跳到主要內容

臺灣博碩士論文加值系統

(100.28.132.102) 您好!臺灣時間:2024/06/16 14:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳怡樺
研究生(外文):Yi-Hua Chen
論文名稱:IPO個股之初始報酬,買賣單不平衡,與波動性之研究
論文名稱(外文):Initial Return, Order Imbalance, and Volatility of IPO
指導教授:蘇永成蘇永成引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:財務金融學研究所
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:68
中文關鍵詞:初次公開發行買賣單不平衡波動性資訊不對稱
外文關鍵詞:IPOOrder ImbalanceVolatilityInformation Asymmetry
相關次數:
  • 被引用被引用:1
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇研究主要在探討初次公開發行的股票,第一天的初始報酬、買賣單不平衡與波動性之間的關係。根據先前的研究,發現當日買賣單不平衡與當日股價報酬率存在著正向關係,尤以投機型股票為甚,而買賣單不平衡又反應著私屬資訊的存在,因此,本篇以資訊不對稱最明顯的市場—IPO股票為研究對象。
  實證結果發現,IPO 首日日內買賣單不對稱與股價報酬率間確有顯著關係存在,再加入波動性的因子,亦發現買賣單不對稱與波動性的變化呈正相關。我們進一步以回歸模型來探討同期與前幾期的買賣單不平衡和股價報酬率之間的關係,發現同期的買賣單不平衡對當期股價報酬率有顯著的影響力,而前幾期的買賣單不平衡中,卻只有前一期的買賣單不平衡與股價報酬率有顯著的負向關係。
  此外,我們以另一個代表著資訊不對稱的變數─公司的資本規模,來探討其與買賣單不平衡之間的關係。結果發現,在IPO當天的股價報酬變化有小型股效果的存在。最後,我們試著以觀察IPO首日的買賣單不平衡,建構出幾個交易策略,可惜結果均顯示,觀察買賣單不平衡無法帶來比初始報酬更高的超額報酬。
In this paper, we investigate the relationship among initial return, volatility and order imbalances of IPOs. Consistent with theory, the result of GARCH (1,1) model shows that order imbalances also have significant impact on initial return of IPO stocks. Further, the GARCH (1,1) model testing the relation between volatility and order imbalance suggests that volatility will arise as long as there comes in a large order imbalance order and vice versa.
In the further study of time-series regression to test the relation between order imbalances and return, we find that contemporaneous order imbalance has a good explanatory power to return. As for lagged order imbalances, only lag-one imbalances are significant negative related to return. We also have the same result in another regression test of lag-one effect. At last, we use market capitalization as the proxy of private information to investigate the relation between market capitalizations and order imbalances. The result shows that the small size effect indeed exists in IPO stocks. In the end, we build four trading strategies and compare their returns to initial return. Unfortunately, we conclude that observing order imbalance as a trading rule cannot contribute higher returns than the average initial return of IPO.
CONTENTS
Chapter 1 Introduction - 1 -
1.1 Motives and Purposes - 1 -
Chapter 2 Literature Review - 4 -
Chapter 3 Data - 8 -
3.1 Data Sources - 8 -
3.2 Data Statistics - 10 -
Chapter 4 Methodology - 12 -
4.1 GARCH(1,1) model - 12 -
─Testing the relation between return and order imbalance - 12 -
4.2 GARCH(1,1) model - 15 -
─Testing the relation between volatility and order imbalance - 15 -
4.3 Contemporaneous order imbalance-return test - 16 -
4.4 Lagged order imbalance-return test - 17 -
4.5 Small firm effect test - 17 -
4.6 Trading strategy - 19 -
Chapter 5 Empirical Results - 20 -
5.1 Dynamic relation between return and order imbalance - 20 -
5.2 Dynamic relation between volatility and order imbalance - 21 -
5.3 Time-series Regression testing the relation between contemporaneous return and order imbalance - 23 -
5.3.1 Contemporaneous imbalances Effect - 24 -
5.3.2 Lagged imbalances Effect - 24 -
5.4 Small size effect - 27 -
5.5 Trading strategies - 28 -
Chapter 6 Conclusions - 30 -
6.1 Summary of our findings in this article - 30 -
6.2 Suggestions for further researches - 31 -
References - 66 -



FIGURES
Figure I NASDAQ Index - 33 -
Figure II Distribution of Mean Order Imbalances - 33 -
Figure III Distribution of market capitalization - 34 -
Figure IV Distribution of β coefficient in the GARCH(1,1) model
【Return- order imbalance relation】 - 34 -
Figure V Distribution of β coefficient in the GARCH(1,1) model
【Volatility- order imbalance relation】 - 35 -
Figure VI Distribution of , the contemporaneous coefficient of time-series regression model - 35 -
Figure VII Distribution of , the lag-one period coefficient of time-series regression model - 36 -




TABLES
Table I Descriptive Statistics of Data - 37 -
Table II Estimators of GARCH(1,1) model - 38 -
Table III Significance of estimator - 39 -
Table IV Estimators of GARCH(1,1) model - 40 -
Table V Significance of estimator - 41 -
Table VI Results of order imbalance regressions—Lagged 0 to 4 - 42 -
Table VII Results of order imbalance regressions—Lagged 1 to 5 - 43 -
Table VIII Estimates of coefficient-firm size relation - 44 -
Table IX Returns gained by different strategies - 45 -



APPENDIX
Appendix A. The Basic information for Sample Data - 46 -
Appendix B. The Summary Statistics of Order Imbalances of Sample Data - 48 -
Appendix C. Coefficients Estimated By Garch(1,1) model - 50 -
Appendix D. Coefficients Estimated By Garch(1,1) model in testing volatility - 54 -
Appendix E. Coefficients Estimated by Contemporaneous Time-series Regression Model - 58 -
Appendix F. Coefficients Estimated By lag-one time-series regression model - 62 -
1.Admati, A., Pfleiderer, P., 1988. A Theory of Intraday Patterns: Volume and Price Variability. Review of Financial Studies, 1, 3-40.
2.Aggarwal, R., 2000. Stabilization activities by underwriters after initial public offerings. Journal of Finance, 55, 1075-1103.
3.Aggarwal, R., 2003. Allocation of Initial Public Offerings and Flipping Activity. Journal of Financial Economics, 68, 111-135.
4.Bollerslev, T., 1986. Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31, 307-327.
5.Campbell, J. Y., Grossman, S. J., Wang, J., 1993. Trading Volume and Serial Correlation in Stock Returns. Quarterly Journal of Economics, 108, 905-939.
6.Chordia, T., Subrahmanyam, A., 1998. Order Imbalance and Individual Stock Returns. The eScholarship Repository, University of California.
7.Chordia, T., Roll, R., Subrahmanyam, A., 2002. Order Imbalance, Liquidity, and Market Returns. Journal of Financial Economics, 65, 111-130.
8.Christie, A., 1982. The Stochastic Behavior of Common Stock Variances: Value, Leverage and Interest Rate Effects. Journal of Financial Economics, 3, 407-432.
9.Easley, D., O’Hara, M., 1987. Price, Trade, and Information in Securities Markets. Journal of Financial Economics, 19, 69-90.
10.Easley, D., Kiefer, N., O’Hara, M., 1997. The Information Content of the Trading Process. Journal of Empirical Finance, 4, 159-186.
11.Ellis, K., 2006. Who Trades IPOs? A Close Look at the First Days of Trading. Journal of Financial Economics, 79, 339-363.
12.Ellis, K., Michaely, R., O’Hara, M., 2000. When the Underwriter Is the Market Maker: An Examination of Trading in the IPO Aftermarket. Journal of Finance, 55, 1039-1074.
13.Ellis, K., Michaely, R., O’Hara, M., 2002. The Making of a Dealer Market: From Entry to Equilibrium in the Trading of Nasdaq Stocks. Journal of Finance, 57, 2289-2316.
14.Foster, D. F., Viswanathan, S., 1996. Strategic Trading When Agents Forecast the Forecasts of Others. Journal of Finance, 51, 1437-1478.
15.Gallant, R., Rossi, P., Tauchen, G., 1992. Stock Prices and Volume. Review of Financial Studies, 5, 199-242.
16.Hanley, K. W., 1993. The Underpricing of Initial Public Offerings and the Partial Adjustment Phenomenon. Journal of Financial Economics, 34, 231-250.
17.He, H., Wang, J., 1995. Differential Information and Dynamic Behavior of Trading Volume. Review of Financial Studies, 8, 919-972.
18.Hong, H., Wang, J., 2000. Trading and Returns under Periodic Market Closures. Journal of Finance, 55, 297-354.
19.Jones, C. M., Kaul, G., Lipson, M. L., 1994. Transactions, Volume, and Volatility. The Review of Financial Studies, 7, 631-651.
20.Kahneman, D., Tversky, A., 1979. Prospect Theory: An Analysis of Decision under Risk. Econometrica, 47, 263-291.
21.Karpoff, J., 1987. The Relation between Price Changes and Trading Volume: A Survey. Journal of Financial and Quantitative Analysis, 22, 109-126.
22.Kyle, A. S., 1985. Continuous Auctions and Insider Trading. Econometrica, 53, 1315-1335
23.Lamoureux, C., Lastrapes, W., 1990. Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects. Journal of Finance, 45, 221-229.
24.Lee, C., Ready, M., 1991. Inferring trade direction from intraday data. Journal of Finance, 46, 733-747.
25.Lin, J. C., Sanger, G. C., Booth, G. G., 1995. Trade Size and Components of the Bid-Ask Spread. Review of Financial Studies, 8, 1153-1183.
26.Llorente, G., Michaely, R., Saar, G., Wang, J., 2002. Dynamic Volume-Return Relation of Individual Stocks. Review of Financial Studies, 15, 1005-1047.
27.Lo, A., Wang, J., 2000. Trading Volume: Definitions, Data Analysis, and Implications of Portfolio Theory. Review of Financial Studies, 13, 257-300.
28.Logue, D. E., 1973. On the Pricing of Unseasoned Equity Issues: 1965-1969. Journal of Financial and Quantitative Analysis, 8, 91-103.
29.Loughran, T., Ritter, J. R., 2002. Why Don’t Issuers Get Upset About Leaving Money on the Table in IPOs. Review of Financial Studies, 15, 413-443.
30.Lucas, D. J., McDonald, R. L., 1990. Equity Issues and Stock Price Dynamics. Journal of Finance, 45, 1019-1043.
31.Ritter, J. R., Welch, I., 2002. A Review of IPO Activity, Pricing, and Allocations. Journal of Finance, 57, 1795-1828.
32.Subrahmanyam, A., Titman, Sheridan, 1999. The Going-Public Decision and the Development of Financial Markets. Journal of Finance, 54, 1045-1082.
33.Teoh, S. H., Welch, I., Wong, T. J., 1998. Earnings management and the long-run market performance of initial public offerings. Journal of Finance, 53, 1935-1974.
34.Wang, F. A., 1998. Strategic Trading, Asymmetric Information and Heterogeneous Prior Beliefs. Journal of Financial Markets, 1, 321-352.
35.Wang, J., 1993. A Model of Intertemporal Asset Prices under Asymmetric Information. Review of Economic Studies, 60, 249-282.
36.Wang, J., 1994. A Model of Competitive Stock Trading Volume. Journal of Political Economy, 102, 127-168.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊