跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/12 18:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡正安
研究生(外文):Cheng-An Chien
論文名稱:標的導向型磁性免疫中空藥物載體之製備與研究
論文名稱(外文):Synthesis and Research of Targeted Magnetic Immune Hollow Drug Carrier
指導教授:邱文英邱文英引用關係
指導教授(外文):Wen-Yen Chiu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:95
中文關鍵詞:氮-異丙基丙烯醯胺甲基丙烯酸磁性蛋白質接枝溫感性中空粒子有機/無機複合粒子
外文關鍵詞:N-isopropylacrylamidemethacrylic acidmagneticthermo-sensitiveprotein bondinghollow particleorganic/inorganic hybrid particle
相關次數:
  • 被引用被引用:1
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以甲基丙烯酸甲酯(methyl methacrylate,MMA)與甲基丙烯酸 (methacrylic acid,MAA)為單體,以無乳化劑乳化聚合方式進聚合反應,合成出具有COOH官能基且未交聯結構的Poly(MMA-MAA)乳膠顆粒後,並以此顆粒為核,加入氮-異丙基丙烯醯胺(N-isopropylacrylamide,NIPAAM)及MAA單體,N,N''-methylenebisacrylamide (MBA) 為交聯劑,以無乳化劑乳化聚合方式合成出具備溫度敏感性的Poly (MMA-MAA) /(NIPAAM-MAA)核¬¬殼乳膠顆粒 ,在聚合反應中變化NIPAAM及MAA的比例、交聯劑量下利用TEM進行顆粒形態的觀察。接著我們以氨水將Poly (MMA-MAA)/ (NIPAAM-MAA) 核殼乳膠顆粒內部的Poly(MMA-MAA)溶解出來,形成中空顆粒,改變溶解的溫度與時間,以TEM觀察顆粒形態之變化,探討NIPAAM/MAA比例以及溫度、時間對於溶解核層Poly(MMA-MAA)的影響。
接著進行磁性乳膠顆粒的製備實驗,合成出具有羧酸基的Poly (MMA-MAA)/ (NIPAAM-MAA)乳膠顆粒,利用乳膠顆粒的羧酸基與鐵離子先鍵結成-COOFe2+及-COOFe3+,再加入氨水,當氨水參與反應使環境變為鹼性時,Fe3O4會以in-situ的方式形成,便合成出中空型磁性乳膠顆粒。
最後以磁性中空乳膠顆粒為seed,再添加MAA、NIPAAM與交聯劑MBA,添加起始劑後使中空型磁性乳膠顆粒外再包覆一層具有交聯結構的Poly(NIPAAM-MAA),形成Poly(NIPAAM-MAA)/Fe3O4 / Poly(NIPAAM-MAA)中空型磁性乳膠顆粒,接著進行LCST與TEM的測試與觀察。
In our study, we synthesize the linear copolymer of MMA (methyl methacrylate) and MAA (methacrylic acid) which has carboxyl groups. Then we use Poly(MMA-MAA) as a seed, adding different amount of crosslinker and different ratio of NIPAAM (N-isopropylacrylamide)/MAA (methacrylic acid) to synthesize Poly(MMA-MAA)/(MAA-NIPAAM) copolymer. We use ammonium hydroxide to dissolve Poly(MMA-MAA) to get hollow Poly(NIPAAM-MAA) latex at different temperature and span. We use transmission electron microscopy、UV-vis SpectropHotometer to observe hollow Poly(MAA-NIPAAM) latex .
Then synthesizing the magnetic hollow latex, we use different method synthesizing it from the traditional method. First, we synthesize the hollow latex. Second, using the functional group(-COOH) on the hollow latex surface to bond Fe2+ and Fe3+. Finally, we put ammonium hydroxide into the latex, and we can get magnetic hollow latex by im-situ method.
Final step is to synthesize Poly(MAA-NIPAAM)/Fe3O4/A(MAA-NIPAAM) magnetic hollow latex . We adding different ratio of NIPAAM/MAA and different amount of initiator and crosslinker into Poly(MAA-NIPAAM)/Fe3O4 latex to synthesize Poly(MAA-NIPAAM)/Fe3O4/A(MAA-NIPAAM) magnetic hollow latex. Then we use transmission electron microscopy、UV-vis SpectropHotometer to observe property of Poly(MAA-NIPAAM)/Fe3O4/A(MAA-NIPAAM) magnetic hollow latex.
審定書 I
誌謝 II
摘要 III
Abstract IV
目 錄 V
圖 目 錄 VI
表 目 錄 IX
第一章 緒論 1
第二章 文獻回顧 3
2-1 氧化鐵 3
2-2 磁性材料 4
2-3 磁性流體的製造 4
2-4 乳化聚合 6
2-5 免疫乳膠顆粒的製備 8
2-6 聚(氮-異丙基丙烯醯胺)Poly(N-isopropyl acrylamide) 9
2-7 中空高分子顆粒製備方式 11
第三章 實驗方法 15
3-1 實驗藥品與儀器 15
3-2 實驗流程 19
3-3 合成方法 23
3-4性質測定 28
第四章 結果與討論 31
4-1 Poly (MMA- MAA) 乳膠顆粒之合成 31
4-1-1 轉化率測定 31
4-2 Poly (MMA- MAA)/(MAA-NIPAAM)乳膠顆粒之合成 32
4-3 Poly (MAA-NIPAAM)中空乳膠顆粒之合成 36
4-4 Poly (MAA-NIPAAM)/ Fe3O4中空磁性乳膠顆粒之合成 42
4-5 Poly (MAA-NIPAAM)/Fe3O4/(MAA-NIPAAM)中空型磁性乳膠顆粒之合成 44
4.6 Poly (MAA-NIPAAM)/Fe3O4/(MAA-NIPAAM)中空型磁性乳膠顆粒蛋白質接枝實驗 48
第五章 結論 50
參考文獻 52
1.陳威倩,「以γ→α相變機制製作alpHa-Fe2O3微粒」國立成功大學碩士論文(2001)
2. S.Sun, C.B.Murry, D.Weller, L.Floks, A.Moser, Science, 287, 1989 (2000)
3. S.S. Papell, “Manufacture of Magnetofluid” U.S. Patent No.3, 215, 572(1965)
4. G.W. Reimers, and S.E. Khalafalla, “Production of Magnetic Fluids by Peptization Techniques”, BuMines TPR 59, pp13(1972)
5. Matsumoto T. and Chri A., Kobunshi Kagaku, 22, 481(1965)
6. Van der Hoff, B.M.E. “advances in chemistry series”, No.34, Amer.Chem.Soc., Washington D.C., P6(1967)
7. Gooddall A.R., Wilkinson M.C., Hearn M.C., J. Polym. Sci., Pokym. Chem. Ed. vol.15, 2193(1977)
8. Cox R.A., Wilkinson M.C., J. Polym. Sci. Ed. vol.15, 2311(1977)
9. Chen C.Y., Pirma I., J. Polym. Sci., Polym. Chem. Ed. vol.18, 1979(1980)
10. Van der Hoff J.W., J. Polym. Sci., Polym. Symp. Vol.72, 161(1985)
11. Priest W.J., J. PHys. Chem., 56, 1077(1952).
12. Hansen F.K., J. Ugelstad, Rubber Chem. Techno, vol.49, 536(1976).
13. Hansen F.K., J. Ugelstad, J. Polym. Sci., Polym. Chem. Ed. vol.6, 1953(1978).
14. Hansen F.K., J. Ugelstad, J. Polym. Sci., Polym. Chem. Ed. vol.17, 3033(1979)
15. Fan L. T., Singh S.K., Controlled Release: A Quantitative Treatment, Chap.1, Springer-Verlag, Berlin(1989)
16. J.M. Singer, “The Latex Fixation Test in Rheumatic Diseases.” Am. J. Med.31, 766(1961).
17. C.L. Christian, R. Mendez-Bryan and D.L. Larson, “Latex Agglutination Test for Disseminated Lupus Erythematosus.” Proc, Soc. Exp. Biol. Med.98, 820(1958).
18. J.M. Singer and C.M. Plotz “The Latex Fixation Test.” Am. J. Med, 21, 888(1956).
19. H.Suzuki, K.Muroya, Y.Marumoto, K. Marumoto Himanari, Y.Sakotain and T.Suzna, J. Takyo. Med. Coll 31,1201(1973)
20. A. Rembaum, S. P. S. Yen and R. S. Molday, “Synthesis and Reactions of HydropHilic Functional MicrospHeres for immunological studies.” J. Macromol. Sci. Chem., A13, 603(1979).
21. A. Rembaum, S. P. S. Yen, E. Cheong, S. Wallace, R. S. Molday, I. L. Gorden and W.J. Dreyer, “Functional polymeric microspHeres based on 2-hydroxyethyl methacrylate for immunochemical studies.” Macromolecules, 9, 328(1976).
22. Akihiko Kondo, Takeharu Lawano and Ko Higashitani, “Immunological Agglutination Kinetics of Latex Particles with Covalently Immobilzed Antigens.” J. Fermentation and Bioengeering, 73 ,6 , 435-439(1992).
23. A. Rembaum, R. C. K. Yen, D. H. Kempner and J. Ugelstad, “Labeling and magnetic separation by means of immunoreagents based on polyacrolein microspHeres.” J. Immunal. Methods, 52, 341(1982).
24. S. Hosaka, Y. Murao, H. Tamaki, S. Masuko, K. Miura and Y. Kawabata, International Symposium on Polymeric MicrospHeres, Fukui, Japan, 245(1991).
25. T. Basinska, S. Slomkowski, “Synthesis and characterization of polystyrene 核.polyacrolein 殼.” J. Bioactive and Compatible Polymer, 8, July(1993).
26. M. Chang, M. Colvin and A.Rembaum, “Acrolein and 2-Hydroxyethyl Methacrylate Copolymer MicrospHeres.” J. Polymer. Sci., polym. Let, Ed., 24:603(1986).
27. J. M. Peula, R. Hidalgo-Alvarez, “Covalent coupling of antibodies to aldehyde groups on polymer carriers.” J. of Materials Science: Materials in Med., 6, 779-785(1995)
28. Kazuaki Marumoto and Tatsuo Suzuta and Hiromichi Noguchi and Yasuzo Uchida, “Synthesis and Properties of polymeric latex particles and their conjugates with human immunoglobulin G.” Polymer, 19, August(1978).
29. R. S. Molday, W.J. Dreyer, A. Rembaum and S. P. S. Yen, “New Immunolatex spHeres: visual marker of antigens of lympHocytes for scanning electron microscopy.” J. of Cell Biology, 64, 75(1975).
30. Minh-Tam B. Davis and James F. Preston, “A simple Modified Carbodimide Method for Conjugation of small-molecular-weight compound to Immunoglobulin G with minimal protein crosslinking.” Analytical Biochemistry 116, 402-407(1981).
31. Akihiko Kondo, Takeharu Lawano and Ko Higashitani, “Immunological Agglutination Kinetics of Latex Particles with Covalently Immobilzed Antigens.” J. Fermentation and Bioengeering, 73 ,6 , 435-439(1992).
32. Wichterle O., Lim, D., Nature, 185, 117-118(1960).
33. Takagi T., Takahashi K., Aizawa M., Miyata S., Proceedings of the First international Conference on Intelligent Materials, Technomic Publishing Co., Inc.: Lanaster, PA(1993).
34. Hoffman A. S., Chen L. C., “Synthesis and application of thermally reversible heterogels for drug delivery,“ J. Controlled Release, 13, 21-31(1990).
35. Feil H. Y., Bae H., Feijen J., Kim S. W., “Molecular separation by thermosensitive hydrogel membrane,” J. Membr. B. Sci., 64, 283-294(1991).
36. Okano T., Aoki T., Aoki K., Sanui Y., Takei G., Sakurai Y., “Temperature-responsive bioconjugates. I. Synthesis of temperature-responsive pligomers with reactive end groups and their coupling to biomolecules,” Bioconjugate Chem., 4, 42-46(1993).
37. Shiroya T., Tamura N, Yasui M., Fujimoto K., Kawaguchi H., “Enzyme immobilization on the thermosensitive hydrogel microspHeres,” Colloids and Surfaces B: Biointerfaces, 4, 267-274(1995).
38. Tanaka T., Nishio I., Sun S. T., Ueno-Nishio S., “Collapse of gels in electric-field,” Science, 218, 467-469(1982).
39. Evans D. F., Pye G., Bramley R., Ckark G. A., Dyson T. J., Hardcastle J. D., “Measurement of Gastrointestinal pH Profiles in Normal Ambulant Human Subects,” Gut, 29, 1035-1041(1988).
40. Albin G., Horbett T. A., Ranter B. D., “Glucose Sensitive Membranes for Controlled Delivery of Insulin: Insulin Transport Studies,“ J. Contr. Rel. 2, 153-164(1985).
41. Albin G., Horbett T. A., Muller S. R., Ricker N. L., “Theoretical and Experimental Studies of Glucose Sensitive Membranes,” J. Contr. Rel. 6, 267-291(1987).
42. Albin G., Horbett T. A., Ranter B. D., “Glucose Sensitive Membranes for Controlled Delivery of Insulin,” Pulsed and Self Regylated Drug Delivery, J. Kost. Ed., CRC Press, Boca, Raton, FL, 159-185(1990).
43. Ishihara K., Kobayashi M., Shinohara L., “Control of Insulin Permeation through a Polymer Membrance with Responsive Function for Glucose,” Markrromol. Chem. Rapid Commun, 4, 327-331(1983).
44. Ishihara K., Kobayashi M., Ishimaru N., Shinohara I., “Glucose Induced Permeation Control of Insulin through a Complex Membrane Consisting of Immobilized Glucose Oxidase and Poly(amine),” Polym. J., 8, 625-631(1984).
45. Tanaka T., Fillmore D., Sun S. T., Nisho I., Swislow G., Shah A., “PHase transition in ionic gel,” PHys. Rev. Lett., 45, 1636-1639(1980).
46. Ataman M., Coll. Polym. Sci., 265, 19(1987).
47. Kjellander R. and Florin E., J. Chem. Soc. Faraday Trans, 77, 2053(1981).
48. Kubota K., Hamano K., Kuwahara N., Fujishige S., Ando I., “Characterization of poly(N-isopropylacrylamide) in water,” Polym. J., 22(12), 1051-1057(1990).
49. Boutris C., Chatzi E. G., Kiparissides C., “Characterization of the LCST behavior of aqueous poly(N-isopropylacrylamide) solution by thermal and cloud point techniques,” polymer, 10, 2567-2570(1997).
50. Teruo Okano ”Biorelated Polymers and Gels-Controlled Release and Applications in Biomedical Engineering”(1998).
51. 黃忠良編撰, "磁性流體理論應用", 復漢出版社(1988)
52. John PHilip, G. Gnana Prakash, T. Jaykumar, P. Kalyanasundaram, and Baldev Raj, PHys. Rev. Lett. 89, 268301 (2002).
53. Franck Montagne, Olivier Mondain-Monval, Christian Pichot, Abdelhamid, Elaïssari, Journal of Polymer Science Part A: Polymer Chemistry, Vol.44, 2642 – 2656(2006).
54. Ping-Chieh Wang, Wen-Yen Chiu, Chia-Fen Lee, Tai-Horng Young, Journal of Polymer Science Part A: Polymer Chemistry, Vol.42, 5695 – 5705(2004).
55. Liliana P. Ramírez, Katharina Landfester, Macromolecular Chemistry and PHysics, Vol.204, 22 – 31(2003).
56. Huachang Lu, Guangshun Yi, Shuying Zhao, Depu Chen, Liang-Hong Guo and Jing Cheng, Journal of Materials Chemistry,Vol.14, 1336 – 1341(2004).
57. Chia-Lung Lin, Wen-Yen Chiu, Polymer Science Part A: Polymer Chemistry, Vol. 43, 5923 – 5934(2005).
58. L. WANG, L. X. FENG, T. XIE, X. F. QING, JOURNAL OF MATERIALS SCIENCE LETTERS, 18, 1489 – 1491(1999)
59. Li Wang, Lin-Xian Feng and Tao Xie, Polym Int, Vol.49, 184-188(2000).
60. Jie-Chung Lou and Yao-Jen Tu, J. Air & Waste Manage. Assoc.,Vol.55 1809–1815(2005).
62. S. Lomnicklandb. Dellinger, Environ. Sci. Technol., Vol.37, 4254-4260 (2003).
63. B.V. Reddy and S. N. Khanna, PHYSICAL REVIEW LETTERS, Vol.93, 068301(2004).
64. Sh. K. Shaikhutdinov, M. Ritter, X.-G. Wang, H. Over, and W. Weiss, PHYSICAL REVIEW B, Vol.60, 11062-11068(1999).
65. Abdelhamid Elaissari, Macromol. Symp., Vol.229, 47–55(2005).
66. Wolfgang Gerhartz, Y. StepHen Yamamoto, F. Thomas Campbell, Rudolf Pfefferkorn and James F. Rounsaville, Ullmann''s encyclopedia of industrial chemistry, Vol.16 (315-431)/ Vol.24 (429-471, 515-518) (2003).
67. Grigoriy A. Mun, Vitaliy V. Khutoryanskiy, Zauresh S. Nurkeeva, Aibek D. Sergaziyev, Natalia A. Fefelova and Janusz M. Rosiak, Journal of Polymer Science Part B: Polymer PHysics, Vol.42, 1506 – 1513(2004).
68. Xiang-Zheng Kong, Cheng-You Kan, “Synthesis and characterization of hollow polymer latex particles”, Polymers for Advanced Technologies, 627-630(1997)
69. Charles J.McDonald, Michael J.Devon, “Hollow latex particles: synthesis and applications”, Advances in Colloid and Interface Science, 181-213, (2002).
70. Valter Castelvetro, Cinzia De Vita, “Nanostructured hybrid materials from aqueous polymer dispersions”, Advances in Colloid and Interface Science, 167-185、(2004).
71. Xiao-Dong He, Xue-Wu Ge, “MorpHology control of hollow polymer latex particle preparation”, Journal of Applied Polymer Science, 860-863, (2005).
72. Yang Yang, Ying Chu, “Uniform hollow conductive polymer microspHeres synthesized with the sulfonated polystyrene template”, Materials Chemistry and PHysics, 164-171, (2005).
73. Valery N. Pavlyuchenko, Olga V. Sorochinskaya, “Submicron sized hollow polymer particles :preparation and properties”, Macromolecular Symposia, 213-226,(2005).
74. Linyong Song, Xuewu Ge, “Anionic/nonionic mixed surfactants templates preparation of hollow polymer spHeres via emulsion polymerization”, Journal of Polymer Science: Part A: Polymer Chemistry, 2533-2541, (2006).
75. M. Okubo, K. Ichikawa, “Production of multi-hollow polymer microspHeres by stepwise alkali/acid method II. Alkali treatment process*)”, Colloid & Polymer Science, 1257-1262, (1991).
76. M. Okubo and K. Ichikawa, “Production of multihollow polymer particles by the stepwise alkali/acid method IV. Acid treatment process*)”, Colloid & Polymer Science, 933-937, (1994).
77. M. Okubo, A. Ito, T. Kanenobu, “Production of submicron-sized multihollow polymer particles by alkali/cooling method”, Colloid & Polymer Science, 801-804, (1996).
78. M. Okubo, A. Ito, A. Hashiba, “Production of submicron-sized multihollow polymer particles having high transition temperatures by the stepwise alkali/cooling method”, Colloid & Polymer Science, 428-432, (1996).
79. M. Okubo, A. Ito, M. Nakamura, “Effect of molecular weight on the production of multi-hollow polymer particles by the alkali/cooling method”, Colloid & Polymer Science, 82-85, (1997).
80. M. Okubo, H. Mori, “Production of multi-hollow polymer particles by the stepwise acid/alkali method”, Colloid & Polymer Science, 634-639, (1997).
81. M. Okubo, H. Minami, Y. Yamamoto, “Release of toluene from micron-sized, monodispersed, cross-linked, hollow polymer particles”, Colloid & Polymer Science, 77-81, (2001).
82. V. N. Pavlyuchenko, O. V. Sorochinskaya, “Hollow-particle latexes: preparation and properties”, Journal of Polymer Science: Part A: Polymer Chemistry, 1435-1449, (2001).
83. V. N. Pavlyuchenko, O. V. Sorochinskaya, “Preparation of cationic latices comprising hollow thermostable particles”, Journal of Polymer Science: Part A: Polymer Chemistry, 2225-2234, (2004).
84. Cai-Deng Yuan, Ai-Hua Miao, “Preparation of monodispersed hollow polymer particles by seeded emulsion polymerization under low emulsifier conditions”, Journal of Applied Polymer Science, 1505-1510, (2005).
85. 黃耀輝, 免疫乳膠顆粒的製備, 台大化工碩士論文(1998)
86. 溫家貞, 聚氮-異丙基丙烯醯胺與幾丁聚醣共聚乳膠顆粒之合成及其在藥物釋放上的應用, 台大材料所碩士論文(2001)
87. 林佳龍, 聚(氮-異丙基丙烯醯胺)衍生溫度感應型共聚微膠體:製備,性質及應用, 台大材料所博士論文(2005).
88. 周玉蕙, 溫度感應型磁性乳膠顆粒之製造與研究, 台大化工碩士論文(2004)
89. A. Kowalski, M. Vogel, R.M. Blankenship, Sequential heteropolymer dispersions useful in coating compositions as thickening and / or opacifying agents, US Patent, 4, 427, 836, (1984)
90. A. Kowalski, M. Vogel, Sequential heteropolymer dispersions as opacifying agents for coatings, US Patent, 4, 469, 825, (1984)
91. R.M. Blankenship, A. Kowalski, 核-sheath polymer particles containing voids, the resulting product and its use, US Patent, 4, 594, 363, (1986)
92. Xiang-Zheng Kong, Cheng-You Kan, “Synthesis and characterization of hollow polymer latex particles”, Polymers for Advanced Technologies, 627-630, (1997)
93. Charles J.McDonald, Michael J.Devon, “Hollow latex particles: synthesis and applications”, Advances in Colloid and Interface Science, 181-213, (2002)
94. Valter Castelvetro, Cinzia De Vita, “Nanostructured hybrid materials from aqueous polymer dispersions”, Advances in Colloid and Interface Science, 167-185, (2004)
95. Xiao-Dong He, Xue-Wu Ge, “MorpHology control of hollow polymer latex particle preparation”, Journal of Applied Polymer Science, 860-863, (2005)
96. Yang Yang, Ying Chu, “Uniform hollow conductive polymer microspHeres synthesized with the sulfonated polystyrene template”、Materials Chemistry and PHysics, 164-171, (2005).
97. Valery N. Pavlyuchenko, Olga V. Sorochinskaya, “Submicron sized hollow polymer particles :preparation and properties”, Macromolecular Symposia, 213-226, (2005).
98. Linyong Song, Xuewu Ge, “Anionic/nonionic mixed surfactants templates preparation of hollow polymer spHeres via emulsion polymerization”, Journal of Polymer Science: Part A: Polymer Chemistry, 2533-2541, (2006).
99. M. Okubo, K. Ichikawa, “Production of multi-hollow polymer microspHeres by stepwise alkali/acid method II. Alkali treatment process*)”, Colloid & Polymer Science, 1257-1262, (1991)
100. M. Okubo and K. Ichikawa, “Production of multihollow polymer particles by the stepwise alkali/acid method IV. Acid treatment process*)”, Colloid & Polymer Science, 933-937, (1994)
101. M. Okubo, A. Ito, T. Kanenobu, “Production of submicron-sized multihollow polymer particles by alkali/cooling method”, Colloid & Polymer Science, 801-804, (1996)
102. M. Okubo, A. Ito, A. Hashiba, “Production of submicron-sized multihollow polymer particles having high transition temperatures by the stepwise alkali/cooling method”, Colloid & Polymer Science, 428-432, (1996)
103. M. Okubo, A. Ito, M. Nakamura, “Effect of molecular weight on the production of multi-hollow polymer particles by the alkali/cooling method”, Colloid & Polymer Science, 82-85, (1997)
104. M. Okubo, H. Mori, “Production of multi-hollow polymer particles by the stepwise acid/alkali method”, Colloid & Polymer Science, 634-639, (1997)
105. M. Okubo, H. Minami, Y. Yamamoto, “Release of toluene from micron-sized,monodispersed, cross-linked, hollow polymer particles”, Colloid & Polymer Science, 77-81, (2001)
106. Cai-Deng Yuan, Ai-Hua Miao, “Preparation of monodispersed hollow polymer particles by seeded emulsion polymerization under low emulsifier conditions”, Journal of Applied Polymer Science, 1505-1510, (2005)
107. G..K. Chip, A. Rudin, Preparation of void-containing 殼-核 polymer particles, US Patent, 4, 985, 469, (1991)
108. D.I. Lee, M.R. Moulders, D.J. Nicholson, A.N. Leadbetter, Manufacture of hollow 核-殼 polymer latex particles as opacifying plastic pigments, US Patent, 5, 84, 157, (1992)
109. D.I. Lee, M.R. Moulders, D.J. Nicholson, A.N. Leadbetter, Preparation an uses of hollow copolymer latex particles, US Patent, 5, 521, 253, (1992)
110. X.Z. Kong, C. Kan, H. Li, D. Yu, Q. Yuan, Polym. Adv. Technol. 8 (11) 627, (1997)
111. V. N. Pavlyuchenko, O. V. Sorochinskaya, “Hollow-particle latexes: preparation and properties”, Journal of Polymer Science: Part A: Polymer Chemistry, 1435-1449, (2001).
112. V. N. Pavlyuchenko, O. V. Sorochinskaya, “Preparation of cationic latices comprising hollow thermostable particles”, Journal of Polymer Science: Part A: Polymer Chemistry, 2225-2234, (2004).
113. J.-W. Kim, Y.-G. Joe, K.-D. Suh, Colloid Polym. Sci., 277, 252 (1999)
114. Kowalski, A., Vogel, M., Blankenship, R. M. U.S. Patent 4, 427, 836, 1984
115. Blankenship, R. M. U.S. Patent 5, 494, 971, 1996
116. Yong Hu, Xiqun Jiang, Yin Ding,” 核-template-free strategy for preparing hollow nanospHeres”Advanced Materials, 933-937, 2004
117. Xiqun Jiang, Yong Hu, Yin Ding,” Synthesis and characterization of Chitosan-poly(acrylic acid) nanoparticles” Biomaterials, p3193-3201, 2002
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊