Bull. Tai. Fish. Res. Ins. 1991a, 50, 291-298
White, G. C. Ozone. In: Handbook of chlorination and alterative disinfectants (3rd ed.). New York: Van Nostrand Reinhold. 1992, 1046-1110.
Wang T.; Macgregor S. J.; Anderson J. G..; Woolsey G. A. Pulsed ultra-violet inactivation spectrum of Escherichia coli. Water Res. 2005, 39, 2921-2925.

Wu, V. C. H.; Kim, B. Effect of simple chlorine dioxide method for controlling five foodborne pathogens, yeast and molds on blueberries. Food Microbiol. 2007, 24, 794-800.
Yaun, B. R.; Sumner, S. S.; Eifert, J. D.; Marcy, J. E. Inhibition of pathogens on fresh produce by ultraviolet energy. Int. J. Food Microbiol. 2004, 90, 1-8.
Zhang, S.; Farber, J. M.; The effects of various disinfectants against Listeria monocytogenes on fresh-cut vegetables. Food Microbiol. 1996, 13, 311-321.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top