跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/10 03:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李卉華
研究生(外文):Hui-Hua lee
論文名稱:利用貝氏統計估計太平洋黑鮪族群動態並考慮其不確定性
論文名稱(外文):Incorporating uncertainty into the estimation of population dynamics for Pacific bluefin tuna using Bayesian state-space models
指導教授:許建宗許建宗引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:海洋研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:91
中文關鍵詞:太平洋黑鮪貝氏統計方法不確定性風險評估
外文關鍵詞:Pacific bluefin tunaBayesian approachUncertaintyRisk assessment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:249
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究在利用貝氏統計分析估計太平洋黑鮪族群動態,將可量化的不確定性整合至生物量的估計中。可量化的不確定性可能來自於我們建構的生產量模式,包含發生於豐度指標的觀察值誤差和由模式衍生的過程誤差。在套適六個時序列豐度指標於模式時,藉由貝氏統計分析可同時估計未知參數的數值、這些參數的變異和不確定性。並利用投射分析和風險分析來描述未來可能會發生的不確定性。由於應用貝氏統計分析於非線性生產量模式時,牽涉高維度的積分運算,因此所有參數經過100,000次Markov chain Monte Carlo (MCMC)模擬後,丟棄前5,000筆不穩定的數值,然後再保留每第10筆數值以除去相臨數值的高相關性。透過標準的測試值如Geweke、Heidelberger and Welch和the Rftery and Lewis檢測模擬序列是否達收斂。結果顯示,因Pella-Tomlinson模式所估計的參數和管理上有用的參數,較Schaefer模式所估計的參數更不確定,導致兩種模式有不同的風險程度。然而,兩種模式的族群生物量和漁獲死亡率,顯示相近的趨勢。自1970年代起,族群生物量低於最大生產量時的生物量( )且漁獲死亡率超過最大生產量時的漁獲死亡( ),族群開始呈現過漁狀態且被多漁具所過度捕撈。如果維持未來的年漁獲量於20,000公噸,也就是低於所估計的最大生產量,雖然資源呈現過漁狀態的風險還是很高,但資源會崩潰的風險很低。然而,如果未來的年漁獲量增加至40,000公噸,也就是高於所估計的最大生產量,族群生物量會持續下降,族群最候會崩潰的風險非常高。因為漁獲量在沒有管理下是變動的,因此有必要定期監控黑鮪族群。為了避免資源遭致崩潰的風險,建議控制漁獲量在20,000公噸,不要超過40,000公噸。
This study integrates quantifiable uncertainties into estimation of population dynamics for Pacific bluefin tuna. Uncertainties arise from the state equation (process error) and data link equation (observation error) were constructed within the production models. The values of unknown parameters and variables and their variability were simultaneously estimated by using Bayesian approach, when fitting the models to time series of abundance indices. Uncertainty in risk assessment of projection associated with different functional forms of production models was addressed. As a result, the Pella-Tomlinson models were more uncertain than the Schaefer models in terms of parameter estimation and management measures resulting in different risk levels. However, the population biomass and fishing mortality rates yielded similar trends between them. Since the stock biomass declined below the 97.5% quantiles of biomass at the level that yields the maximum production and the fishing pressure started to increase above the 2.5% quantiles of fishing mortality rate that produces the maximum production in 1970, the stock has been overfished. The future stock biomass was projected from the current year (2005) into the future if the current catch level is taken. The stock maintains its biomass for next 10 years but would still be in the overfished state. If the annul catch maintains at the 20,000 tons level which is lower than maximum production, the risk of collapse is low in the 5-10 years and the risk of being overfished is decreasing as time increases. However, if the annul catch increased to 40,000 tons, the biomass would drop down and the stock eventually collapsed. Because catch is fluctuated without regulation, the routine monitoring of Pacific bluefin tuna is necessary. To avoid this stock incurring the risk of collapse, my suggestion is to control annual catches around 20,000 tons and annual catches should not over than 40,000 tons.
謝辭......................................................II
摘要.....................................................III
ABSTRACT...................................................V
TABLE OF CONTENTS........................................VII
CHAPTER 1: Introduction....................................1
CHAPTER 2: Paradigm shift in statistical inferences........4
2.1 Frequentist paradigm...................................4
2.2 Bayesian paradigm......................................5
2.3 Why do I turn to Bayesian?.............................6
CHAPTER 3: Information considered for the assessment framework..................................................8
3.1 Data sources...........................................8
3.2 Derived index of abundance for Taiwanese longline fishery...................................................10
3.2.1 Data collection and compilation.....................10
3.2.2 Index of abundance..................................11
CHAPTER 4: The assessment model...........................14
4.1 Deterministic production model........................14
4.2 Stochastic production model: accounting for uncertainty in state and observation..................................16
4.3 Bayesian stock assessment: accounting for uncertainty in parameter estimation...................................17
4.4 Application to Pacific bluefin tuna...................20
4.4.1 Bayesian prior distribution.........................20
4.4.2 The likelihood......................................25
4.4.3 Bayesian posterior distribution..............................................25
4.4.4 Convergence diagnostics.............................26
4.4.5 Model sensitivity: accounting for uncertainty in the model.....................................................27
4.4.6 Risk assessment: accounting for uncertainty in the implementation............................................28
CHAPTER 5: Results........................................31
5.1 Model diagnostics.....................................31
5.2 Model summaries.......................................31
5.3 Model trends..........................................34
5.4 Stock status..........................................35
5.5 Model projection......................................36
5.6 Risk analysis.........................................37
CHAPTER 6: Discussion.....................................39
6.1 Population model ensemble.............................39
6.2 Population and management parameters..................40
6.3 Stock status and trends...............................43
6.4 Management implications...............................44
LITERATURE CITED..........................................46
APPENDIX A. Conjugate inverse gamma prior.................53
APPENDIX B. Full conditional distributions for the model parameters................................................55
APPENDIX C. WinBUGS code..................................57
TABLES....................................................63
FIGURES...................................................74
CURRICULUM VITAE..........................................89
Anonymous. 2006. Report of the Fourth ISC Meeting of the Pacific Bluefin Tuna Working Group. Interim Scientific Committee for Tuna and Tuna-Like Species in the North Pacific Ocean. ISC/06/Plenary/7.
Anonymous. 2007. Report of the Seven Meeting of International Scientific Committee for tuna and tuna-like species in the North Pacific Ocean. Annex 6. Report of the Pacific Bluefin Tuna Working Group Workshop.
Bayes, T.R. 1763. An essay towards solving a problem in the doctrine of chances. Phi.l Trans. Roy. Soc. of London. 53: 370-418.
Bayliff, W.H. 1994. A review of the biology and fisheries for northern bluefin tuna, Thunnus thynnus, in the Pacific Ocean. FAO Fish. Tech. Pap. 336: 244–295.
Bernardo, J.M. and Smith, A.F.M. 1994. Bayesian Theory. Wiley, Chichester.
Berry, D.A. 1987. Logarithmic transformations in ANOVA. Biometrics. 43: 439-456.
Botsford, L.W., Castilla, J.C., and Peterson, C.H. 1997. The management of fisheries and marine ecosystems. Science. 277: 509–515.
Carlin, B.P. and Louis, T.A. 2001. Bayes and empirical Bayes methods for data analysis. Second edition. Chapman & Hall/CRC, New York.
Carlin, B.P., Polson, N.G., and Stoffer, D.S. 1992. A Monte Carlo approach to nonnormal and nonlinear state-space modeling. J. Am. Statist. Ass. 87: 493-500.
Casella, G.. and Berger, R.L. 2002. Statistical inference. Second edition. Duxbury Advanced Series.
Chen, K.S., Crone, P., and Hsu, C.C. 2006. Reproductive biology of female Pacific bluefin tuna Thunnus orientalis from south-western North Pacific Ocean. Fish. Sci. 72: 985-994.
Fletcher, R.I. 1978. On the restructuring of the Pella–Tomlinson system. Fish. Bull. 76: 515–521.
Fox, W.W. 1970. An exponential surplus-yield model for optimizing exploited fish populations. Trans. Am. Fish. Soc. 99: 80–88.
Francis, R.I.C.C. and Shotton, R. 1997. “Risk” in fisheries management: a review. Can. J. Fish. Aquat. Sci. 54: 1699–1715.
Gavaris, S. and Sinclair, A. 1998. From fisheries assessment uncertainty to risk analysis for immediate management actions. In Fishery stock assessment models. Ed. by Funk, F., Quinn II, T.J., Heifetz, J., Ianelli, J.N., Powers, J.E., Schweigert, J.F., Sullivan, P.J., and Zhang, C.I. University of Alaska Sea Grant College Program, AK-SG-98-01, pp. 903–916.
Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. 1995. Bayesian data analysis. Chapman&Hall.
Geman, S. and Geman, D. 1984. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence. 6: 721-741.
Geweke, J. 1992. Evaluation of the accuracy of sampling-based approaches to calculating posterior moments. In Bayesian statistics 4. Edited by J.M. Bernardo, J.O. Berger, A.P. Dawid, and A.F.M. Smith. Oxford University Press, Oxford, U.K. pp. 169-193.
Gilks, W.R., Richardson, S., and Spiegelhalter, D.J. 1996. Markov Chain Monte Carlo in Practice. Chapman and Hall, London, UK.
Gill, J. 2002. Bayesian methods: A social and behavioral sciences approach. Chapman & Hall/CRC.
Gulland, J.A. 1983. Fish Stock Assessment: A Manual of Basic Methods. Wiley, New York.
Haddon, M. 2001. Modeling and Quantitative Methods in Fisheries. Chapman and Hall/CRC.
Heidelberger, P. and Welch, P. 1983. Simulation run length control in the presence of an initial transient. Oper. Res. 31: 1109-1144.
Hilborn, R. and Walters, C.J. 1992. Quantitative fisheries stock assessment: choice, dynamics, and uncertainty. Chapman and Hall, New York, N.Y. 570 pp.
Hsu, C.C., Liu, H.C., Wu, C.L., Huang, S.T., and Liao, H.K. 2000. New information on age composition and length-weight relationship of bluefin tuna, Thunnus thynnus, in the southwestern North Pacific. Fish. Sci. 66: 485-493.
Kass, R.E. and Wasserman, L. 1996. The selection of prior distributions by formal rules. J. Am. Statist. Ass. 91: 1343-1370.
Kendall, M.G. 1949. On reconciliation of the theories of probability. Biometrika. 36: 101-116.
Lee, H.H. and Hsu, C.C. 2008. Abundance index for the longline fishery targeting spawning Pacific bluefin tuna Thunnus orientalis in the southwestern North Pacific Ocean. Fish. Sci. 74. (Accepted)
Ludwig, D. and Walters, C.J. 1981. Measurement errors and uncertainty in parameter estimates for stock and recruitment. Can. J. Fish. Aquat. Sci. 38: 711–720.
Ludwig, D., Walters, C.J., and Cooke, J. 1988. Comparison of two models and two estimation methods for catch and effort data. Nat. Res. Model. 2: 457–498.
Maguire, J.J., Sissenwine, M., Csirke, J., Grainger, R., and Garcia, S. 2006. The state of world highly migratory, straddling and other high seas fishery resources and associated species. FAO Fisheries Technical Paper. No. 495, Rome, FAO. 84 pp.
McAllister, M.K., Babcock, E.A., Pikitch, E.K., and Prager, M.H. 2000. Application of a non–equilibrium generalized production model to south and north Atlantic swordfish: combining a Bayesian and demographic methods for parameter estimation. ICCAT Collective Volume of Scientific Papers 55: 1523-1551 (SCRS/99/085).
McAllister, M.K. and Kirkwood, G..P. 1998. Using Bayesian decision analysis to help achieve a precautionary approach for managing developing fisheries. Can. J. Fish. Aquat. Sci. 55: 2642–2661.
McCullagh, P. and Nelder, J.A. 1989. Generalized Linear Models. 2nd edn. Chapman and Hall, London.
Millar, R.B., and Meyer, R. 2000. Non-linear state space modelling of fisheries biomass dynamics using Metropolis-Hastings within-Gibbs sampling. Appl. Stat. 49, 327–342.
Nelder, J.A. and Wedderburn, R.W.M. 1972. Generalized linear models. J. Royal. Stat. Soc. Ser. A. 137: 370–384.
Neyman, J. and Pearson, E.S. 1933. On the problem of the most efficient tests of statistical hypotheses. J. Royal. Stat. Soc. Ser. A. 231: 289-337.
Pella, J.J. and Tomlinson, P. K. 1969. A generalized stock production model. Bull. Inter-Am. Trop. Tuna Comm. 13: 421–496.
Plummer, M., Best, N.G., Cowles, M.K., and Vines, S.K. 2006. CODA: Convergence Diagnosis and Output Analysis for MCMC. R News. 6:7-11.
Polacheck, T., Hilborn, R., Punt, A.E. 1993. Fitting surplus production models: comparing methods and measuring uncertainty. Can. J. Fish. Aquat. Sci. 50: 2597–2607.
Punt, A. and Hilborn, R. 1997. Fisheries stock assessment and decision analysis: the Bayesian approach. Rev. Fish Biol. Fish. 7: 35–65.
Punt, A.E. and Hilborn, R. 2001. Bayesian stock assessment methods in fisheries. User’s manual. FAO Computerized Information Series (Fisheries). No. 12. Rome, FAO. 56 pp.
Punt, A.E. 2003. Extending production models to include process error in the population dynamics. Can. J. Fish. Aquat. Sci. 60: 1217-1228.
Quinn, T.J., Deriso, R.B. 1999. Quantitative Fish Dynamics. Oxford University Press, New York.
R Development Core Team. 2004. R: a language and environment for statistical computing. R Foundation for Statistical Computing (http://www.R-project.org).
Raftery, A.L. and Lewis, S. 1992. How many iterations in the Gibbs sampler? In Bayesian statistics 4. Edited by J.M. Bernardo, J.O. Berger, A.P. Dawid, and A.F.M. Smith. Oxford University Press, Oxford, U.K. pp. 763-774.
Richards, L.J., Schnute, J.T., and Olsen, N. 1997. Visualizing catch-age analysis: a case study. Can. J. Fish. Aquat. Sci. 54: 1646–1658.
Seber, G.A.F. and Wild, C.J. 1989. Nonlinear Regression. Wiley, New York.
Schaefer, M.B. 1954. Some aspects of the dynamics of populations important to the management of commercial marine fisheries. Bulletin of the Inter-American tropical tuna commission 1: 25-56.
Smith, B.J. 2005. Bayesian output analysis program (BOA), Version 1.1.5. The University of Iowa. (available at: http://www.public-health.uiowa.edu/boa)
Spiegelhalter, D.J., Thomas, A., and Best, N.G. 2003. WinBugs, Version 1.4. User Manual. MRC and Imperial College of Science, Technology and Medicine. (available at: http://www.mrcbsu.cam.ac.uk/bugs)
Sainsbury, K. 1998. Living marine resource assessment for the 21st Century: what will be needed and how will it be provided? In Fishery stock assessment models. Ed. by Funk, F., Quinn II, T.J., Heifetz, J., Ianelli, J.N., Powers, J.E., Schweigert, J.F., Sullivan, P.J., and Zhang, C.I. University of Alaska Sea Grant College Program, AK-SG-98-01, pp. 1–40.
Walters, C. and Ludwig, D. 1994. Calculation of Bayes posterior probability distributions for key population parameters. Can. J. Fish. Aquat. Sci. 51: 713–722.
Williams, E.H. and Prager, M.H. 2002. Comparison of equilibrium and nonequilibrium estimators for the generalized production model. Can. J. Fish. Aquat. Sci. 59: 1533–1552.
Wu, C.L., Chen, K.S. and Hsu, C.C. 2005. Estimate of the age and growth parameters for North Pacific bluefin tuna (Thunnus thynnus). J. Taiwan Fish. Res. 13: 1-11.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊