跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/24 11:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡雅鈴
研究生(外文):Ya-Ling Tsai
論文名稱:上層海洋對颱風通過反應之數值模擬研究
論文名稱(外文):Numerical Model Study of Upper Ocean Response to Tropical Cyclones
指導教授:陳慶生陳慶生引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:海洋研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:95
中文關鍵詞:颱風慣性震盪混合層黑潮東海南海
外文關鍵詞:Typhooninertial oscillationmixed layerKuroshioEast China SeaSouth China Sea
相關次數:
  • 被引用被引用:1
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
颱風是台灣常見的劇烈天氣現象,不僅對陸地造成威脅,同樣也能引起上層海洋強烈的變化。本研究利用三維原始方程數值模式,模擬颱風通過時上層海洋所產生的反應。為了解析出海洋中相關的動力過程,模式提高了混合層的解析度;此外,模式採用二階的紊流閉合方法來估算垂直的紊流黏滯係數,以便合理的模擬強風下動量在水中向下傳遞的過程。
本研究首先討論深海區不同移動速度的颱風在上層海洋所引發的運動。模式結果顯示,改變颱風移動速度使風場頻率接近慣性頻率時,風與流會發生共振,能量得以進入並驅動溫躍層海水運動,進而與混合層的流產生第一斜壓模的耦合,使慣性震盪得以持續,其伴隨的混合效應使海水在風力消失後能夠持續冷卻。而無共振發生時,海水冷卻主要藉由風力作用期間Ekman Pumping造成的等溫線抬升與紊流混合等機制達成,動量垂直輸送不易到達溫躍層,慣性運動隨時間與深度衰退,颱風過後溫度便逐漸回昇。當颱風進入地形複雜以及有強流通過的區域時,水平方向的輸送過程也可能成為冷卻上層海水的首要機制。例如本文第二部分探討的台灣東北海域,此處鄰接東西走向的東海陸棚,沿台灣東岸往北的黑潮在此區轉向,隨著地形往東北而去。綜合模式與觀測資料的分析可得知,在通過台灣附近的颱風事件中,部分路徑颱風能迅速改變此區流場的平衡,由夏季阻斷黑潮入侵的型態,變成冬季有利於黑潮入侵的型態,黑潮因而得以進到東海陸棚,而海水的冷卻主要由伴隨入侵而湧升的黑潮次表層水所造成,垂直紊流混合等機制則屬次要。當颱風行經陸棚而無背景強流的影響時,其引發的環流則受到海岸線與地形的影響,海水溫度變化分布型態不一。以本文第三部分所探討的通過南海北部的丹瑞颱風為例,它在抵達海南島前,已經在其東邊形成一股向南的強流,有助於颱風登陸前引起的下沉增溫結構的維持,並可能延緩登陸時其強度的衰減。此外,颱風在250公尺深處亦引發了靠地形支撐的波動,沿著陸棚向南傳遞,使未受風場直接作用區域的海水亦逐漸冷卻,對南海的水文分布確有影響。
Upper ocean response to tropical cyclones is studied, using a three-dimensional primitive equation model that has higher vertical resolution in the mixed layer and uses level-2 turbulence closure scheme to estimate vertical mixing. In this study, the model is applied to investigate ocean responses to typhoons passing over open oceans and near the continental shelf region with or without strong background currents.
The model results showed that in the open ocean, without the interference of topography and background flows, the ocean cooling is primarily influenced by the wind frequency of the passing storm. When the wind frequency is lower than the local inertial frequency, upwelling is the dominant cooling process. When the wind resonates with the current at the inertial frequency, the mixing process becomes important. In resonant cases, momentum penetrates to the thermocline and forces the water to move. The flow is then coupled with that in the mixed layer, so the inertial oscillation of the upper ocean is persistent, which results in long-lasting cooling by mixing. For non-resonant cases, the vertical transfer scale is limited and cooling decays in 5 inertial periods. However, the vertical processes may become secondary when the typhoon moves to a region with both complicated topography and strong background flows, such as the area on the shelf of the East China Sea, near northeastern Taiwan. Both observations and model results indicate that the strong northeast wind in this area accompanied by a typhoon of certain path could significantly alter the circulations on the shelf. An intrusion event may be triggered through a similar mechanism as induced by the winter monsoon but at faster pace. Therefore, the cooling in this area is due to the onshore transport of the Kuroshio’s subsurface water onto the continental shelf, rather than entrainment mixing. If the background current is insignificant, the storm-induced circulation is then influenced by the regional geometry and topography and some warming areas may be produced. As shown in the event of a typhoon moving across the continental shelf of the northern South China Sea, the storm had built up a southward current east of Hainan Island before its center arrived. This flow feature is supportive of the downwelling structure later induced by the passage of the storm, and the warming effect that it creates remains after the storm impacts. Such warming will lead to an increase of upper ocean heat content, which may assist to uphold the storm’s intensity upon landing. In addition, there were topographically trapped waves, which were generated at 250 m depth, thus the cold anomaly quickly propagated southward along the shelf. Through this mechanism, the southern South China Sea, though remote from the storm’s wind field, was cooled in the storm event.
Certificate of Dissertation Committee Approval…………i
Acknowledgements…………………………………………ii
Abstract (in Chinese)……………………………………iii
Abstract………………………………………………………iv
List of Figures……………………………………………viii
List of Tables……………………………………………xiii
List of Abbreviations and Symbols……………………xiv
Chapter One Introduction…………………………………1
1.1 Upper Ocean Response to Tropical Cyclones…………2
1.2 Previous Numerical Studies……………………………4
1.3 Objectives…………………………………………………7
Chapter Two Upper Ocean Response to a Moving Typhoon……9
2.1 Numerical Experiments…………………………………9
2.2 Temperature Response……………………………………13
2.3 Momentum Transfer……………………………………23
2.4 Vertical Mixing Contributed Cooling……………27
2.5 Storm Residence Time and Wind-current Coupling……31
2.6 Discussion……………………………………………………38
Chapter Three Typhoon Induced Cooling off Northeastern Taiwan…………………………………………………………41
3.1 Kuroshio Intrusion onto the Shelf of the East China Sea…………………………………………………………………41

3.2 Post-storm Hydrography Survey……………………………44
3.3 Sea Surface Temperature Variation in the Cold Eddy………………………………………………………………49
3.4 Numerical Study…………………………………………53
3.5 Discussion………………………………………………60
Chapter Four The Ocean Response to Typhoon Damrey on the Continental Shelf
of the South China Sea…………………………………………63
4.1 The South China Sea and its Response to Tropical Cyclones………………………………………………………………64
4.2 Typhoon Damrey……………………………………………65
4.3 Numerical Experiment………………………69
4.3.1 The Cold and Warm Anomalies……………………70
4.3.2 Topographically Trapped Wave Generated by Damrey’s Passage……………………………………………………81
4.4 Discussion……………………………………………………83
Chapter Five Summary and Conclusion………………87
References…………………………………………………92
Bender, M. A., I. Ginis, and Y. Kurihara (1993): Numerical simulation of tropical cyclone-ocean interaction with a high-resolution coupled model. J. Geophys. Res., 98 23245-23263.
Chang, S. –W., and R. A. Anthes (1978): Numerical simulations of the ocean’s nonlinear baroclinic response to translating hurricanes. J. Phys. Oceanogr., 8, 468–480.
Chang, Y. –C (2007) Flow observations in the Taiwan Strait and adjacent seas. National Sun Yat-Sen University, Doctoral Dissertation.
Chang, Y., H. –T. Liao, M. –A. Lee, J. –W. Chan, W. –J. Shieh, K. –T. Lee, G. –H. Wang, and Y. –C. Lan (2008) Multisatellite observation on upwelling after the passage of Typhoon Hai-Tang in the southern East China Sea. Geophys. Res. Lett., 35, L03612, doi:10.1029/2007GL032858.
Chao, S. –Y. (1991) Circulation of the East China Sea: a numerical study. J. Oceanogr. Soc. Jpn., 46, 273-295.
Chen, Y. –K. (2006): Typhoon induced inertial motion in the South China Sea. Master thesis, Institute of Oceanography, National Taiwan University. 98pp. (in Chinese)
Chern, C. –S., J. Wang and D. –P. Wang (1990) The exchange of Kuroshio and East China Sea shelf water. J. Geophys. Res., 95, C9, 16017-16023.
Chern, C. –S. and J. Wang (1992) The influence of Taiwan Strait waters on the circulation of the southern East China Sea. La mer 30, 223-228.
Chuang, W. –S. (1986) A note on the driving mechanisms of current in the Taiwan Strait. J. Oceanogr. Soc. Jpn., 42, 355-361.
Cione, J. J., and E. W. Uhlhorn (2003): Sea surface temperature variability in hurricanes: implications with respect to intensity change. Mon. Wea. Rev., 131, 1783–1796.
Crawford, G. B., and W. G. Large (1996): A numerical investigation of resonant inertial response of the ocean to wind forcing. J. Phys. Oceanogr., 26, 873–891.
D’Asaro, E. A. (2003): The ocean boundary layer below Hurricane Dennis. J. Phys. Oceanogr., 33, 561–579.
Dickey, T. D., D. Frye, J. McNeil, D. Manov, N. Nelson, D. Sigurdson, H. Jannasch, D. Siegel, A. Michaels, and R. Johnson (1998): Upper ocean temperature response to Hurricane Felix as measured by the Bermuda Testbed Mooring, Mon. Weather Rev., 126, 1195-1201.
DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan. (2005): Further improvement to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531-543
Emanuel, K. (2001): Contribution of tropical cyclones to meridional heat transport by the oceans. J. Geophys. Res., 106, D14, 14771-14781.
Fan, K. –L. (1980): On upwelling off northeastern shore of Taiwan, Acta Oceanogr. Taiwan., 11, 105-117.
Fang, G. –H., W. –D. Fang, Y. Fang, and K. Wang (1998): A survey of studies on the South China Sea upper ocean circulation. Acta Oceanogr. Taiwan., 37, 1-16
Gong, G. –C., K. –K. Liu and S –C. Pai (1995): Prediction of nitrate concentration from two end member mixing int the southern East China Sea. Cont. Shelf Res., 15, 827-842.
Geisler, J. E. (1970): Linear theory of the response of a two-layer ocean to a moving hurricane. Geophys. Fluid Dyn., 1, 249–272.
Gill, A. E. and E. H. Schumann (1974): The generation of long shelf waves by the wind. J. Phys. Oceanogr., 4, 83-90.
Greatbatch, R. J. (1984): On the response of the ocean to a moving storm: parameters and scales. J. Phys. Oceanogr., 14, 59–78.
Holland, G. J. (1980): An analytic model of the wind and pressure profiles in hurricanes. Mon. Wea. Rev., 108, 1212–1218.
Hsueh, Y., J. Wang, and C. –S. Chern (1992): The intrusion of the Kuroshio across the continental shelf northeast of Taiwan. J. Geophy. Res. 97, C9, 14323- 14330.
Hsueh, Y., C. –S. Chern, and J. Wang (1993): Blocking of the Kuroshio by the Continental Shelf Northeast of Taiwan. J. Geophy. Res. 98, C7, 12351-12359.
Jan, S., J. Wang, C. –S. Chern and S. –Y. Chao (2002): Seasonal variation of the circulation in the Taiwan Strait. J. Mar. Sys., 35, 249-268.
Jacob, S. D., L. K. Shay, and A.J. Mariano (2000): The 3D oceanic mixed layer response to Hurricane Gilbert. J. Phys. Oceanogr., 30, 1407-1429.
Keen, T. R. and S. E. Allen (2000): The generation of internal waves on the continental shelf by Hurricane Andrew. J. Geophy. Res., 105, C11, 26203-26224.
Leipper, D. F., and D. Volgenau (1972): Hurricane heat potential of the Gulf of Mexico, J. Phys. Oceanogr., 2, 218-224.
Mellor, G. L., and P. A. Durbin (1975): The structure and dynamics of the ocean surface mixed layer. J. Phys. Oceanogr., 5, 718–728.
Mitchell, D. A., W. J. Teague, E. Jarose, and D. W. Wang (2005): Observed currents over the outer continental shelf during Hurricane Ivan. Geophy. Res. Lett., 32, L11610, doi:10.1029/2005GL023014.
Plueddemann, A. J., and J. T. Farrar (2006): Observations and models of the energy flux from the wind to mixed-layer inertial currents. Deep Sea Res. II, 53, 5–30.
Pollard, R. T. and R. C. Millard, Jr. (1970): Comparison between observed and simulated wind-generated inertial oscillations. Deep Sea Res., 17, 813–821.
Price, J. F. (1981): Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153–175.
Price, J. F. (1983): Internal wave wake of a moving storm. Part I: scales energy budget and observations. J. Phys. Oceanogr., 13, 949–965.
Price, J. F., T. B. Sanford, and G. Z. Forristall (1994): Forced stage response to a moving hurricane. J. Phys. Oceanogr., 24, 233–260.
Semtner, A. J., and Y. Mintz (1977): Numerical simulation of the Gulf Stream and mid-ocean eddies. J. Phys. Oceanogr., 7, 208–230.
Shay, L. K., R. L. Elsberry, and P. G. Black (1989): Vertical structure of the ocean current response to a hurricane. J. Phys. Oceanogr., 19, 649–669.
Shay, L. K., Mariano, A. J., Jacob, S. D, and Ryan, E. H. (1998): Mean and near-inertial ocean current response to Hurricane Gilbert. J. Phys. Oceanogr., 28, 858-889.
Tang, T. –Y., Y. Hsueh, Y. –J. Yang, and J. –C. Ma (1999): Continental slope flow northeast of Taiwan, J. Phys. Oceanogr., 29, 1353-1362.
Wada, A. (2002): The processes of SST cooling by typhoon passage and case study of typhoon Rex with a mixed layer ocean Model. Pap. Meteor. Geophys., 52, 31–66.
Wada, A. (2005): Numerical simulations of sea surface cooling by a mixed layer model during the passage of typhoon Rex. J. Oceanogr., 61, 41–57.
Wang. G. C. –Y. (1978) Sea-level profile and gusts within a typhoon circulation, Mon. Wea. Rev., 106, 954-961.
Wu. L. –G., B. Wang, and S. –Q. Geng (2005): Growing typhoon influence on east Asia. Geophys. Res. Lett., 32, L18703, doi:10.1029/2005GL022937.
Zedler, S. E., T.D. Dickey, S. C. Doney, J. F. Price, X. Yu, and G. L. Mellor (2002): Analyses and simulations of the upper ocean’s response to Hurricane Felix at the Bermuda Testbed Mooring site: 13–23 August 1995. J. Geophys. Res., 107, C12, 3232, doi:10.1029/2001JC000969.
Zheng, G. –M. and D. –L. Tang (2007): Offshore and nearshore chlorophyll increases induced by typhoon winds and subsequent terrestrial rainwater runoff. Mar. Ecol. Prog. Ser., 333, 61-74.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊