跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/11 03:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡子晧
研究生(外文):Jeffrey Tzu-Hao Tsai
論文名稱:長命風險避險策略探討
論文名稱(外文):Hedging Longevity Risk for Life Insurance Companies
指導教授:曾郁仁曾郁仁引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:財務金融學研究所
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:44
中文關鍵詞:長命風險負債配置自然避險存續期間參數風險
外文關鍵詞:mortality systematic riskliability allocationlongevity riskduration matchnatural hedgeparameter risk
相關次數:
  • 被引用被引用:1
  • 點閱點閱:427
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
高齡化對社會的衝擊,包含了保險公司與個人。個人對年金商品的需求日益擴大,而保險公司出售此種商品意味著將會面對極大的長命風險。此風險為不可分散、系統性的,無法藉由大數法則分散。本文依據年金與壽險具有自然避險的效果,設計兩個避險策略,來規避保險公司的長命風險。一為Mortality Duration Match法,另一為Quantile Liability Allocation (QLA)法。兩種方法都具有分散長命風險的效果,並提供保險公司最適的負債配置策略。

第一部份的Mortality Duration Match方法利用duration概念來衡量當死亡率改變時,負債價值的變動敏感度。依據此測度,本文推導在Lee-Carter模型下的兩負債商品的最適避險比率解析解。並針對不同的性別、年齡與保障期間進行數值模擬分析。第二部份Quantile Liability Allocation (QLA)法,參考Cairns, Blake and Dowd (2006b) 的二因子死亡率模型建立負債的分配,運用投資組合多角化來計算多個負債下自然避險的最適配置比率。同時也修正第一部份死亡率平行改變與未考慮必要報酬率的缺點。Quantile Liability Allocation (QLA)法也可運用來降低死亡率參數不確定的風險。
The longevity impacts human sociality including insurance companies and individuals. The demand for annuity product increase rapidly for individuals but issuing the annuity-type product pushes the insurance company in extreme high longevity risk. This risk is systematic and non-diversifiable by the Low of Large Number method. We provide two new methods to against this risk by the concept of nature hedging of annuities and life insurances. On is the Duration Match approach, another is Quantile Liability Allocation (QLA) approach. Both strategies reduce the longevity risk effectively and provide the insure companies with an optimal liability allocation at the same time.

In Part I, we hedge annuity product risk with life insurance and find the optimal hedging proportion under Duration Match approach. Different to Cox and Lin (2007) swap approach, the proportion formula is derived by effective duration and has an analytic formulation. The mixed proportions under different age, gender, coverage and method of payment are explored numerically. Part II incorporates the mortality nature hedging strategy of Cox et al. (2007) and the two-factor stochastic mortality model of Cairns et al. (2006b). We propose a quantile liability allocation (QLA) method for insurance companies to hedge against mortality systematic risk. We integrate the risk premiums loadings of systematic risk into the model by Sharpe Ratio Pricing Principle suggested as Milevsky et al. (2006). The QLA model can lead to an optimal liability structure that has smaller quantiles under the required loading return and a multiple liabilities framework. We compare the hedging results to duration match method of Wang et al. (2008) and show that QLA method have a better distribution risk reduction effect when the mortality shift are non-parallel. The parameter uncertainty could be included into the model as well.
誌謝……………………………………………………………………………………… ii
中文摘要………………………………………………………………………………… iii
英文摘要………………………………………………………………………………… iv
Part 1 Nature Hedging Strategy for Life Insurance Company under Longevity Risk ……………………………………………………………………………… 1
Section 1 Introduction …………………………………………………… ……… 1
Section 2 Immunization Strategy for Natural Hedging……………………………… 2
Section 3 Modeling Longevity Risk………………………………………………… 5
Section 4 Numerical Analysis for Natural Hedging Strategy……………………… 9
Section 5 Conclusion and Discussion……………………………………………… 16

Part 2 Liability Allocation under Mortality Systematic Risk, Non-parallel Shift and Parameter Uncertainty………………………………………………………… 21
Section 1 Introduction……………………………………………………………… 21
Section 2 Mortality Stochasticity, Duration Math and QLA Model………………… 23
Section 3 Mortality Estimations and Liability Designs……………………………… 27
Section 4 Numerical Analysis for Natural Hedging Strategies……………………… 29
Section 5 Conclusion and Discussion ……………………………………………… 39

Reference ……………………………………………………………………………… 41
1.Ahlgrim, K., S. D''Arcy, and R. Gorvett (2004). The Effective Duration and Convexity of Liabilities for Property-Liability Insurers under Stochastic Interest Rates, Insurance: Mathematics and Economics, 29: 75-108.
2.Benjamin, B. and A. S. Soliman (1993). Mortality on the Move. Actuarial Education Service, Oxford.
3.Biffis, E. (2005). Affine Processes for Dynamic Mortality and Actuarial Valuations, Insurance: Mathematics and Economics, 37:443-468.
4.Blake, D. and W. Burrows (2001). Survivor Bonds: Helping to Hedge Mortality Risk, Journal of Risk and Insurance, 68, No.2: 339-348.
5.Blake, D., Cairns, A.J.G., and Kevin Dowd (2006a). Living with Mortality: Longevity Bonds and Other Mortality-Linked Securities, British Actuarial Journal, 12: 153-197.
6.Blake, D., Andrew Cairns, Kevin Dowd, and Richard MacMinn (2006b). Longevity Bonds: Financial Engineering, Valuation, and Hedging. Journal of Risk and Insurance, 73, No.4: 647-672.
7.Brouhns, N., M. Denuit, and J. K. Vermunt (2002). A Poisson Log-Bilinear Regression Approach to the Construction of Projected Life Tables, Insurance: Mathematics and Economics, 31: 373-393.
8.Cairns, A. J. G. (2000). A Discussion of Parameter and Model Uncertainty in Insurance, Insurance: Mathematics and Economics, 27: 313-330.
9.Cairns, A.J.G., D. Blake and K. Dowd (2006a). Pricing Death: Frameworks for the Valuation and Securitization of Mortality Risk, ASTIN Bulletin, 36, 79-120.
10.Cairns, A.J.G., D. Blake and K. Dowd (2006b). A Two-factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration, Journal of Risk and Insurance, 73: 687-718.
11.Cairns, A.J.G., D. Blake, K. Dowd, G.D. Goughlan, D. Epstein, A. Ong and I. Balevich (2007). A Quantitative Comparison of Stochastic Mortality Models Using Data from England and Wales and the United States, Pensions Institute Discussion Paper I-0701.(http://www.pensions-institute.org/workingpapers/wp0701.pdf).
12.Cowley, A., and J. D. Cummins (2005). Securitization of Life Insurance Assets and Liabilities, Journal of Risk and Insurance, 72: 193-226.
13.Cox, Samuel H., and Yijia Lin (2007). Natural Hedging of Life and Annuity Mortality Risks, North American Actuarial Journal, 11, No. 3, 1-15.
14.Cox, Samuel H., Yijia Lin, and Shaun Wang (2006). Multivariate Exponential Tilting and Pricing Implications for Mortality Securitization. Journal of Risk and Insurance, 73, No.4: 719-736.
15.Dahl, M. (2004). Stochastic Mortality in Life Insurance: Market Reserves and Mortality-linked Insurance Contracts, Insurance: Mathematics and Economics, 35: 113-136.
16.Dahl, M. and Thomas Moller (2006). Valuation and Hedging of Life Insurance Liabilities with Systematic Mortality Risk, Insurance: Mathematics and Economics, 39: 193--217.
17.Denuit, Michel, Pierre Devolder, and Anne-Cecile Goderniaux (2007). Securitization of Longevity Risk: Pricing Survivor Bonds with Wang Transform in the Lee-Carter Framework. Journal of Risk and Insurance, 74, No.1: 87-113.
18.Dowd, K (2003). Survivor Bonds: A Comment on Blake and Burrows. Journal of Risk and Insurance, 70, No.2: 339-348.
19.Dowd, K., and D. Blake, (2006). After VaR: The Theory, Estimation, and Insurance Applications of Quantile-Based Risk Measures. Journal of Risk and Insurance, 73, No. 2, 193-229.
20.Dowd, K., D. Blake, A.J.G. Cairns, and P. Dawson (2006). Survivor Swaps. Journal of Risk and Insurance, 1: 1-17.
21.Frees, E., W. J Carriere, and E Valdez (1996). Annuity Valuation with Dependent Mortality, Journal of Risk and Insurance, 63, No.2: 229-261.
22.Gaiek, L., K. Ostaszewski, and H-J Zwiesler (2005). A Primer on Duration, Convexity, and Immunization, Journal of Actuarial Practice, 12: 59-82.
23.Gerstnera, T., M. Griebel, M. Holtza, R. Goschnickb, and M. Haepb (2008). A General Asset--liability Management Model for the Efficient Simulation of Portfolios of Life insurance Policies, Insurance: Mathematics and Economics, 42: 704--716.
24.Grundl H., T. Post., and R. N.Schulze, (2006). To Hedge or Not to Hedge: Managing Demographic Risk in Life Insurance Companies, The Journal of Risk and Insurance, Vol. 73, No.1: 19-41.
25.Huang, R., J. Tsai and L. Tzeng, (2008). Government-Provided Annuities under Insolvency Risk, Insurance: Mathematics and Economics, Forthcoming.
26.JPMorgan Lifmetrics (2006). http://www.jpmorgan.com/pages/jpmorgan/investbk
/solutions/lifemetrics.
27.Kalotay A.J., G.O. Williams, and F.J. Fabozzi (1993). A Model for Valuing Bonds and Embedded Options, Financial Analysts Journal, 49: 35-46.
28.Koissi, Shapiro and Hognas (2006). Evaluating and Extending the Lee--Carter Model for Mortality Forecasting: Bootstrap Confidence Interval, Insurance: Mathematics and Economics 26: 1-20.
29.Lee, R. D. and L.R. Carter (1992). Modeling and Forecasting U. S. Mortality, Journal of the American Statistical Association, 87: 659-671.
30.Lin, Y., and Cox, S.H. (2005). Securitization of Mortality Risks in Life Annuities, Journal of Risk and Insurance, 72:227-252.
31.Marceau, Etienne, and Patrice Gaillardetz (1999). On Life Insurance Reserve in a Stochastic Mortality and Interest Rates Environment. Insurance: Mathematics and Economics 25(3): 261-80.
32.McDonald, A. S., A. J. G Cairns, P. L. Gwilt, and K. A. Miller (1998). An International Comparison of Recent Trends in the Population Mortality, British Actuarial Journal, 3: 3-141.
33.Melnikov, A. and Y. Romaniuk (2006). Evaluating the Performance of Gompertz, Makeham and Lee-Carter Mortality Models for Risk Management. Insurance: Mathematics and Economics,39: 310-329.
34.Mileysky, M. A., and S. D. Promislow (2001). Mortality Derivatives and the Option to Annuities, Insurance: Mathematics and Economics 29: 299-318.
35.Milevsky, M.A., S.D. Promislow, and V.R. Young (2006). Killing the Law of Large Numbers: Mortality Risk Premiums and the Sharpe Ratio, The Journal of Risk and Insurance, 73:4 673-686.
36.Myers SC, and JA Read (2001). Capital Allocation for Insurance Companies, The Journal of Risk and Insurance, 68:4 545-580.
37.Phillips, R. D., J. D. Cummins, and F. Allen, (1998). Financial Pricing of Insurance in the Multiple-Line Insurance Company, Journal of Risk and Insurance, 65:4, 597-636.
38.Renshaw, A. E. and S. Haberman (2003). Lee-Carter Mortality Forecasting with Age Specific Enhancement, Insurance: Mathematics and Economics, 33: 255-272.
39.Renshaw, E.E., and Haberman, S. (2006). A Cohort-based Extension to the Lee-Carter model for Mortality Reduction Factors, Insurance: Mathematics and Economics, 38:556-570.
40.Schrager, D.F. (2006). Affine Stochastic Mortality. Insurance: Mathematics and Economics, 38: 81-97.
41.Sherris, M., (2006). Solvency, Capital Allocation, and Fair Rate of Return in Insurance, The Journal of Risk and Insurance, Vol. 73, No. 1, 71-96.
42.Stallard, E. (2006). Demographic Issues in Longevity Risk Analysis, The Journal of Risk and Insurance, Vol. 73, No. 4, 575-609.
43.Tzeng, Y. R., Jennifer L.Wang, and June Soo (2000). Surplus Management Under a Stochastic Process, Journal of Risk and Insurance 67: 451-462.
44.Wang, Jennifer L., H.C. Huang, Sharon S. Yang, and Jeffrey T. Tsai, (2008). An Optimal Product Mix for Hedging Longevity Risk in Life Insurance Companies: The Immunization Theory Approach Journal of Risk and Insurance, Forthcoming.
45.Wilkie, A.D., Waters, H.R. and Yang, S. Sharon, (2003). Reserving, Pricing and Hedging for Policies with Guaranteed Annuity Options, British Actuarial Journal, 9: 263-425.
46.Willets, R. C., (2004). The Cohort Effect: Insights and Explanations, British Actuarial Journal, 10: 833-877.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top